
Lecture 4 – Group Actions and Cayley Graphs

Lesson No. 4: Group Actions and Cayley Graphs

1 Group Actions (Orbits, Stabilisers, Burnside’s lemma);

2 Transitivity and Regularity of actions;

3 Cayley graphs
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Symmetric groups

Let Ω be a (finite) set, and let Sym(Ω) be the set of all
permutation on Ω.

There are two standard ways to define a binary operation on
Sym(Ω):

left multiplication = composition:

g ◦ h : ω 7→ g(h(ω)).

right multiplication = inverse composition:

g · h : ω 7→ h(g(ω)).

Example: Let g = (1, 3, 4)(2, 5), h = (1, 3)(2, 4)(5)

g ◦ h = (1, 4, 5, 2)(3), g · h = (1)(2, 5, 4, 3).
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Symmetric groups II

Both (Sym(Ω), ◦) and (Sym(Ω), ·) are groups.

Definition

The groups (Sym(Ω), ◦) and (Sym(Ω), ·) are called the left
symmetric group and the right symmetric group on Ω.

H1: Show these two groups are isomorphic.

We will mainly work with the right symmetric group:

SΩ = (Sym(Ω), ·)

We write ωg instead of g(ω). With this notation, we have:

ω(gh) = (ωg)h

for all ω ∈ Ω and g, h ∈ SΩ.

Subgroups of SΩ are called permutation groups.
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Group actions

Group action generalize the notion of permutation groups.

Let G be a group, let Ω be a set, and let

Φ: Ω×G→ Ω, (ω, g) 7→ ωg,

be a mapping which satisfies:

ω1 = ω for all ω ∈ Ω;
ω(gh) = (ωg)h for all ω ∈ Ω and g, h ∈ G.

In this case we say that Φ is an action (delovanje) of G on Ω.
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Group actions vs. permutation representations

Let Φ: Ω×G→ Ω be a group action.

Define a mapping:

Φ̄ : G→ SymΩ, Φ̄(g) = (ω 7→ ωg)

Φ̄ is a homomorphism of groups.

Conversely, let Φ: G→ SymΩ be any group homomorphism.
Define can define an action:

Φ̄ : Ω×G→ Ω, (ω, g) 7→ ωΦ̄(g)

Note that ¯̄Φ = Φ.

“Groups actions on Ω” ≡ “homomorphism to SΩ”.
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Kernel

The set of all g ∈ G which fix every elelemnt of Ω is called
the kernel (jedro) of the action.

Ker = {g ∈ G : ωg = ω for all ω ∈ Ω}

If the action is viewed as a homomorphism Ψ: G→ SΩ, then
the kernel of the action is simply the kernel of Ψ.

Ker = {g ∈ G : Ψ(g) = id}.

If Ker = 1, then the action is faithful (zvesto).

If G acts faithfully on Ω, then G→ SΩ is injective.

“Faithfull actions” ≡ “permutation groups”.
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Orbits

Let G act on Ω and let ω ∈ Ω. The set

ωG = {ωg : g ∈ G}

is called the orbit (orbita) of ω.

The set of all orbits is a partition of Ω.

If there is only one orbit, then the action is transitive.

Lemma

An action of G on Ω is transitive if and only for any α, β ∈ Ω there
exists g ∈ G s.t. αg = β.
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Stabilisers

The set
Gω = {g ∈ G : ωg = ω}

is called the stabiliser (stabilizator) of ω. Gω is a subgroup of
G.

For ∆ ⊆ Ω, let

G∆ = {g ∈ G : δg ∈ ∆ for all δ ∈ ∆} (setwise-stabiliser);
G(∆) = {g ∈ G : δg = δ for all δ ∈ ∆} (pointwise-stabiliser).

G(∆) = ∩δ∈∆Gδ.
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Examples of actions

Let G ≤ SΩ be any permutation group. Then G acts on Ω in
a natural way.

Let G ≤ SΩ, let k be an integer, and let Ω(k) be the set of all
k-element subsets of Ω. For g ∈ G and {ω1, . . . , ωk} ∈ Ω(k)

let
{ω1, . . . , ωk}g = {ωg1 , . . . , ω

g
k}.

This defines an action of G on Ω(k) (uordered k-tuples).

Similarly can be defined an action of G on

Ω[k] = {(ω1, . . . , ωk) : ωi ∈ Ω, ωi 6= ωj for i 6= j}.
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Groups acting on groups

Let G be a group. Then there are several ways to define an action
of G on itself.

For ω, g ∈ G let ωg = g−1ωg. We say that G acts on itself by
conjugation.

Stabiliser: Gω = {g ∈ G : gω = ωg = CG(ω) (centralizer of
ω);
Orbits: ωG = “conjugacy class of ω”;
Kernel: Ker = {g ∈ G : g−1ωg = ω for all ω ∈ G} = C(G).

For ω, g ∈ G let ωg = ωg. We say that G acts on itslef by
right multiplication.

Stabiliser: Gω = 1 ... the stabilisers are trivial;
Orbits: ωG = G ... the action is transitive;
Kernel: Ker = 1 ... the action is faithful.
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Regular actions

Corollary

(Cayley) Every group is isomorphic to some permutation group.

Proof. Let a group G act on itself by right multiplication. This
action is faithful, hence G is embedded in to SG.

Definition

Let G act on Ω. If Gω = 1 for every ω ∈ Ω, the the action is called
semiregular. A transitive semiregular action is called regular.

Homework 2: Show that every faithul action of an abelian group
is regular.
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Action on cosets

Let H ≤ G, and let G/H = {Ha : a ∈ G} be the set of all
right cosets (desni odseki) of G by H. For g ∈ G let

(Ha)g = H(ag).

We say that G acts on right cosets ny right multiplication.

Stabiliser:

g ∈ GHa ⇔ Hag = Ha⇔ aga−1 ∈ H ⇔ g ∈ a−1Ha

Hence GHa = Ha. In particular GH = H.
Orbits: HG = G/H ... the action is transitive;
Kernel:

Ker = ∩a∈GGHa = ∩a∈GH
a = coreG(H).
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Conjugate stabilisers

Let G acto on Ω.

Take α ∈ Ω, h ∈ G, and let β = αh. Consider Gβ:

g ∈ Gβ ⇔ βg = β ⇔ αhg = αh ⇔ hgh−1 ∈ Gα ⇔ g ∈ h−1Gαh

Therefore we have:

G(αh) = (Gα)h.

Lemma

Let G act on Ω and let α, β ∈ Ω. Then α and β belong to te same
orbit of G if and only if the stabilisers Gα and Gβ are conjugate in
G.
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Orbit-stabiliser lemma

Lemma

Let G act on Ω and let ω ∈ Ω. Then

|Gω| |ωG| = |G|.

Proof: Define a mapping

ϕ : G/Gω → ωG, Gωg 7→ ωg.

this definition is independent of the choice of the
representative of Gωg.
the mapping is 1-1.
the mapping is onto.

Hence |G/Gω| = |ωG|, and so |Gω| |ωG| = |G|.
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Burnside’s lemma

Also called Cauchy-Frobenius lemma, or non-Burnside lemma.

Lemma

Let m denote the number of orbits of G acting on Ω. Then

m =
1
|G|

∑
g∈G
|Fix(g)|.

Here
Fix(g) = {ω ∈ Ω : ωg = ω}.
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Proof of Burnside’s lemma

Proof: Let Ω1, . . . ,Ωm be the orbits of G on Ω.

Consider the set

M = {(ω, g) : ω ∈ Ω, g ∈ Gω} = {(ω, g) : g ∈ G,ω ∈ Fix(g)}.

Count the number of elements in M in two ways. On one
hand:

|M| =
∑
g∈G
|Fix(g)|.

On the other hand

|M| =
∑
ω∈Ω

|Gω| =
m∑
i=1

∑
ω∈Ωi

|Gω| =
m∑
i=1

∑
ω∈Ωi

|G|/|Ωi| = m|G|.
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Lecture 4 – Group Actions and Cayley Graphs

Cayley graphs

Let G be a group, and let S ⊆ G be s.t.

1 6∈ S,
s ∈ S → s−1 ∈ S.

Such a set S is called a Cayley subset of G.

Examples:

G = Z9, the cyclic group of order 9, S = {1, 3, 6, 8};
G = Zd

p, the additive group of a vector space,
S = {ei,−ei : i = 1, . . . , d};
G = A4, S = {(1, 2, 3), (1, 3, 2), (1, 2)(3, 4)}.
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Cayley graphs

Let S be a Cayley suGset of G. Define the graph Γ by

V (Γ) = G,
u ∼Γ v ⇔ vu−1 ∈ S.

Exercise. Show that ∼ is indeed an ireflexive, symmetric
relation.

Note that N(u) = {us : sinS}.
The graph Γ is called the Cayley graph of G relative to S.

Γ = Cay(G, s).
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Examples of Cayley graphs

Cay(Zn, {−1, 1}) ∼= Cn.
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Examples of Cayley graphs

Cay(Zd2, {e1, . . . , ed}) ∼= Qd, the d-dimensional cube.
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Examples of Cayley graphs

Cay(A4, {(1, 2, 3), (1, 3, 2), (1, 2)(3, 4)}).
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Lecture 4 – Group Actions and Cayley Graphs

Colored Cayley graphs

Historically, Cayley graphs were used for “graphical”
presentations of groups.

The Cayley set S was assumed to generate G. Exercise. The
Cayley set S generates G if and only if Cay(G,S) is
connected.

Exactly one element from each pair {s, s−1} was chosen, and
given by its own color, c(s).

An edge uv ∈ E(Γ) was colored with c(s) where s = uv−1.

The edge was directed “from u to v” if and only s = uv−1

was “chosen”.
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Example

Example: G = A4, a = (1, 2, 3) ∈ G, b = (1, 2)(3, 4),
S = {a, a−1, b}.
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Automorphisms of graphs

An automorphism of a graph Γ is a permutataion of V (Γ)
which preserves adajcency.

The set of all automorphisms of Γ forms a permutation group
on V (Γ).

Aut(Γ) = {g : g is an automorphism of Γ}.

Aut(Γ) “measures” the symmetry of Γ.

Tomaž Pisanski, Alen Orbanič, and Primož Potočnik Graphs continued



Lecture 4 – Group Actions and Cayley Graphs

Examples

Examples:

Some graphs have no symmmetry (are completely
asymmetric).

Complete graphs have the full symmetric group as their
automorphism group.
Interesting examples are in between.
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Vertex transitivity

Definition

Let Γ be a graph.If Aut(Γ) acts transitively on V (Γ), then we say
that Γ is vertex-transitive (točkovno tranzitiven). More generally,
if a subgroup G ≤ Aut(Γ) acts transitively on V (Γ), then we say
that Γ is G-vertex-transitive.

Examples:

Cn is vertex transitive.

Q3 is vertex transitive.

The Petersen graph is vertex transitive.
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Vertex transitivity of Cayley graphs

Lemma

The automorphism group of a Cayley graph Cay(G,S) contains a
subgroup Ḡ, isomorphic to G, which acts regularly on V (Γ)

Proof.

For each g ∈ G let

ρg : G→ G, x 7→ xg.

ρ : G→ SG, g 7→ ρg is an isomorphism of groups. (right
regular action!)

It remains to show that ρg ∈ Aut(Cay(G,S)). Take x, y ∈ G.
Then:

x ∼ y ⇔ yx−1 ∈ S ⇔ y(gg−1)x−1 ∈ S ⇔ (yg)(xg)−1 ∈ S ⇔ yρg ∼ xρg .
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Sabidussi’s characterization of Cayley graphs

Theorem

A graph Γ is isomorphic some Cayley graph on a group G if and
only if Aut(Γ) contains a subgroup isomorphic to G which acts
regularly on V (Γ).

Proof.

One direction is already shown.

Suppose now that Aut(Γ) contains a regular subgroup G.

Choose a vertex v ∈ V (Γ). By regularity, for each u ∈ V (Γ),
there exists a unique gu ∈ G such that vgu = u. This shows
that

ϕ : V (Γ)→ G, u 7→ gu

is a bijection.

Let S = ϕ(N(v)) = {gu : u ∼ v}. Consider Cay(G,S). Then

ϕ : V (Γ)→ V (Cay(G,S)) is an isomorphism of graphs.
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Sabidussi’s characterization of Cayley graphs

Sabidussi’s characterization helps answering the question,
which graphs are Cayley graphs.

Question: Are all vertex-transitive graphs Cayley graphs?

NO! For example, the Petersen graph is vertex-transitive but
not Cayley

H3: Show that the Petersen graph is not a Cayley graph.
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Lecture 4 – Group Actions and Cayley Graphs

Homework

H1: Show that the left and the right symmetric groups are
isomorphic.

H2: Show that every faithul action of an abelian group is
regular.

H3: Show that the Petersen graph is not a Cayley graph.
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