Lesson No. 3: Graphs continued

(1) Graph colorings

- Vertex-colorings (Brook's theorem, Mycielski's construction)
- Edge-colorings (Vizing's theorem, König's theorem, snarks)
(2) Matchings (Hall's theorem)

Vertex-colorings of graphs

- Let $\mathrm{G}=(V, E)$ be a graph and C a set of "colors".

Definition

A vertex-coloring (barvanje točk) of G is a function $c: V \rightarrow C$. The coloring is proper (pravilno) if $u \sim v \Rightarrow(v) \neq c(u)$. G is k-vertex-colorable (točkovno k-obarvljiv) if there exists a proper vertex-coloring with $|C|=k$.

- G is k-colorable $\Rightarrow \mathrm{G}$ is ℓ-colorable for any $\ell \geq k$.
- Chromatic number (kormatično število) of G :

$$
\chi(\mathrm{G})=\min \{k: \mathrm{G} \text { is } k \text {-vertex-colorable }\}
$$

Vertex-colorings - examples

2-coloring of the cube.

3-coloring of the Petersen.

... more examples

- $\chi\left(K_{n}\right)=n$.
- $\chi\left(C_{2 n}\right)=2$
- $\chi\left(C_{2 n+1}\right)=3$.
- If $\mathrm{H} \leq \mathrm{G}$, then $\chi(\mathrm{H}) \leq \chi(\mathrm{G})$.

Corollary

If G contains a cycle of odd length, then $\chi(\mathrm{G}) \geq 3$.

Graphs with $\chi \leq 2$

- Clearly, $\chi(\mathrm{G})=1$ if and only if $\mathrm{G} \cong K_{n}^{C}$.

Lemma

$\chi(\mathrm{G}) \leq 2$ if and only if G is bipartite.
Proof: ... think of color classes as bipartition sets ...

- We know that graphs with $\chi \leq 2$ cannot have cycles of odd length We will now show that the converse holds as well:

Lemma

If G contains no cycles of odd length, then $\chi(\mathrm{G}) \leq 2$.

- Proof. WLOG: G is connected.
- Choose $v \in V(\mathrm{G})$. For $u \in V(\mathrm{G})$ let:
- $c(u)=$ "blue" if $d(v, u)$ is even;
- $c(u)=$ "red" if $d(v, u)$ is odd.
- If this is not a proper coloring, then there are two adjacent vertices x, y that are both at even or both at odd distance from v.
- Find shortest paths P_{x}, P_{y} from v to x and to y. Then $P_{x}(x y) P_{y}^{-1}$ is a closed walk of odd length.

- To complete the proof, we need to show the following:
- Exercise.: If a graph contains a closed walk of odd length, then it also contains a cycle of odd length.

Characterization of bipartite graphs

This proves the following characterization of bipartite graphs.

Theorem

If G is a graph, then the following statements are equivalent:

- G is bipartite.
- $\chi(\mathrm{G}) \leq 2$.
- G contains no cycles of odd length.

Cliques

Definition

A subset $U \subseteq V(\mathrm{G})$ is called a clique (klika), if the induced subgraph $\mathrm{G}[U]$ is a complete graph.

Maximal Clique

Definition

A maximal clique (maksimalna klika) is a clique that is not contained in any other clique. A largest clique (največja klika) is a clique with the largest number of vertices among all cliques.

$$
\omega(\mathrm{G})=\text { "the size of the largest clique in } \mathrm{G} " .
$$

- Since $\chi\left(K_{n}\right)=n$, it follows that $\chi(\mathrm{G}) \geq \omega(\mathrm{G})$.

The Brooks theorem

Theorem

(Brooks) Let G be a graph. Then

$$
\omega(\mathrm{G}) \leq \chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1
$$

Moreover, $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$ unless G is a complete graph or a cycle of odd length.

Proof of the Brooks theorem

- WLOG: G is connected.
- We already know that $\omega(\mathrm{G}) \leq \chi(\mathrm{G})$. So we need to show two things:
(1) $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$.
(2) If $\mathrm{G} \not \neq K_{n}$ or $C_{2 m+1}$, then $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$.
- Finding a $(\Delta+1)$-coloring is easy:
- Let $\{1, \ldots, \Delta+1\}$ be the set of colors. Order the vertices of G in some linear order. Color the first vertex with color 1.
- Suppose that we have already colored the first m vertices. Let v be the next vertex, and let $c \in\{1, \ldots, \Delta+1\}$ be the smallest integer that does not appear as a color of some neighbor of v. Color v with the color c.
- Repeat this procedure until all vertices are colored.

Proof of the Brooks theorem - killing unessential greens

- In the rest of the proof, we may assume that $\mathrm{G} \not \approx K_{n}$ or $C_{2 m+1}$. It remains to show, that we may change the $(\Delta+1)$-coloring in such a way that one of the colors "disappears".
- For the rest of the proof: $\Delta+1=$ "green".
- Let $S=$ "the set of green vertices".
- If there is $v \in S$ such that one of the non-green colors does not appear among its neighbors, then we may use this color for v. Apply this throughout S. This procedure is called "killing unessential greens".

- After unessential greens are "killed", we get a $(\Delta+1)$-coloring in which each green vertex v has valence Δ, and no two neighbors of v are of the same color.

Proof of the Brooks theorem - pushing the green color

The second procedure allow us to "push" the green color from any $v \in S$ to any other $x \in V(\mathrm{G})$ along any path P from v to x.
(1) Kill unessential $(\Delta+1)$ s. If $S=\emptyset$ or $S=\{x\}$, then stop.
(2) Let u be the first vertex on the path from v to x. Let c be the color of u. Since we killed unessential greens, no green neighbours of u have any other neighbours of color c.

Proof of the Brooks theorem - pushing the green color

(1) Change the color of green neighbors of u to c, and change the color of u to green.

(2) Go to step 1 with u in place of v, and with P being the part of old P from u to x.

This procedure changed the color of some old green vertices, and cyclically rotated the colors along P.

The proof of Brook's theorem - reduction to regular graphs

- Let x be a vertex of smallest valence. For each green v, choose a shortest path from v to x, and push the green color to x. Now x is the only green vertex.
- If $\operatorname{val}(x)<\Delta$, then there is a non-green color which does not appear among neighbors of x. Hence we can kill the green color at x, and finish.
- It follows: We may thus assume that G is regular (all vertices have valence Δ).
- The proof now splits into two cases:
- G is 3 -connected;
- G is not 3 -connected.

The proof of Brook's theorem - the 3-connected case

- Suppose G is 3 -connected.
- Since G is not complete, there exist $x \nsim y$. Push the green color from all green vertices to x.
- Since there in no green color in $N(y)$, there exist $u, v \in N(y)$ of the same color.
x

The proof of Brook's theorem - the 3-connected case II

- Consider the graph $\mathrm{G}^{\prime}=\mathrm{G}-u-v$. Since G is 3 -connected, G^{\prime} is connected. Choose a shortest path from x to y in G^{\prime} and push the green color from x to y along this path.

The proof of Brook's theorem - the 3-connected case III

- This results in a proper coloring of G where the only green vertex is y, where u and v (two neighbors of y) have the same color. Therefore, the green color of y can be "killed", giving a Δ-coloring of G.

The proof of Brook's theorem $-\kappa \leq 2$

- Suppose now that G is not 3 -connected.
- The rest of the proof of is by induction on $n=|V(\mathrm{G})|$. By inspection, we see that the theorem holds for $n \leq 4$. Assume now that $n \geq 5$ and that theorem holds for all graphs with less than n vertices.
- If $\Delta(\mathrm{G})=1$, then $\mathrm{G} \cong K_{n}^{C}$, and so $\chi(\mathrm{G})=1$.
- If $\Delta(\mathrm{G})=2$, then $\mathrm{G} \cong C_{n}$ or P_{n}, and the theorem holds.
- Assume henceforth that $\Delta(\mathrm{G}) \geq 3$.

$. . \kappa=1$

- Suppose that G has a cut-vertex $\{v\}$, and let X_{1}, \ldots, X_{m} be the components of $\mathrm{G}-v$.

- By induction, each $X_{i}+v$ is $\Delta(\mathrm{G})$-colorable. By renaming colors in each X_{i} if necessary, we may assume that in all X_{i}, the vertex v has the same color. This gives a $\Delta(\mathrm{G})$-coloring of G.

$. . \kappa=2$

- Suppose now that G has a vertex-cut of size two: $\{x, y\}$.

- In a similar way as in case $\kappa=1$ we may use induction to show that G is Δ-colorable.
- Homework H2: Finish the proof of the theorem in this case.

The Mycielski construction

- Let G be a graph on n vertices with at least one edge.

Construct a new graph G^{+}on $2 n+1$ vertices in the following way:

- $V\left(\mathrm{G}^{+}\right)=V(\mathrm{G}) \cup\left\{v^{\prime}: v \in V(\mathrm{G})\right\} \cup\{\infty\}$ (a disjoint union).
- $E\left(\mathrm{G}^{+}\right)=E(\mathrm{G}) \cup\left\{v^{\prime} u: v u \in E(\mathrm{G})\right\} \cup\left\{v^{\prime} \infty: v \in V(\mathrm{G})\right\}$.
- Homework H3: Show that $\chi\left(\mathrm{G}^{+}\right)=\chi(\mathrm{G})+1$.
- Example: The graph, obtained in this way from C_{5} is called the Grötch graph.

Edge-colorings

- Let $\mathrm{G}=(V, E)$ be a graph and C a set of "colors". We define edge-colorings in a similar way as vertex-colorings:

Definition

An edge-coloring (barvanje povezav) of G is a function $c: E \rightarrow C$. The coloring is proper if incident edges receive different collors. The graph G is k-edge-colorable (povezavno k-obarvljiv) if there exists a proper edge-coloring with $|C|=k$.

- The minimal integer k for which G is k-edge-colorable is called the chromatic index (kormatični indeks) of G.

$$
\chi^{\prime}(\mathrm{G})=\min \{k: \mathrm{G} \text { is } k-\text { edge-colorable }\}
$$

- Note that $\chi^{\prime}(\mathrm{G})=\chi(L(\mathrm{G}))$.

Vizing's theorem

- There is an obvious natural lower bound: $\chi^{\prime}(\mathrm{G}) \geq \Delta(\mathrm{G})$.
- The upper bound is given by Vizing's theorem.

Theorem

$($ Vizing $) \Delta(\mathrm{G}) \leq \chi^{\prime}(\mathrm{G}) \leq \Delta(\mathrm{G})+1$

- We skip the proof.

Class 1 vs. Class 2, Königs theorem

- Graphs with $\chi^{\prime}(\mathrm{G})=\Delta(\mathrm{G})$ are graphs of class $\mathbf{1}$, the others are of class 2.
- $C_{2 m}$ is of class $1, C_{2 m+1}$ is of class 2 .
- Hypercubes are of class 1
- The Petersen graph is of class 2 .
- In general, determining χ^{\prime} is difficult.
- For some graphs, this task is easier. For example, bipartite graphs.

Theorem

(König) If G is bipartite, then $\chi^{\prime}(\mathrm{G})=\Delta(\mathrm{G})$.

Proof of König's theorem

- By contradiction: Let k be a positive integer. Among all graphs with $\Delta=k$ choose a counterexample with the least number of edges.
- Choose an edge $e=x y$, such that $\Delta(\mathrm{G}-e)=\Delta(\mathrm{G})$ (What if such and edge does not exist?).
- By hypothesis, $\chi^{\prime}(\mathrm{G}-e)=\Delta(\mathrm{G}-e)=k$. Color the edges with k colors.

Proof of König's theorem II

- There is a color α, which does not appear at x, and a color β, which does not appear at y.

- If $\alpha=\beta$, color e with α.

Proof of König's theorem III

- Assume now that $\alpha \neq \beta$.
- Consider the subgraph H induced by the edges of colors α and β. Clearly $\Delta(\mathrm{H}) \leq 2$, so the connected components of H are paths or cycles.

Proof of König's theorem IV

- Note that swappings colors α and β in any component of H gives a different proper coloring.
- Since all paths from x to y are of odd length (G is bipartite!), x and y are in different components of H. Swap the colors α and β in a component containing x.

Proof of König's theorem V

- Finally, color e with β.

Snarks

- A regular graph of valence 3 is called cubic graph (kubičen graf).
- Homework H3. Show that every connected cubic graph with $\chi^{\prime}=3$ is 2-edge-connected.
- On the other hand, it is not easy to find 2-edge-connected cubic graphs with $\chi^{\prime}=4$.
- Such a graph is called a snark. (The name comes from a poem "The hunting of the Snark" by Lewis Carol.)
- The smallest such graph is the Petersen graph.
- Constructing new families of snarks is still a difficult task.

Matchings

- Consider a proper edge-coloring of G. Consider the set M of edges colored with a fixed color. No vertex of G is incident with more than one edge from M.

Definition

A matching (prirejanje) in a graph G is a set $M \subseteq E(\mathrm{G})$ such that each $v \in V(\mathrm{G})$ is incident with at most one $e \in M$.

- Vertices, that are incident with some $e \in M$ are saturated (nasičen).
- If every vertex of G is saturated, then the matching is perfect (popolno prirejanje).
- A matching is maximal if it is the largest among all matching.

Stable sets and covers

- Maximal matchings are related to "stable sets", "vertex covers" and "edge covers"

Definition

A stable set in G is a set $U \subseteq V(\mathrm{G})$ such that no two vertices in U are adjacent in G . A vertex cover in G is a set $U \subseteq V(\mathrm{G})$ such that every edge of G is incident with at least one vertex in U. An edge cover in G is a set $F \subseteq E(\mathrm{G})$ such that every vertex of G is incident with at least edge vertex in F.

- $\nu(\mathrm{G}):=$ "the size of a maximal matching G ";
- $\alpha(\mathrm{G}):=$ "the size of a largest stable set G ";
- $\tau(\mathrm{G}):=$ "the size of a smallest vertex cover of G ";
- $\rho(\mathrm{G}):=$ "the size of a smallest edge cover of G ".

Gallai's theorem and the König-Egerváry theorem

Theorem

(Gallai, 1959) If G has no isolated vertices, then $\nu(\mathrm{G})+\rho(\mathrm{G})=|V(\mathrm{G})|$.

Theorem

(König, Egerváry) If G is bipartite, then $\nu(\mathrm{G})=\tau(\mathrm{G})$.
We skip the proofs.

Hall's theorem

- It is often difficult to decide, what is the size of a largest matching. For bipartite graphs, we have the following nice result:

Theorem

(Hall) Let G be a bipartite graph with bipartition $V(\mathrm{G})=X \cup Y$. Then G has a matching in which every vertex of X is saturated if and only if $|N(S)| \geq|S|$ for every set $S \subseteq X$.

- Here $N(S)$ is the set of vertices that are adjacent to some vertex in S.

Proof of Hall's theorem

- Proof. One direction is obvious.
- For the other direction, we need the König-Egerváry theorem. Suppose that there is no matching in which every $v \in X$ is saturated. Then $\nu(\mathrm{G})<|X|$.
- By the König-Egerváry theorem, $\nu(\mathrm{G})=\tau(\mathrm{G})$. Therefore, there is a vertex cover K with $|K|<|X|$.
- Let $S=X \backslash K$. Then $N(S) \subseteq Y \cap K$, and so

$$
|S|=|X|-|K \cap X|=|X|-|K|+|Y \cap K|>N(S) .
$$

Homework

H1 Finish the proof of the Brooks theorem in the case where the vertex-connectivity of the graph is 2 .
H 2 Show that $\chi\left(\mathrm{G}^{+}\right)=\chi(\mathrm{G})+1$.
H3 Show that every connected cubic graph with $\chi^{\prime}=3$ is 2-edge-connected.

