Lecture 4 — Group Actions and Cayley Graphs

Lesson No. 4: Group Actions and Cayley Graphs

@ Group Actions (Orbits, Stabilisers, Burnside's lemma);
@ Transitivity and Regularity of actions;
@ Cayley graphs
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Symmetric groups

o Let 2 be a (finite) set, and let Sym(2) be the set of all
permutation on ).

@ There are two standard ways to define a binary operation on
Sym():

o left multiplication = composition:

goh:w— g(h(w)).
e right multiplication = inverse composition:
g-h:w s hgw)).
e Example: Let g = (1,3,4)(2,5), h = (1,3)(2,4)(5)

goh=1(1,4,5,2)(3), ¢g-h=(1)(2,5,4,3).
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Symmetric groups Il

@ Both (Sym(f2),0) and (Sym(f2),-) are groups.

Definition

The groups (Sym(€2),0) and (Sym(f2),-) are called the left
symmetric group and the right symmetric group on ).

@ H1: Show these two groups are isomorphic.

@ We will mainly work with the right symmetric group:
Sa = (Sym(€),)
e We write w9 instead of g(w). With this notation, we have:
wlgh) — (wg)h

forallw e Q2 and g,h € Sq.
@ Subgroups of Sq are called permutation groups.
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Group actions

@ Group action generalize the notion of permutation groups.
@ Let GG be a group, let € be a set, and let

D:OxG—Q, (w, g) — w?,

be a mapping which satisfies:

o wl =wforallwe;

o wlh) = (w9)h for all w € Q and g, h € G.

@ In this case we say that ® is an action (delovanje) of G on €.
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Group actions vs. permutation representations

Let ®: Q x G — § be a group action.

Define a mapping:

5:G—Symg,  B(g) = (o w)

® is a homomorphism of groups.

Conversely, let &: G — Symq be any group homomorphism.
Define can define an action:

O: QO xG—Q, (w,g)Hwé(g)

Note that ® = ®.

“Groups actions on 2" = "homomorphism to Sq".
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Kernel

The set of all g € G which fix every elelemnt of €2 is called
the kernel (jedro) of the action.

Ker={g € G:w! =w forallw e O}

If the action is viewed as a homomorphism ¥: G — Sg, then
the kernel of the action is simply the kernel of W.

Ker={g € G:¥(g) =id}.

If Ker = 1, then the action is faithful (zvesto).
If G acts faithfully on , then G — Sgq is injective.

“Faithfull actions” = “permutation groups”.
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Orbits

@ Let G act on Q2 and let w € Q2. The set
W ={wl:geG}

is called the orbit (orbita) of w.
@ The set of all orbits is a partition of 2.

o If there is only one orbit, then the action is transitive.

An action of G on ) is transitive if and only for any a, 3 € () there
exists g € G s.t. a9 = j3.
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Stabilisers

@ The set
Go={9€G:w=uw}
is called the stabiliser (stabilizator) of w. G, is a subgroup of
G.
@ For A CQ, let

o Ga={g€G:5 € Aforall § € A} (setwise-stabiliser);
o Gay=1{9€G:09=0forall 6 € A} (pointwise-stabiliser).

G(a) = NseaGs.
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Examples of actions

o Let G < Sq be any permutation group. Then GG acts on €2 in
a natural way.

o Let G < Sq, let k be an integer, and let Q&) be the set of all
k-element subsets of . For g € G and {w1,...,w;} € Q)
let

{wi, oo we}d ={w], ... W}
This defines an action of G' on Q) (uordered k-tuples).

@ Similarly can be defined an action of G on

Okl — {(wi, ... wg) rwi € Qw; # wj for i # j}.
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Groups acting on groups

Let G be a group. Then there are several ways to define an action
of G on itself.

@ Forw,ge G let w9 =g!

conjugation.

o Stabiliser: G, = {g € G : gw = wg = C(w) (centralizer of

w);
o Orbits: w® = “conjugacy class of w";
o Kernel: Ker = {g € G : g lwg =w for all w € G} = C(Q).
@ Forw,g € G let w9 = wg. We say that G acts on itslef by

right multiplication.

o Stabiliser: G, =1 ... the stabilisers are trivial;

o Orbits: w® = G ... the action is transitive:

o Kernel: Ker =1 ... the action is faithful.

wg. We say that G acts on itself by
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Regular actions

(Cayley) Every group is isomorphic to some permutation group.

PROOF. Let a group G act on itself by right multiplication. This
action is faithful, hence G is embedded in to Sg.

Definition

Let G act on Q. If G, = 1 for every w € €, the the action is called
semiregular. A transitive semiregular action is called regular.

Homework 2: Show that every faithul action of an abelian group
is regular.
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Action on cosets

o Let H <@, and let G/H = {Ha : a € G} be the set of all
right cosets (desni odseki) of G by H. For g € G let

(Ha)? = H(ag).
We say that GG acts on right cosets ny right multiplication.
o Stabiliser:
g€ Gre e Hag=Ha<aga ' € He gea 'Ha

Hence Gy, = H®. In particular Gy = H.
o Orbits: H® = G/H ... the action is transitive;
o Kernel:

Ker = NyecGra = NuccgH® = coreg(H).
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Conjugate stabilisers

Let G acto on ().
o Take « € Q, h € G, and let 3 = . Consider Gg:

gEGgﬁﬂgzﬂ@)ahg:ah@hghflEGa@geh’lGah

Therefore we have:

Let G act on ) and let o, B € Q). Then o and 3 belong to te same

orbit of G if and only if the stabilisers G, and Gg are conjugate in
G.
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Orbit-stabiliser lemma

Let G act on ) and let w € Q). Then

|Gl [w®| = |G-

@ PROOF: Define a mapping

©0: G/G, — WY, Gug— .

e this definition is independent of the choice of the
representative of G, g.

e the mapping is 1-1.

e the mapping is onto.

o Hence |G/Gy| = [wY|, and so |G| |w| = |G.
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B ide's |
urnsiae s iemma

@ Also called Cauchy-Frobenius lemma, or non-Burnside lemma.

Let m denote the number of orbits of G acting on ). Then

m =5 3 [Fix(g).

geG

o Here
Fix(g9) = {w € Q: v’ = w}.
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Proof of Burnside's lemma

@ PROOF: Let Q4,...,8,, be the orbits of G on (.

@ Consider the set
M=A{(w,9):wegecCGu}={(w,g):9€ G weFix(g)}.

@ Count the number of elements in M in two ways. On one

hand:
M| = |Fix(g)|.

geG

@ On the other hand

M= 10 =3 3 Gl =3 Y 1611 = mia)

weN i=1 we; i=1 we;
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Cayley graphs

@ Let G be a group, and let S C G be s.t.
e 1¢5,
escS—stes.

Such a set S is called a Cayley subset of G.

@ Examples:
o G = Zg, the cyclic group of order 9, S = {1,3,6,8};
o G = Zg, the additive group of a vector space,

S={e,—e :i=1,...,d}

o G=Ay S={(1,2,3),(1,3,2),(1,2)(3,4)}.
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Cayley graphs

@ Let S be a Cayley suGset of G. Define the graph I' by
o V(I') =G,
o u~p VS VU ES.
o Exercise. Show that ~ is indeed an ireflexive, symmetric
relation.
Note that N(u) = {us : sinS}.
The graph I is called the Cayley graph of G relative to S.

I' = Cay(G, s).
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Examples of Cayley graphs

° CaY(Zn7 {_17 1}) = Cn
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Examples of Cayley graphs
o Cay(Z$,{e1,...,eq}) = Qq, the d-dimensional cube.

' 001
i 000 / .

L7100

010
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Examples of Cayley graphs

o Cay(As, {(1,2,3),(1,3,2),(1,2)(3,4)}).
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Colored Cayley graphs

@ Historically, Cayley graphs were used for “graphical”
presentations of groups.

@ The Cayley set S was assumed to generate G. Exercise. The
Cayley set S generates G if and only if Cay(G, S) is
connected.

e Exactly one element from each pair {s, s~} was chosen, and
given by its own color, c(s).

@ An edge uv € E(I") was colored with ¢(s) where s = uv

@ The edge was directed “from u to v" if and only s = uv
was ‘“chosen”.
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Example

e Example: G = A4, a=(1,2,3) € G, b= (1,2)(3,4),

_ -1
S ={a,a™",b}.
(234) (134)
(124) (23 (132 (142)
(13)24) (14)(23)

— (12)(34)
—_ (132)
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Automorphisms of graphs

@ An automorphism of a graph I' is a permutataion of V(I)
which preserves adajcency.

@ The set of all automorphisms of I' forms a permutation group
on V(T).

Aut(T") = {g : g is an automorphism of I'}.

o Aut(I') “measures” the symmetry of I'.
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Examples

Examples:
@ Some graphs have no symmmetry (are completely

asymmetric).

o Complete graphs have the full symmetric group as their
automorphism group.
@ Interesting examples are in between.

®- - - -
1
i
'
'
'
'
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Vertex transitivity

Definition

Let T" be a graph.If Aut(I") acts transitively on V(I'), then we say
that I is vertex-transitive (totkovno tranzitiven). More generally,
if a subgroup G < Aut(T") acts transitively on V/(I"), then we say
that I' is G-vertex-transitive.

Examples:
e (, is vertex transitive.
@ (J3 is vertex transitive.
@ The Petersen graph is vertex transitive.
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Vertex transitivity of Cayley graphs

The automorphism group of a Cayley graph Cay(G, S) contains a
subgroup G, isomorphic to G, which acts regularly on V (T")

PROOF.

@ For each g € G let
pg: G— G, x+—xg.

® p:G — Sq, g+— pgy is an isomorphism of groups. (right
regular action!)

@ It remains to show that p, € Aut(Cay(G, S)). Take z,y € G.
Then:

r~yeyrteSeylgr eSS e (yg)(zg)™t €S o ylr ~ abs.
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Sabidussi's characterization of Cayley graphs

A graph T is isomorphic some Cayley graph on a group G if and
only if Aut(T") contains a subgroup isomorphic to G which acts
regularly on V(T").

ProOOF.

@ One direction is already shown.

@ Suppose now that Aut(I") contains a regular subgroup G.

@ Choose a vertex v € V(I'). By regularity, for each u € V(I'),
there exists a unique g, € G such that v9» = u. This shows
that

e: V(I) =G, uwr g,
is a bijection.
o Let S=p(N(v)) ={gu:u~ v}. Consider Cay(G,S). Then

¢ : V(') — V(Cay(G,S)) is an isomorphism of graphs.
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Sabidussi's characterization of Cayley graphs

@ Sabidussi's characterization helps answering the question,
which graphs are Cayley graphs.

@ Question: Are all vertex-transitive graphs Cayley graphs?

@ NO! For example, the Petersen graph is vertex-transitive but
not Cayley

@ H3: Show that the Petersen graph is not a Cayley graph.
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Homework

@ H1: Show that the left and the right symmetric groups are
isomorphic.

@ H2: Show that every faithul action of an abelian group is
regular.

@ H3: Show that the Petersen graph is not a Cayley graph.

Tomaz Pisanski, Alen Orbani&, and PrimoZ Poto¢nik Graphs continued



	Lecture 4 -- Group Actions and Cayley Graphs

