Lesson No. 4: Group Actions and Cayley Graphs

(1) Group Actions (Orbits, Stabilisers, Burnside's lemma);
(2) Transitivity and Regularity of actions;
(3) Cayley graphs

Symmetric groups

- Let Ω be a (finite) set, and let $\operatorname{Sym}(\Omega)$ be the set of all permutation on Ω.
- There are two standard ways to define a binary operation on $\operatorname{Sym}(\Omega)$:
- left multiplication $=$ composition:

$$
g \circ h: \omega \mapsto g(h(\omega)) .
$$

- right multiplication $=$ inverse composition:

$$
g \cdot h: \omega \mapsto h(g(\omega)) .
$$

- Example: Let $g=(1,3,4)(2,5), h=(1,3)(2,4)(5)$

$$
g \circ h=(1,4,5,2)(3), \quad g \cdot h=(1)(2,5,4,3) .
$$

Symmetric groups II

- Both $(\operatorname{Sym}(\Omega), o)$ and $(\operatorname{Sym}(\Omega), \cdot)$ are groups.

Definition

The groups $(\operatorname{Sym}(\Omega), \circ)$ and $(\operatorname{Sym}(\Omega), \cdot)$ are called the left symmetric group and the right symmetric group on Ω.

- H1: Show these two groups are isomorphic.
- We will mainly work with the right symmetric group:

$$
S_{\Omega}=(\operatorname{Sym}(\Omega), \cdot)
$$

- We write ω^{g} instead of $g(\omega)$. With this notation, we have:

$$
\omega^{(g h)}=\left(\omega^{g}\right)^{h}
$$

for all $\omega \in \Omega$ and $g, h \in S_{\Omega}$.

- Subgroups of S_{Ω} are called permutation groups.

Group actions

- Group action generalize the notion of permutation groups.
- Let G be a group, let Ω be a set, and let

$$
\Phi: \Omega \times G \rightarrow \Omega, \quad(\omega, g) \mapsto \omega^{g},
$$

be a mapping which satisfies:

- $\omega^{1}=\omega$ for all $\omega \in \Omega$;
- $\omega^{(g h)}=\left(\omega^{g}\right)^{h}$ for all $\omega \in \Omega$ and $g, h \in G$.
- In this case we say that Φ is an action (delovanje) of G on Ω.

Group actions vs. permutation representations

- Let $\Phi: \Omega \times G \rightarrow \Omega$ be a group action.
- Define a mapping:

$$
\bar{\Phi}: G \rightarrow \operatorname{Sym}_{\Omega}, \quad \bar{\Phi}(g)=\left(\omega \mapsto \omega^{g}\right)
$$

- $\bar{\Phi}$ is a homomorphism of groups.
- Conversely, let $\Phi: G \rightarrow \operatorname{Sym}_{\Omega}$ be any group homomorphism. Define can define an action:

$$
\bar{\Phi}: \Omega \times G \rightarrow \Omega, \quad(\omega, g) \mapsto \omega^{\bar{\Phi}(g)}
$$

- Note that $\overline{\bar{\Phi}}=\Phi$.
- "Groups actions on Ω " \equiv "homomorphism to S_{Ω} ".

Kernel

- The set of all $g \in G$ which fix every elelemnt of Ω is called the kernel (jedro) of the action.

$$
\text { Ker }=\left\{g \in G: \omega^{g}=\omega \text { for all } \omega \in \Omega\right\}
$$

- If the action is viewed as a homomorphism $\Psi: G \rightarrow S_{\Omega}$, then the kernel of the action is simply the kernel of Ψ.

$$
\text { Ker }=\{g \in G: \Psi(g)=\mathrm{id}\} .
$$

- If $\mathrm{Ker}=1$, then the action is faithful (zvesto).
- If G acts faithfully on Ω, then $G \rightarrow S_{\Omega}$ is injective.
- "Faithfull actions" \equiv "permutation groups".

Orbits

- Let G act on Ω and let $\omega \in \Omega$. The set

$$
\omega^{G}=\left\{\omega^{g}: g \in G\right\}
$$

is called the orbit (orbita) of ω.

- The set of all orbits is a partition of Ω.
- If there is only one orbit, then the action is transitive.

Lemma

An action of G on Ω is transitive if and only for any $\alpha, \beta \in \Omega$ there exists $g \in G$ s.t. $\alpha^{g}=\beta$.

Stabilisers

- The set

$$
G_{\omega}=\left\{g \in G: \omega^{g}=\omega\right\}
$$

is called the stabiliser (stabilizator) of $\omega . G_{\omega}$ is a subgroup of G.

- For $\Delta \subseteq \Omega$, let
- $G_{\Delta}=\left\{g \in G: \delta^{g} \in \Delta\right.$ for all $\left.\delta \in \Delta\right\}$ (setwise-stabiliser);
- $G_{(\Delta)}=\left\{g \in G: \delta^{g}=\delta\right.$ for all $\left.\delta \in \Delta\right\}$ (pointwise-stabiliser).

$$
G_{(\Delta)}=\cap_{\delta \in \Delta} G_{\delta}
$$

Examples of actions

- Let $G \leq S_{\Omega}$ be any permutation group. Then G acts on Ω in a natural way.
- Let $G \leq S_{\Omega}$, let k be an integer, and let $\Omega^{(k)}$ be the set of all k-element subsets of Ω. For $g \in G$ and $\left\{\omega_{1}, \ldots, \omega_{k}\right\} \in \Omega^{(k)}$ let

$$
\left\{\omega_{1}, \ldots, \omega_{k}\right\}^{g}=\left\{\omega_{1}^{g}, \ldots, \omega_{k}^{g}\right\}
$$

This defines an action of G on $\Omega^{(k)}$ (uordered k-tuples).

- Similarly can be defined an action of G on

$$
\Omega^{[k]}=\left\{\left(\omega_{1}, \ldots, \omega_{k}\right): \omega_{i} \in \Omega, \omega_{i} \neq \omega_{j} \text { for } i \neq j\right\}
$$

Groups acting on groups

Let G be a group. Then there are several ways to define an action of G on itself.

- For $\omega, g \in G$ let $\omega^{g}=g^{-1} \omega g$. We say that G acts on itself by conjugation.
- Stabiliser: $G_{\omega}=\left\{g \in G: g \omega=\omega g=C_{G}(\omega)\right.$ (centralizer of ω);
- Orbits: $\omega^{G}=$ "conjugacy class of ω^{\prime};
- Kernel: Ker $=\left\{g \in G: g^{-1} \omega g=\omega\right.$ for all $\left.\omega \in G\right\}=C(G)$.
- For $\omega, g \in G$ let $\omega^{g}=\omega g$. We say that G acts on itslef by right multiplication.
- Stabiliser: $G_{\omega}=1 \ldots$ the stabilisers are trivial;
- Orbits: $\omega^{G}=G$... the action is transitive;
- Kernel: Ker = $1 \ldots$ the action is faithful.

Regular actions

Corollary

(Cayley) Every group is isomorphic to some permutation group.
Proof. Let a group G act on itself by right multiplication. This action is faithful, hence G is embedded in to S_{G}.

Definition

Let G act on Ω. If $G_{\omega}=1$ for every $\omega \in \Omega$, the the action is called semiregular. A transitive semiregular action is called regular.

Homework 2: Show that every faithul action of an abelian group is regular.

Action on cosets

- Let $H \leq G$, and let $G / H=\{H a: a \in G\}$ be the set of all right cosets (desni odseki) of G by H. For $g \in G$ let

$$
(H a)^{g}=H(a g)
$$

We say that G acts on right cosets ny right multiplication.

- Stabiliser:

$$
g \in G_{H a} \Leftrightarrow H a g=H a \Leftrightarrow a g a^{-1} \in H \Leftrightarrow g \in a^{-1} H a
$$

Hence $G_{H a}=H^{a}$. In particular $G_{H}=H$.

- Orbits: $H^{G}=G / H \ldots$ the action is transitive;
- Kernel:

$$
\text { Ker }=\cap_{a \in G} G_{H a}=\cap_{a \in G} H^{a}=\operatorname{core}_{G}(H) .
$$

Conjugate stabilisers

Let G acto on Ω.

- Take $\alpha \in \Omega, h \in G$, and let $\beta=\alpha^{h}$. Consider G_{β} :

$$
g \in G_{\beta} \Leftrightarrow \beta^{g}=\beta \Leftrightarrow \alpha^{h g}=\alpha^{h} \Leftrightarrow h g h^{-1} \in G_{\alpha} \Leftrightarrow g \in h^{-1} G_{\alpha} h
$$

Therefore we have:

$$
G_{\left(\alpha^{h}\right)}=\left(G_{\alpha}\right)^{h} .
$$

Lemma

Let G act on Ω and let $\alpha, \beta \in \Omega$. Then α and β belong to te same orbit of G if and only if the stabilisers G_{α} and G_{β} are conjugate in G.

Orbit-stabiliser lemma

Lemma

Let G act on Ω and let $\omega \in \Omega$. Then

$$
\left|G_{\omega}\right|\left|\omega^{G}\right|=|G| .
$$

- Proof: Define a mapping

$$
\varphi: G / G_{\omega} \rightarrow \omega^{G}, \quad G_{\omega} g \mapsto \omega^{g} .
$$

- this definition is independent of the choice of the representative of $G_{\omega} g$.
- the mapping is $1-1$.
- the mapping is onto.
- Hence $\left|G / G_{\omega}\right|=\left|\omega^{G}\right|$, and so $\left|G_{\omega}\right|\left|\omega^{G}\right|=|G|$.

Burnside's lemma

- Also called Cauchy-Frobenius lemma, or non-Burnside lemma.

Lemma

Let m denote the number of orbits of G acting on Ω. Then

$$
m=\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

- Here

$$
\operatorname{Fix}(g)=\left\{\omega \in \Omega: \omega^{g}=\omega\right\} .
$$

Proof of Burnside's lemma

- Proof: Let $\Omega_{1}, \ldots, \Omega_{m}$ be the orbits of G on Ω.
- Consider the set

$$
\mathcal{M}=\left\{(\omega, g): \omega \in \Omega, g \in G_{\omega}\right\}=\{(\omega, g): g \in G, \omega \in \operatorname{Fix}(g)\}
$$

- Count the number of elements in M in two ways. On one hand:

$$
|\mathcal{M}|=\sum_{g \in G}|\operatorname{Fix}(g)| .
$$

- On the other hand

$$
|\mathcal{M}|=\sum_{\omega \in \Omega}\left|G_{\omega}\right|=\sum_{i=1}^{m} \sum_{\omega \in \Omega_{i}}\left|G_{\omega}\right|=\sum_{i=1}^{m} \sum_{\omega \in \Omega_{i}}|G| /\left|\Omega_{i}\right|=m|G|
$$

Cayley graphs

- Let G be a group, and let $S \subseteq G$ be s.t.
- $1 \notin S$,
- $s \in S \rightarrow s^{-1} \in S$.

Such a set S is called a Cayley subset of G.

- Examples:
- $G=\mathbb{Z}_{9}$, the cyclic group of order $9, S=\{1,3,6,8\}$;
- $G=\mathbb{Z}_{p}^{d}$, the additive group of a vector space, $S=\left\{e_{i},-e_{i}: i=1, \ldots, d\right\} ;$
- $G=A_{4}, S=\{(1,2,3),(1,3,2),(1,2)(3,4)\}$.

Cayley graphs

- Let S be a Cayley suGset of G. Define the graph Γ by
- $V(\Gamma)=G$,
- $u \sim_{\Gamma} v \Leftrightarrow v u^{-1} \in S$.
- Exercise. Show that \sim is indeed an ireflexive, symmetric relation.
- Note that $N(u)=\{u s: \sin S\}$.
- The graph Γ is called the Cayley graph of G relative to S.

$$
\Gamma=\operatorname{Cay}(G, s)
$$

Examples of Cayley graphs

- $\operatorname{Cay}\left(\mathbb{Z}_{n},\{-1,1\}\right) \cong C_{n}$.

Examples of Cayley graphs

- $\operatorname{Cay}\left(\mathbb{Z}_{2}^{d},\left\{e_{1}, \ldots, e_{d}\right\}\right) \cong Q_{d}$, the d-dimensional cube.

Examples of Cayley graphs

- $\operatorname{Cay}\left(A_{4},\{(1,2,3),(1,3,2),(1,2)(3,4)\}\right)$.

Colored Cayley graphs

- Historically, Cayley graphs were used for "graphical" presentations of groups.
- The Cayley set S was assumed to generate G. Exercise. The Cayley set S generates G if and only if $\operatorname{Cay}(G, S)$ is connected.
- Exactly one element from each pair $\left\{s, s^{-1}\right\}$ was chosen, and given by its own color, $c(s)$.
- An edge $u v \in E(\Gamma)$ was colored with $c(s)$ where $s=u v^{-1}$.
- The edge was directed "from u to v " if and only $s=u v^{-1}$ was "chosen".

Example

- Example: $G=A_{4}, a=(1,2,3) \in G, b=(1,2)(3,4)$, $S=\left\{a, a^{-1}, b\right\}$.

Automorphisms of graphs

- An automorphism of a graph Γ is a permutataion of $V(\Gamma)$ which preserves adajcency.
- The set of all automorphisms of Γ forms a permutation group on $V(\Gamma)$.

$$
\operatorname{Aut}(\Gamma)=\{g: g \text { is an automorphism of } \Gamma\} .
$$

- $\operatorname{Aut}(\Gamma)$ "measures" the symmetry of Γ.

Examples

Examples:

- Some graphs have no symmmetry (are completely asymmetric).

- Complete graphs have the full symmetric group as their automorphism group.
- Interesting examples are in between.

Vertex transitivity

Definition

Let Γ be a graph.If $\operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, then we say that Γ is vertex-transitive (točkovno tranzitiven). More generally, if a subgroup $G \leq \operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, then we say that Γ is G-vertex-transitive.

Examples:

- C_{n} is vertex transitive.
- Q_{3} is vertex transitive.
- The Petersen graph is vertex transitive.

Vertex transitivity of Cayley graphs

Lemma

The automorphism group of a Cayley graph $\operatorname{Cay}(G, S)$ contains a subgroup \bar{G}, isomorphic to G, which acts regularly on $V(\Gamma)$

Proof.

- For each $g \in G$ let

$$
\rho_{g}: G \rightarrow G, \quad x \mapsto x g
$$

- $\rho: G \rightarrow S_{G}, g \mapsto \rho_{g}$ is an isomorphism of groups. (right regular action!)
- It remains to show that $\rho_{g} \in \operatorname{Aut}(\operatorname{Cay}(G, S))$. Take $x, y \in G$. Then:
$x \sim y \Leftrightarrow y x^{-1} \in S \Leftrightarrow y\left(g g^{-1}\right) x^{-1} \in S \Leftrightarrow(y g)(x g)^{-1} \in S \Leftrightarrow y^{\rho_{g}} \sim x^{\rho_{g}}$.

Sabidussi's characterization of Cayley graphs

Theorem

A graph Γ is isomorphic some Cayley graph on a group G if and only if $\operatorname{Aut}(\Gamma)$ contains a subgroup isomorphic to G which acts regularly on $V(\Gamma)$.

Proof.

- One direction is already shown.
- Suppose now that $\operatorname{Aut}(\Gamma)$ contains a regular subgroup G.
- Choose a vertex $v \in V(\Gamma)$. By regularity, for each $u \in V(\Gamma)$, there exists a unique $g_{u} \in G$ such that $v^{g_{u}}=u$. This shows that

$$
\varphi: V(\Gamma) \rightarrow G, \quad u \mapsto g_{u}
$$

is a bijection.

- Let $S=\varphi(N(v))=\left\{g_{u}: u \sim v\right\}$. Consider $\operatorname{Cay}(G, S)$. Then $\varphi: V(\Gamma) \rightarrow V(\operatorname{Cay}(G, S))$ is an isomorphism of graphs.

Sabidussi's characterization of Cayley graphs

- Sabidussi's characterization helps answering the question, which graphs are Cayley graphs.
- Question: Are all vertex-transitive graphs Cayley graphs?
- NO! For example, the Petersen graph is vertex-transitive but not Cayley
- H3: Show that the Petersen graph is not a Cayley graph.

Homework

- H1: Show that the left and the right symmetric groups are isomorphic.
- H2: Show that every faithul action of an abelian group is regular.
- H3: Show that the Petersen graph is not a Cayley graph.

