Lecture 3 — Graphs continued

Lesson No. 3: Graphs continued

@ Graph colorings
o Vertex-colorings (Brook's theorem, Mycielski's construction)
o Edge-colorings (Vizing's theorem, Konig's theorem, snarks)

@ Matchings (Hall's theorem)
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Lecture 3 — Graphs continued
Vertex-colorings of graphs

o Let G=(V,E) be a graph and C a set of “colors".

Definition

A vertex-coloring (barvanje totk) of G is a function ¢: V — C.
The coloring is proper (pravilno) if u ~ v = (v) # c(u). G is
k-vertex-colorable (totkovno k-obarvljiv) if there exists a proper
vertex-coloring with |C| = k.

@ G is k-colorable = G is ¢-colorable for any ¢ > k.

e Chromatic number (kormati¢no 3tevilo) of G:

X(G) = min{k : G is k-vertex-colorable}
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Lecture 3 — Graphs continued
Vertex-colorings — examples

2-coloring of the cube. 3-coloring of the Petersen.
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Lecture 3 — Graphs continued

. more examples

o x(K,)=n.

o x(Cap) =2

° x(Cant1) = 3.

o If H <G, then x(H) < x(G).

If G contains a cycle of odd length, then x(G) > 3.
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Lecture 3 — Graphs continued

Graphs with y < 2

o Clearly, x(G) =1 if and only if G = KC.

X(G) < 2 if and only if G is bipartite.

PROOF: ... think of color classes as bipartition sets ...

@ We know that graphs with xy < 2 cannot have cycles of odd
length We will now show that the converse holds as well:

If G contains no cycles of odd length, then x(G) < 2.
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Lecture 3 — Graphs continued

Proor. WLOG: G is connected.
Choose v € V(G). For u € V(G) let:

o c(u) = "blue” if d(v,u) is even;

o c(u) = “red" if d(v,u) is odd.
o If this is not a proper coloring, then there are two adjacent
vertices x,y that are both at even or both at odd distance
from v.
Find shortest paths P,, P, from v to z and to y. Then
P;,;(a:y)Py_1 is a closed walk of odd length.

To complete the proof, we need to show the following:
Exercise.: If a graph contains a closed walk of odd length,
then it also contains a cycle of odd length.

Tomaz Pisanski, Alen Orbani&, and PrimoZ Poto¢nik Graphs continued



Lecture 3 — Graphs continued

Characterization of bipartite graphs

This proves the following characterization of bipartite graphs.

If G is a graph, then the following statements are equivalent:

o G s bipartite.
e x(G) <2.
e G contains no cycles of odd length.
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Lecture 3 — Graphs continued
Cliques

Definition
A subset U C V(G) is called a clique (klika), if the induced
subgraph G[U] is a complete graph.
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Lecture 3 — Graphs continued
Maximal Clique

Definition

A maximal clique (maksimalna klika) is a clique that is not
contained in any other clique. A largest clique (najve&ja klika) is
a clique with the largest number of vertices among all cliques.

w(G) = “the size of the largest clique in G".

@ Since x(K,) = n, it follows that x(G) > w(G).
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Lecture 3 — Graphs continued
The Brooks theorem

Theorem

(Brooks) Let G be a graph. Then
w(G) < x(G) <A(G) + 1.

Moreover, x(G) < A(G) unless G is a complete graph or a cycle
of odd length.
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Lecture 3 — Graphs continued
Proof of the Brooks theorem

o WLOG: G is connected.

e We already know that w(G) < x(G). So we need to show two
things:
Q@ X(G) <A(G)+1.
Q If G K, or Copy1, then x(G) < A(G).
e Finding a (A + 1)-coloring is easy:
o Let {1,..., A+ 1} be the set of colors. Order the vertices of
G in some linear order. Color the first vertex with color 1.
o Suppose that we have already colored the first m vertices. Let
v be the next vertex, and let ¢ € {1,...,A + 1} be the
smallest integer that does not appear as a color of some
neighbor of v. Color v with the color c.
o Repeat this procedure until all vertices are colored.
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Lecture 3 — Graphs continued

Proof of the Brooks theorem — killing unessential greens

@ In the rest of the proof, we may assume that G 2 K, or
Com+1- It remains to show, that we may change the
(A + 1)-coloring in such a way that one of the colors
“disappears”.

@ For the rest of the proof: A 4+ 1 = “green”.

o Let S = “the set of green vertices”.

@ If there is v € S such that one of the non-green colors does

not appear among its neighbors, then we may use this color
for v. Apply this throughout S. This procedure is called
“killing unessential greens".

> >
eeoe
o After unessential greens are “killed”, we get a

(A + 1)-coloring in which each green vertex v has valence A,
and no two neighbors of v are of the same color.
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Lecture 3 — Graphs continued

Proof of the Brooks theorem — pushing the green color

The second procedure allow us to “push” the green color from any
v € S to any other z € V(G) along any path P from v to z.

@ Kill unessential (A +1)s. If S =10 or S = {x}, then stop.

@ Let u be the first vertex on the path from v to x. Let ¢ be the
color of u. Since we killed unessential greens, no green
neighbours of u have any other neighbours of color c.
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Lecture 3 — Graphs continued

Proof of the Brooks theorem — pushing the green color

@ Change the color of green neighbors of u to ¢, and change the
color of u to green.

X

v

@ Go to step 1 with w in place of v, and with P being the part
of old P from u to x.

X

v

This procedure changed the color of some old green vertices, and
cyclically rotated the colors along P.
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Lecture 3 — Graphs continued

The proof of Brook's theorem — reduction to regular graphs

@ Let = be a vertex of smallest valence. For each green v,
choose a shortest path from v to x, and push the green color
to . Now z is the only green vertex.

e If val(z) < A, then there is a non-green color which does not
appear among neighbors of x. Hence we can kill the green
color at z, and finish.

o It follows: We may thus assume that G is regular (all vertices
have valence A).

@ The proof now splits into two cases:

e G is 3-connected;
e G is not 3-connected.

Tomaz Pisanski, Alen Orbani&, and PrimoZ Poto¢nik Graphs continued



Lecture 3 — Graphs continued

The proof of Brook's theorem — the 3-connected case

@ Suppose G is 3-connected.
@ Since G is not complete, there exist x ¢ y. Push the green
color from all green vertices to x.

@ Since there in no green color in N(y), there exist u,v € N(y)
of the same color.
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Lecture 3 — Graphs continued

The proof of Brook's theorem — the 3-connected case |l

o Consider the graph G’ = G — u — v. Since G is 3-connected,
G’ is connected. Choose a shortest path from z to y in G’
and push the green color from z to y along this path.

u v
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Lecture 3 — Graphs continued

The proof of Brook's theorem — the 3-connected case ||

@ This results in a proper coloring of G where the only green
vertex is y, where u and v (two neighbors of y) have the same
color. Therefore, the green color of y can be “killed”, giving a
A-coloring of G.
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Lecture 3 — Graphs continued

The proof of Brook's theorem — k < 2

Suppose now that G is not 3-connected.

@ The rest of the proof of is by induction on n = |V (G)|. By
inspection, we see that the theorem holds for n < 4. Assume
now that n > 5 and that theorem holds for all graphs with
less than n vertices.

o If A(G) =1, then G = K¢, and so x(G) = 1.

o If A(G) =2, then G = C,, or P,, and the theorem holds.

Assume henceforth that A(G) > 3.
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Lecture 3 — Graphs continued

@ Suppose that G has a cut-vertex {v}, and let X,..., X, be
the components of G — v.

@ By induction, each X; + v is A(G)-colorable. By renaming
colors in each X if necessary, we may assume that in all Xj,
the vertex v has the same color. This gives a A(G)-coloring

of G.
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Lecture 3 — Graphs continued

@ Suppose now that G has a vertex-cut of size two: {z,y}.

X

y

@ In a similar way as in case kK = 1 we may use induction to
show that G is A-colorable.

@ Homework H2: Finish the proof of the theorem in this case.
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Lecture 3 — Graphs continued

The Mycielski construction

@ Let G be a graph on n vertices with at least one edge.
Construct a new graph G* on 2n + 1 vertices in the following
way:

V(GT) =V (G)U{v' :v e V(G)}U{oo} (a disjoint union).
E(GT)=EG)U{vu:vue E(G)}U{voo:veV(G)}.
Homework H3: Show that x(G™) = x(G) + 1.

Example: The graph, obtained in this way from Cj is called
the Grotch graph.
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Lecture 3 — Graphs continued
Edge-colorings

e Let G = (V,E) be a graph and C' a set of “colors”. We
define edge-colorings in a similar way as vertex-colorings:

Definition

An edge-coloring (barvanje povezav) of G is a function c: £ — C.
The coloring is proper if incident edges receive different collors.
The graph G is k-edge-colorable (povezavno k-obarvljiv) if there
exists a proper edge-coloring with |C| = k.

@ The minimal integer k for which G is k-edge-colorable is
called the chromatic index (kormati¢ni indeks) of G.

X' (G) = min{k : G is k — edge—colorable}

e Note that ' (G) = x(L(G)).
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Lecture 3 — Graphs continued
Vizing's theorem

@ There is an obvious natural lower bound: x'(G) > A(G).
@ The upper bound is given by Vizing's theorem.

(Vizing) A(G) < X(G) < A(G) +1

@ We skip the proof.
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Lecture 3 — Graphs continued

Class 1 vs. Class 2, Konigs theorem

Graphs with x'(G) = A(G) are graphs of class 1, the others
are of class 2.

Com, is of class 1, Cop,41 is of class 2.
Hypercubes are of class 1
The Petersen graph is of class 2.

In general, determining X’ is difficult.

For some graphs, this task is easier. For example, bipartite
graphs.

(Konig) If G is bipartite, then X'(G) = A(G).
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Lecture 3 — Graphs continued

Proof of Konig's theorem

@ By contradiction: Let k be a positive integer. Among all
graphs with A = k choose a counterexample with the least
number of edges.

@ Choose an edge e = zy, such that A(G —e) = A(G) (What
if such and edge does not exist?).

e By hypothesis, X' (G — e¢) = A(G — e) = k. Color the edges
with k colors.
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Lecture 3 — Graphs continued

Proof of Konig's theorem II

@ There is a color «, which does not appear at z, and a color (3,
which does not appear at y.

o If a = 3, color e with «.
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Lecture 3 — Graphs continued

Proof of Konig's theorem IlI

@ Assume now that o # (.

@ Consider the subgraph H induced by the edges of colors « and
3. Clearly A(H) < 2, so the connected components of H are
paths or cycles.
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Lecture 3 — Graphs continued

Proof of Konig's theorem |V

@ Note that swappings colors « and 3 in any component of H
gives a different proper coloring.

@ Since all paths from z to y are of odd length (G is bipartite!),
x and y are in different components of H. Swap the colors «
and 3 in a component containing x.
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Proof of Konig's theorem V

e Finally, color e with .

™ R

(I

II m
<

Graphs continued
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Lecture 3 — Graphs continued
Snarks

A regular graph of valence 3 is called cubic graph (kubiten
graf).

@ Homework H3. Show that every connected cubic graph with
X' = 3 is 2-edge-connected.

(]

@ On the other hand, it is not easy to find 2-edge-connected
cubic graphs with y/ = 4.

@ Such a graph is called a snark. (The name comes from a
poem “The hunting of the Snark” by Lewis Carol.)

@ The smallest such graph is the Petersen graph.

@ Constructing new families of snarks is still a difficult task.
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Lecture 3 — Graphs continued
Matchings

@ Consider a proper edge-coloring of G. Consider the set M of
edges colored with a fixed color. No vertex of G is incident
with more than one edge from M.

Definition

A matching (prirejanje) in a graph G is a set M C E(G) such that
each v € V(G) is incident with at most one e € M.

@ Vertices, that are incident with some e € M are saturated
(nasi&en).

o If every vertex of G is saturated, then the matching is perfect
(popolno prirejanje).

@ A matching is maximal if it is the largest among all matching.

Tomaz Pisanski, Alen Orbani&, and PrimoZ Poto¢nik Graphs continued



Lecture 3 — Graphs continued
Stable sets and covers

@ Maximal matchings are related to “stable sets”, “vertex
covers’ and ‘“edge covers”

Definition

A stable set in G is a set U C V(G) such that no two vertices in
U are adjacent in G. A vertex cover in G is a set U C V(G) such
that every edge of G is incident with at least one vertex in U. An
edge cover in G is a set F' C E(G) such that every vertex of G is
incident with at least edge vertex in F.

e v(G) := “the size of a maximal matching G";

o a(G) := "the size of a largest stable set G";

o 7(G) := “the size of a smallest vertex cover of G”;
@ p(G) := "the size of a smallest edge cover of G".
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Gallai's theorem and the Konig-Egervary theorem

(Gallai, 1959) If G has no isolated vertices, then
v(G) + p(G) = [V(G)].

(Kénig, Egervdry) If G is bipartite, then v(G) = 7(G).

We skip the proofs.
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Hall's theorem

o It is often difficult to decide, what is the size of a largest
matching. For bipartite graphs, we have the following nice
result:

(Hall) Let G be a bipartite graph with bipartition V(G) = X UY .
Then G has a matching in which every vertex of X is saturated if
and only if IN(S)| > |S| for every set S C X.

@ Here N(5) is the set of vertices that are adjacent to some
vertex in S.
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Proof of Hall's theorem

@ PROOF. One direction is obvious.

@ For the other direction, we need the Konig-Egervary theorem.
Suppose that there is no matching in which every v € X is
saturated. Then v(G) < | X].

e By the Konig-Egervary theorem, v(G) = 7(G). Therefore,
there is a vertex cover K with |K| < | X|.

o Let S=X\K. Then N(S) CY NK, and so

S| =|X|—-|KNX|=|X|—-|K|+|Y NK|> N(S5).
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Homework

H1 Finish the proof of the Brooks theorem in the case where the
vertex-connectivity of the graph is 2.

H2 Show that x(G') = x(G) + 1.

H3 Show that every connected cubic graph with x’ = 3 is
2-edge-connected.
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