Lesson No. 4: Group Actions and Cayley Graphs

- Group Actions (Orbits, Stabilisers, Burnside's lemma);
- Iransitivity and Regularity of actions;
- Cayley graphs

Symmetric groups

- Let Ω be a (finite) set, and let $Sym(\Omega)$ be the set of all permutation on Ω .
- There are two standard ways to define a binary operation on $\operatorname{Sym}(\Omega)$:
 - **left multiplication** = composition:

$$g\circ h\colon \omega\mapsto g(h(\omega)).$$

• **right multiplication** = inverse composition:

$$g\cdot h\colon \omega\mapsto h(g(\omega)).$$

• Example: Let g = (1, 3, 4)(2, 5), h = (1, 3)(2, 4)(5)

$$g \circ h = (1, 4, 5, 2)(3), \quad g \cdot h = (1)(2, 5, 4, 3).$$

Symmetric groups II

• Both $(\operatorname{Sym}(\Omega),\circ)$ and $(\operatorname{Sym}(\Omega),\cdot)$ are groups.

Definition

The groups $(Sym(\Omega), \circ)$ and $(Sym(\Omega), \cdot)$ are called the **left** symmetric group and the right symmetric group on Ω .

- H1: Show these two groups are isomorphic.
- We will mainly work with the right symmetric group:

$$S_{\Omega} = (\operatorname{Sym}(\Omega), \cdot)$$

• We write ω^g instead of $g(\omega)$. With this notation, we have:

$$\omega^{(gh)} = (\omega^g)^h$$

for all $\omega \in \Omega$ and $g, h \in S_{\Omega}$.

• Subgroups of S_{Ω} are called **permutation groups**.

Group actions

- Group action generalize the notion of permutation groups.
- Let G be a group, let Ω be a set, and let

$$\Phi\colon \Omega\times G\to \Omega, \qquad (\omega,g)\mapsto \omega^g,$$

be a mapping which satisfies:

•
$$\omega^1 = \omega$$
 for all $\omega \in \Omega$;
• $\omega^{(gh)} = (\omega^g)^h$ for all $\omega \in \Omega$ and $g, h \in G$

• In this case we say that Φ is an **action** (delovanje) of G on Ω .

Group actions vs. permutation representations

- Let $\Phi \colon \Omega \times G \to \Omega$ be a group action.
- Define a mapping:

$$\bar{\Phi} \colon G \to \operatorname{Sym}_{\Omega}, \qquad \bar{\Phi}(g) = (\omega \mapsto \omega^g)$$

- $\bar{\Phi}$ is a homomorphism of groups.
- Conversely, let $\Phi \colon G \to Sym_{\Omega}$ be any group homomorphism. Define can define an action:

$$\bar{\Phi} \colon \Omega \times G \to \Omega, \qquad (\omega, g) \mapsto \omega^{\bar{\Phi}(g)}$$

- Note that $\overline{\Phi} = \Phi$.
- "Groups actions on Ω " \equiv "homomorphism to S_{Ω} ".

Kernel

• The set of all $g \in G$ which fix **every** elelemnt of Ω is called the **kernel** (jedro) of the action.

$$\mathrm{Ker} = \{ g \in G : \omega^g = \omega \text{ for all } \omega \in \Omega \}$$

• If the action is viewed as a homomorphism $\Psi \colon G \to S_{\Omega}$, then the kernel of the action is simply the kernel of Ψ .

$$\mathrm{Ker}=\{g\in G:\Psi(g)=\mathrm{id}\}.$$

- If Ker = 1, then the action is **faithful** (zvesto).
- If G acts faithfully on Ω , then $G \to S_{\Omega}$ is injective.
- "Faithfull actions" \equiv "permutation groups".

Orbits

• Let G act on Ω and let $\omega \in \Omega$. The set

$$\omega^G = \{\omega^g: g \in G\}$$

is called the *orbit* (orbita) of ω .

- The set of all orbits is a partition of Ω .
- If there is only one orbit, then the action is transitive.

Lemma

An action of G on Ω is transitive if and only for any $\alpha, \beta \in \Omega$ there exists $g \in G$ s.t. $\alpha^g = \beta$.

Stabilisers

The set

$$G_{\omega} = \{g \in G : \omega^g = \omega\}$$

is called the **stabiliser** (stabilizator) of ω . G_{ω} is a subgroup of G.

• For
$$\Delta \subseteq \Omega$$
, let

- $G_{\Delta} = \{g \in G : \delta^g \in \Delta \text{ for all } \delta \in \Delta\}$ (setwise-stabiliser);
- $G_{(\Delta)} = \{g \in G : \delta^g = \delta \text{ for all } \delta \in \Delta\}$ (pointwise-stabiliser).

$$G_{(\Delta)} = \cap_{\delta \in \Delta} G_{\delta}.$$

Examples of actions

- Let $G \leq S_{\Omega}$ be any permutation group. Then G acts on Ω in a natural way.
- Let $G \leq S_{\Omega}$, let k be an integer, and let $\Omega^{(k)}$ be the set of all k-element subsets of Ω . For $g \in G$ and $\{\omega_1, \ldots, \omega_k\} \in \Omega^{(k)}$ let

$$\{\omega_1,\ldots,\omega_k\}^g = \{\omega_1^g,\ldots,\omega_k^g\}.$$

This defines an action of G on $\Omega^{(k)}$ (uordered k-tuples).

 $\bullet\,$ Similarly can be defined an action of G on

$$\Omega^{[k]} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \Omega, \omega_i \neq \omega_j \text{ for } i \neq j\}.$$

Groups acting on groups

Let ${\cal G}$ be a group. Then there are several ways to define an action of ${\cal G}$ on itself.

- For $\omega, g \in G$ let $\omega^g = g^{-1} \omega g$. We say that G acts on itself by conjugation.
 - Stabiliser: $G_{\omega} = \{g \in G : g\omega = \omega g = C_G(\omega) \text{ (centralizer of } \omega); \}$
 - Orbits: $\omega^G =$ "conjugacy class of ω ";
 - Kernel: Ker = $\{g \in G : g^{-1}\omega g = \omega \text{ for all } \omega \in G\} = C(G).$
- For $\omega, g \in G$ let $\omega^g = \omega g$. We say that G acts on itslef by right multiplication.
 - Stabiliser: $G_{\omega} = 1$... the stabilisers are trivial;
 - Orbits: $\omega^G = G$... the action is transitive;
 - Kernel: $Ker = 1 \dots$ the action is faithful.

Regular actions

Corollary

(Cayley) Every group is isomorphic to some permutation group.

PROOF. Let a group G act on itself by right multiplication. This action is faithful, hence G is embedded in to S_G .

Definition

Let G act on Ω . If $G_{\omega} = 1$ for every $\omega \in \Omega$, the the action is called **semiregular**. A transitive semiregular action is called **regular**.

Homework 2: Show that every faithul action of an abelian group is regular.

Action on cosets

• Let $H \leq G$, and let $G/H = \{Ha : a \in G\}$ be the set of all right cosets (desni odseki) of G by H. For $g \in G$ let

$$(Ha)^g = H(ag).$$

We say that G acts on right cosets ny right multiplication.

• Stabiliser:

$$g \in G_{Ha} \Leftrightarrow Hag = Ha \Leftrightarrow aga^{-1} \in H \Leftrightarrow g \in a^{-1}Ha$$

Hence $G_{Ha} = H^a$. In particular $G_H = H$.

• Orbits: $H^G = G/H$... the action is transitive;

• Kernel:

$$\operatorname{Ker} = \bigcap_{a \in G} G_{Ha} = \bigcap_{a \in G} H^a = \operatorname{core}_G(H).$$

Conjugate stabilisers

Let G acto on Ω .

• Take $\alpha \in \Omega$, $h \in G$, and let $\beta = \alpha^h$. Consider G_β :

 $g\in G_{\beta}\Leftrightarrow\beta^{g}=\beta\Leftrightarrow\alpha^{hg}=\alpha^{h}\Leftrightarrow hgh^{-1}\in G_{\alpha}\Leftrightarrow g\in h^{-1}G_{\alpha}h$

Therefore we have:

$$G_{(\alpha^h)} = (G_\alpha)^h.$$

Lemma

Let G act on Ω and let $\alpha, \beta \in \Omega$. Then α and β belong to te same orbit of G if and only if the stabilisers G_{α} and G_{β} are conjugate in G.

Orbit-stabiliser lemma

Lemma

Let G act on Ω and let $\omega \in \Omega$. Then

$$|G_{\omega}| |\omega^G| = |G|.$$

• **PROOF:** Define a mapping

$$\varphi \colon G/G_\omega \to \omega^G, \quad G_\omega g \mapsto \omega^g.$$

- this definition is independent of the choice of the representative of $G_{\omega}g$.
- the mapping is 1-1.
- the mapping is onto.

• Hence
$$|G/G_{\omega}| = |\omega^G|$$
, and so $|G_{\omega}| |\omega^G| = |G|$.

Burnside's lemma

• Also called Cauchy-Frobenius lemma, or non-Burnside lemma.

Lemma

Let m denote the number of orbits of G acting on $\Omega.$ Then

$$m = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

• Here

$$\mathrm{Fix}(g)=\{\omega\in\Omega:\omega^g=\omega\}.$$

Proof of Burnside's lemma

- PROOF: Let $\Omega_1, \ldots, \Omega_m$ be the orbits of G on Ω .
- Consider the set

$$\mathcal{M} = \{(\omega, g) : \omega \in \Omega, g \in G_{\omega}\} = \{(\omega, g) : g \in G, \omega \in \operatorname{Fix}(g)\}.$$

• Count the number of elements in *M* in two ways. On one hand:

$$|\mathcal{M}| = \sum_{g \in G} |\operatorname{Fix}(g)|.$$

On the other hand

$$|\mathcal{M}| = \sum_{\omega \in \Omega} |G_{\omega}| = \sum_{i=1}^{m} \sum_{\omega \in \Omega_i} |G_{\omega}| = \sum_{i=1}^{m} \sum_{\omega \in \Omega_i} |G|/|\Omega_i| = m|G|.$$

Cayley graphs

• Let G be a group, and let $S\subseteq G$ be s.t.

•
$$1 \notin S$$
,
• $s \in S \rightarrow s^{-1} \in S$.

Such a set S is called a **Cayley subset** of G.

• Examples:

Cayley graphs

• Let S be a Cayley suGset of G. Define the graph Γ by

•
$$V(\Gamma) = G$$
,

•
$$u \sim_{\Gamma} v \Leftrightarrow vu^{-1} \in S.$$

- \bullet Exercise. Show that \sim is indeed an ireflexive, symmetric relation.
- Note that $N(u) = \{us : sinS\}.$
- The graph Γ is called **the Cayley graph** of G relative to S.

$$\Gamma = \operatorname{Cay}(G, s).$$

Examples of Cayley graphs

- ● ● ●

э

Examples of Cayley graphs

• $\operatorname{Cay}(\mathbb{Z}_2^d, \{e_1, \ldots, e_d\}) \cong Q_d$, the *d*-dimensional cube.

э

___ ▶ <

Lecture 4 - Group Actions and Cayley Graphs

Examples of Cayley graphs

• $Cay(A_4, \{(1, 2, 3), (1, 3, 2), (1, 2)(3, 4)\}).$

Colored Cayley graphs

- Historically, Cayley graphs were used for "graphical" presentations of groups.
- The Cayley set S was assumed to generate G. Exercise. The Cayley set S generates G if and only if Cay(G, S) is connected.
- Exactly one element from each pair $\{s,s^{-1}\}$ was chosen, and given by its own color, c(s).
- An edge $uv \in E(\Gamma)$ was colored with c(s) where $s = uv^{-1}$.
- The edge was directed "from u to v" if and only $s = uv^{-1}$ was "chosen".

Example

• Example: $G = A_4$, $a = (1, 2, 3) \in G$, b = (1, 2)(3, 4), $S = \{a, a^{-1}, b\}$.

Tomaž Pisanski, Alen Orbanič, and Primož Potočnik Graphs continued

Automorphisms of graphs

٢

- An automorphism of a graph Γ is a permutataion of $V(\Gamma)$ which preserves adajcency.
- The set of all automorphisms of Γ forms a permutation group on $V(\Gamma).$

 $\operatorname{Aut}(\Gamma) = \{g : g \text{ is an automorphism of } \Gamma\}.$

• $Aut(\Gamma)$ "measures" the symmetry of Γ .

Examples

Examples:

• Some graphs have no symmetry (are completely asymmetric).

- Complete graphs have the full symmetric group as their automorphism group.
- Interesting examples are in between.

Vertex transitivity

Definition

Let Γ be a graph. If $\operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, then we say that Γ is **vertex-transitive** (točkovno tranzitiven). More generally, if a subgroup $G \leq \operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, then we say that Γ is *G*-vertex-transitive.

Examples:

- C_n is vertex transitive.
- Q_3 is vertex transitive.
- The Petersen graph is vertex transitive.

Vertex transitivity of Cayley graphs

Lemma

The automorphism group of a Cayley graph Cay(G, S) contains a subgroup \overline{G} , isomorphic to G, which acts regularly on $V(\Gamma)$

Proof.

• For each $g \in G$ let

$$\rho_g \colon G \to G, \quad x \mapsto xg.$$

- $\rho: G \to S_G, g \mapsto \rho_g$ is an isomorphism of groups. (right regular action!)
- It remains to show that $\rho_g \in \operatorname{Aut}(\operatorname{Cay}(G,S))$. Take $x,y \in G$. Then:

 $x \sim y \Leftrightarrow yx^{-1} \in S \Leftrightarrow y(gg^{-1})x^{-1} \in S \Leftrightarrow (yg)(xg)^{-1} \in S \Leftrightarrow y^{\rho_g} \sim x^{\rho_g}.$

Sabidussi's characterization of Cayley graphs

Theorem

A graph Γ is isomorphic some Cayley graph on a group G if and only if $\operatorname{Aut}(\Gamma)$ contains a subgroup isomorphic to G which acts regularly on $V(\Gamma)$.

Proof.

- One direction is already shown.
- Suppose now that $Aut(\Gamma)$ contains a regular subgroup G.
- Choose a vertex $v \in V(\Gamma)$. By regularity, for each $u \in V(\Gamma)$, there exists a unique $g_u \in G$ such that $v^{g_u} = u$. This shows that

$$\varphi \colon V(\Gamma) \to G, \quad u \mapsto g_u$$

is a bijection.

• Let
$$S = \varphi(N(v)) = \{g_u : u \sim v\}$$
. Consider $\operatorname{Cay}(G, S)$. Then
 $\varphi : V(\Gamma) \to V(\operatorname{Cay}(G, S))$ is an isomorphism of graphs.

Sabidussi's characterization of Cayley graphs

- Sabidussi's characterization helps answering the question, which graphs are Cayley graphs.
- Question: Are all vertex-transitive graphs Cayley graphs?
- NO! For example, the Petersen graph is vertex-transitive but not Cayley
- H3: Show that the Petersen graph is not a Cayley graph.

Homework

- **H1:** Show that the left and the right symmetric groups are isomorphic.
- **H2:** Show that every faithul action of an abelian group is regular.
- H3: Show that the Petersen graph is not a Cayley graph.