
Lecture 3 – Graphs continued

Lesson No. 3: Graphs continued

1 Graph colorings

Vertex-colorings (Brook’s theorem, Mycielski’s construction)
Edge-colorings (Vizing’s theorem, König’s theorem, snarks)

2 Matchings (Hall’s theorem)
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Vertex-colorings of graphs

Let G = (V,E) be a graph and C a set of “colors”.

Definition

A vertex-coloring (barvanje točk) of G is a function c : V → C.
The coloring is proper (pravilno) if u ∼ v ⇒ (v) 6= c(u). G is
k-vertex-colorable (točkovno k-obarvljiv) if there exists a proper
vertex-coloring with |C| = k.

G is k-colorable ⇒ G is `-colorable for any ` ≥ k.

Chromatic number (kormatično število) of G:

χ(G) = min{k : G is k-vertex-colorable}
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Vertex-colorings – examples

2-coloring of the cube. 3-coloring of the Petersen.
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... more examples

χ(Kn) = n.

χ(C2n) = 2
χ(C2n+1) = 3.

If H ≤ G, then χ(H) ≤ χ(G).

Corollary

If G contains a cycle of odd length, then χ(G) ≥ 3.
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Graphs with χ ≤ 2

Clearly, χ(G) = 1 if and only if G ∼= KC
n .

Lemma

χ(G) ≤ 2 if and only if G is bipartite.

Proof: ... think of color classes as bipartition sets ...

We know that graphs with χ ≤ 2 cannot have cycles of odd
length We will now show that the converse holds as well:

Lemma

If G contains no cycles of odd length, then χ(G) ≤ 2.

Tomaž Pisanski, Alen Orbanič, and Primož Potočnik Graphs continued



Lecture 3 – Graphs continued

...

Proof. WLOG: G is connected.
Choose v ∈ V (G). For u ∈ V (G) let:

c(u) = “blue” if d(v, u) is even;
c(u) = “red” if d(v, u) is odd.

If this is not a proper coloring, then there are two adjacent
vertices x, y that are both at even or both at odd distance
from v.
Find shortest paths Px, Py from v to x and to y. Then
Px(xy)P−1

y is a closed walk of odd length.

To complete the proof, we need to show the following:
Exercise.: If a graph contains a closed walk of odd length,
then it also contains a cycle of odd length.
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Characterization of bipartite graphs

This proves the following characterization of bipartite graphs.

Theorem

If G is a graph, then the following statements are equivalent:

G is bipartite.

χ(G) ≤ 2.

G contains no cycles of odd length.
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Cliques

Definition

A subset U ⊆ V (G) is called a clique (klika), if the induced
subgraph G[U ] is a complete graph.
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Maximal Clique

Definition

A maximal clique (maksimalna klika) is a clique that is not
contained in any other clique. A largest clique (največja klika) is
a clique with the largest number of vertices among all cliques.

ω(G) = “the size of the largest clique in G”.

Since χ(Kn) = n, it follows that χ(G) ≥ ω(G).
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The Brooks theorem

Theorem

(Brooks) Let G be a graph. Then

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Moreover, χ(G) ≤ ∆(G) unless G is a complete graph or a cycle
of odd length.
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Proof of the Brooks theorem

WLOG: G is connected.

We already know that ω(G) ≤ χ(G). So we need to show two
things:

1 χ(G) ≤ ∆(G) + 1.
2 If G 6∼= Kn or C2m+1, then χ(G) ≤ ∆(G).

Finding a (∆ + 1)-coloring is easy:

Let {1, . . . ,∆ + 1} be the set of colors. Order the vertices of
G in some linear order. Color the first vertex with color 1.
Suppose that we have already colored the first m vertices. Let
v be the next vertex, and let c ∈ {1, . . . ,∆ + 1} be the
smallest integer that does not appear as a color of some
neighbor of v. Color v with the color c.
Repeat this procedure until all vertices are colored.
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Tomaž Pisanski, Alen Orbanič, and Primož Potočnik Graphs continued



Lecture 3 – Graphs continued
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Lecture 3 – Graphs continued
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Proof of the Brooks theorem – killing unessential greens

In the rest of the proof, we may assume that G 6∼= Kn or
C2m+1. It remains to show, that we may change the
(∆ + 1)-coloring in such a way that one of the colors
“disappears”.
For the rest of the proof: ∆ + 1 = “green”.
Let S = “the set of green vertices”.
If there is v ∈ S such that one of the non-green colors does
not appear among its neighbors, then we may use this color
for v. Apply this throughout S. This procedure is called
“killing unessential greens”.

After unessential greens are “killed”, we get a
(∆ + 1)-coloring in which each green vertex v has valence ∆,
and no two neighbors of v are of the same color.
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Proof of the Brooks theorem – pushing the green color

The second procedure allow us to “push” the green color from any
v ∈ S to any other x ∈ V (G) along any path P from v to x.

1 Kill unessential (∆ + 1)s. If S = ∅ or S = {x}, then stop.

2 Let u be the first vertex on the path from v to x. Let c be the
color of u. Since we killed unessential greens, no green
neighbours of u have any other neighbours of color c.
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Proof of the Brooks theorem – pushing the green color

1 Change the color of green neighbors of u to c, and change the
color of u to green.

2 Go to step 1 with u in place of v, and with P being the part
of old P from u to x.

This procedure changed the color of some old green vertices, and
cyclically rotated the colors along P .
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The proof of Brook’s theorem – reduction to regular graphs

Let x be a vertex of smallest valence. For each green v,
choose a shortest path from v to x, and push the green color
to x. Now x is the only green vertex.

If val(x) < ∆, then there is a non-green color which does not
appear among neighbors of x. Hence we can kill the green
color at x, and finish.

It follows: We may thus assume that G is regular (all vertices
have valence ∆).

The proof now splits into two cases:

G is 3-connected;
G is not 3-connected.
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The proof of Brook’s theorem – the 3-connected case

Suppose G is 3-connected.

Since G is not complete, there exist x 6∼ y. Push the green
color from all green vertices to x.

Since there in no green color in N(y), there exist u, v ∈ N(y)
of the same color.
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The proof of Brook’s theorem – the 3-connected case II

Consider the graph G′ = G− u− v. Since G is 3-connected,
G′ is connected. Choose a shortest path from x to y in G′

and push the green color from x to y along this path.
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The proof of Brook’s theorem – the 3-connected case III

This results in a proper coloring of G where the only green
vertex is y, where u and v (two neighbors of y) have the same
color. Therefore, the green color of y can be “killed”, giving a
∆-coloring of G.
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The proof of Brook’s theorem – κ ≤ 2

Suppose now that G is not 3-connected.

The rest of the proof of is by induction on n = |V (G)|. By
inspection, we see that the theorem holds for n ≤ 4. Assume
now that n ≥ 5 and that theorem holds for all graphs with
less than n vertices.

If ∆(G) = 1, then G ∼= KC
n , and so χ(G) = 1.

If ∆(G) = 2, then G ∼= Cn or Pn, and the theorem holds.

Assume henceforth that ∆(G) ≥ 3.
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...κ = 1

Suppose that G has a cut-vertex {v}, and let X1, . . . , Xm be
the components of G− v.

By induction, each Xi + v is ∆(G)-colorable. By renaming
colors in each Xi if necessary, we may assume that in all Xi,
the vertex v has the same color. This gives a ∆(G)-coloring
of G.
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...κ = 2

Suppose now that G has a vertex-cut of size two: {x, y}.

In a similar way as in case κ = 1 we may use induction to
show that G is ∆-colorable.

Homework H2: Finish the proof of the theorem in this case.
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Lecture 3 – Graphs continued

The Mycielski construction

Let G be a graph on n vertices with at least one edge.
Construct a new graph G+ on 2n+ 1 vertices in the following
way:

V (G+) = V (G) ∪ {v′ : v ∈ V (G)} ∪ {∞} (a disjoint union).

E(G+) = E(G) ∪ {v′u : vu ∈ E(G)} ∪ {v′∞ : v ∈ V (G)}.
Homework H3: Show that χ(G+) = χ(G) + 1.

Example: The graph, obtained in this way from C5 is called
the Grötch graph.
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Edge-colorings

Let G = (V,E) be a graph and C a set of “colors”. We
define edge-colorings in a similar way as vertex-colorings:

Definition

An edge-coloring (barvanje povezav) of G is a function c : E → C.
The coloring is proper if incident edges receive different collors.
The graph G is k-edge-colorable (povezavno k-obarvljiv) if there
exists a proper edge-coloring with |C| = k.

The minimal integer k for which G is k-edge-colorable is
called the chromatic index (kormatični indeks) of G.

χ′(G) = min{k : G is k − edge–colorable}

Note that χ′(G) = χ(L(G)).
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Vizing’s theorem

There is an obvious natural lower bound: χ′(G) ≥ ∆(G).

The upper bound is given by Vizing’s theorem.

Theorem

(Vizing) ∆(G) ≤ χ′(G) ≤ ∆(G) + 1

We skip the proof.
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Class 1 vs. Class 2, Königs theorem

Graphs with χ′(G) = ∆(G) are graphs of class 1, the others
are of class 2.

C2m is of class 1, C2m+1 is of class 2.

Hypercubes are of class 1

The Petersen graph is of class 2.

In general, determining χ′ is difficult.

For some graphs, this task is easier. For example, bipartite
graphs.

Theorem

(König) If G is bipartite, then χ′(G) = ∆(G).
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Proof of König’s theorem

By contradiction: Let k be a positive integer. Among all
graphs with ∆ = k choose a counterexample with the least
number of edges.

Choose an edge e = xy, such that ∆(G− e) = ∆(G) (What
if such and edge does not exist?).

By hypothesis, χ′(G− e) = ∆(G− e) = k. Color the edges
with k colors.
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Proof of König’s theorem II

There is a color α, which does not appear at x, and a color β,
which does not appear at y.

If α = β, color e with α.
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Proof of König’s theorem III

Assume now that α 6= β.

Consider the subgraph H induced by the edges of colors α and
β. Clearly ∆(H) ≤ 2, so the connected components of H are
paths or cycles.
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Proof of König’s theorem IV

Note that swappings colors α and β in any component of H
gives a different proper coloring.

Since all paths from x to y are of odd length (G is bipartite!),
x and y are in different components of H. Swap the colors α
and β in a component containing x.
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Proof of König’s theorem V

Finally, color e with β.
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Snarks

A regular graph of valence 3 is called cubic graph (kubičen
graf).

Homework H3. Show that every connected cubic graph with
χ′ = 3 is 2-edge-connected.

On the other hand, it is not easy to find 2-edge-connected
cubic graphs with χ′ = 4.

Such a graph is called a snark. (The name comes from a
poem “The hunting of the Snark” by Lewis Carol.)

The smallest such graph is the Petersen graph.

Constructing new families of snarks is still a difficult task.
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Matchings

Consider a proper edge-coloring of G. Consider the set M of
edges colored with a fixed color. No vertex of G is incident
with more than one edge from M .

Definition

A matching (prirejanje) in a graph G is a set M ⊆ E(G) such that
each v ∈ V (G) is incident with at most one e ∈M .

Vertices, that are incident with some e ∈M are saturated
(nasičen).

If every vertex of G is saturated, then the matching is perfect
(popolno prirejanje).

A matching is maximal if it is the largest among all matching.
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Stable sets and covers

Maximal matchings are related to “stable sets”, “vertex
covers” and “edge covers”

Definition

A stable set in G is a set U ⊆ V (G) such that no two vertices in
U are adjacent in G. A vertex cover in G is a set U ⊆ V (G) such
that every edge of G is incident with at least one vertex in U . An
edge cover in G is a set F ⊆ E(G) such that every vertex of G is
incident with at least edge vertex in F .

ν(G) := “the size of a maximal matching G”;

α(G) := “the size of a largest stable set G”;

τ(G) := “the size of a smallest vertex cover of G”;

ρ(G) := “the size of a smallest edge cover of G”.
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Gallai’s theorem and the König-Egerváry theorem

Theorem

(Gallai, 1959) If G has no isolated vertices, then
ν(G) + ρ(G) = |V (G)|.

Theorem

(König, Egerváry) If G is bipartite, then ν(G) = τ(G).

We skip the proofs.
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Hall’s theorem

It is often difficult to decide, what is the size of a largest
matching. For bipartite graphs, we have the following nice
result:

Theorem

(Hall) Let G be a bipartite graph with bipartition V (G) = X ∪ Y .
Then G has a matching in which every vertex of X is saturated if
and only if |N(S)| ≥ |S| for every set S ⊆ X.

Here N(S) is the set of vertices that are adjacent to some
vertex in S.
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Proof of Hall’s theorem

Proof. One direction is obvious.

For the other direction, we need the König-Egerváry theorem.
Suppose that there is no matching in which every v ∈ X is
saturated. Then ν(G) < |X|.
By the König-Egerváry theorem, ν(G) = τ(G). Therefore,
there is a vertex cover K with |K| < |X|.
Let S = X \K. Then N(S) ⊆ Y ∩K, and so

|S| = |X| − |K ∩X| = |X| − |K|+ |Y ∩K| > N(S).
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Homework

H1 Finish the proof of the Brooks theorem in the case where the
vertex-connectivity of the graph is 2.

H2 Show that χ(G+) = χ(G) + 1.

H3 Show that every connected cubic graph with χ′ = 3 is
2-edge-connected.
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