Geometry of Partial Cubes

David Eppstein
Computer Science Dept.
Univ. of California, Irvine

6th Slovenian International Conference on Graph Theory, Bled'07

Outline

Definitions

Examples

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Outline

Definitions

Examples

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Context: Geometric graphs and metric embedding

Graph theory:
Unweighted graphs
Weighted graphs
Finite metric spaces

Geometry:
Real vector spaces
Integer lattices
Euclidean distances
L_{1} distances
L_{∞} distances

Probabilistic tree embedding

 Bourgain's theoremJohnson-Lindenstrauss lemma ...

Context: Geometric graphs and metric embedding

Graph theory:
Unweighted graphs
Weighted graphs
Finite metric spaces

Geometry:

Real vector spaces

Integer lattices
Euclidean distances
L_{1} distances
L_{∞} distances

Probabilistic tree embedding
Bourgain's theorem
Johnson-Lindenstrauss lemma .

Partial cubes as geometric graphs

Partial cube:

Undirected graph that can be embedded into an integer lattice so that graph distance $=L_{1}$ distance

Without loss of generality, all coordinates 0 or 1 , L_{1} distance = Hamming distance: isometric hypercube subgraph

Example: permutahedron (vertices = permutations of 4 items edges $=$ flips of adjacent items)

Graph-theoretic characterization

Djokovic-Winkler relation on graph edges [Djokovic 1973, Winkler 1984]:

$$
\begin{gathered}
(p, q) \sim(r, s) \text { iff } \\
d(p, r)+d(q, s) \neq d(p, s)+d(q, r)
\end{gathered}
$$

related edges

unrelated edges

G is a partial cube iff it is bipartite and DW-relation is an equivalence relation
Equivalence classes cut graph into two connected subgraphs

0-1 lattice embedding: coordinate per class, 0 in one subgraph, 1 in the other unique up to hypercube symmetries

Automaton-theoretic characterization

Medium [e.g. Falmagne and Ovchinnikov 2002]: System of states and transformations of states ("tokens") token τ is "effective" on a state S if $S \tau \neq S$

Every token τ has a "reverse" τ^{R} :
for any two states $S \neq \mathrm{V}$, $\mathrm{S} \tau=\mathrm{V}$ iff $\mathrm{V} \tau^{\mathrm{R}}=\mathrm{S}$

Any two states can be connected by a "concise message":
sequence of effective tokens
containing at most one from each token-reverse pair

If a sequence of effective tokens returns a state to itself then its tokens can be matched into token-reverse pairs

States and adjacencies between states form vertices and edges of a partial cube

Partial cube vertices form medium states token = "set ith coordinate to b if possible"

Fundamental components of a partial cube

Vertices and edges, as in any graph, but also:
equivalence classes of DW-relation ("zones") alternatively:
tokens or token-reverse pairs
coordinates of cube embedding
semicubes (subgraphs cut by equivalence classes)

Outline

Definitions

Examples

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Partial cubes from hyperplane arrangements

Given any arrangement of lines (or hyperplanes in higher dimensions)

Form dual graph
vertex for each region edge connecting adjacent regions

0-1 labeling:
coordinate per line
0 for regions below line, 1 above
Graph distance \leq Hamming distance: path connecting regions must cross separating lines at least once

Graph distance \geq Hamming distance: line segment connecting regions forms path with ≤ 1 crossing/line

Acyclic orientations of an undirected graph

For any undirected graph $G=(V, E)$: Number vertices arbitrarily Form arrangement of hyperplanes $x_{i}=x_{j}$ for each edge $v_{i} v_{j}$ in E

Vertices: acyclic orientations
Edges:
orientations differing by one edge of G
Zones:
flip orientation of a single edge of G (if the flipped orientation is acyclic)

The acyclic orientations of a 4-cycle

Weak orders

Weak order = equivalence relation

+ total order on equivalence classes
Model geometrically as face lattice of arrangement of hyperplanes $x_{i}=x_{j}$ [Ovchinnikov 2006]

Applications to voter modeling in social choice theory
[Hsu, Falmagne, Regenwetter 2005]

Antimatroids

Antimatroid = family of sets, closed under unions, s.t. each nonempty set has removable item

Models processes of adding items one by one; once available for inclusion, an item never becomes unavailable

Applications in discrete geometry... (shelling sequences of point sets)
...and mathematical psychology (states of knowledge of human learner) [Doignon and Falmagne 1999]

Integer partitions

Vertex = partition
Edge = increment largest value and decrement some other value (or vice versa)

Outline

Definitions

Examples

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Concepts of dimension for partial cubes

Isometric dimension:
dimension of (unique) hypercube embedding
maximum dimension of lattice embedding
number of zones
polynomial time
Lattice dimension:
minimum dimension of lattice embedding
isometric embedding into product of minimum number of paths polynomial time

Tree dimension:
isometric embedding into product of min number of trees polynomial for $d=2$, NP-complete for $d \geq 3$

Arrangement dimension:
min dim of representation as arrangement (if possible) NP-complete even for $d=2$
via stretchability of pseudolines [Shor 1991]

Tree dimension

Representation as an isometric subset of a product of trees
= partition of zones into compatible subsets
"compatible": for each pair of zones, not all four combinations of semicubes are occupied

So dim $\leq k$ iff compatibility graph k-colorable
Polynomial time for $k=2$ [Dress 1992]

Tree dimension as graph coloring

Any graph is the compatibility graph of some partial cube (more specifically, of some median graph: Klavzar and Mulder 2002)

So finding tree dimensions ≥ 3
is as hard as graph coloring
[Bandelt and van de Vel 1989]

Lattice dimension

Embed partial cube isometrically into integer lattice with as low a dimension as possible

Note: embedding into lattices non-isometrically (but with all vertex positions distinct) is NP-complete even for trees
[Bhatt and Cosmodakis 1987]

Lattice dimension of trees

Lattice dimension of a tree = ceiling(leaves/2)
[Hadlock and Hoffman 1978; Ovchinnikov 2004]

Lower bound: at most two extreme points in each direction
Upper bound: remove two leaf paths, embed rest, add leaves back

Corollary: dimension \geq degree $/ 2$
e.g. for integer partitions of $n, \operatorname{dim}=\Theta$ (sqrt n)

Lattice embeddings as paths of semicubes

Semicubes $=$ sets of points with i th coordinate \leq or \geq some constant
For each coordinate of embedding, form path of semicubes, alternating \leq / \geq

Solid edges: noncomplementary semicubes that cover the entire partial cube

Characterizing lattice dimension

Theorem: lattice dimension = isometric dimension - M where $M=$ cardinality of maximum matching in semicube graph
[E. 2005]

Leads to polynomial time algorithm for finding minimum dimension embedding

Outline

Definitions
\section*{Examples}

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Graph drawing desiderata

Visualize graphs by placing points (or small disks) at vertices, drawing edges as line segments as more complex curves

Keep unrelated vertices and edges well separated from each other
Minimize crossings (planar graph: no crossings)

Use small area relative to vertex separation

Make important graph structure visually apparent: drawing technique for special class of graphs should produce a drawing specific to that class
(e.g. draw planar graphs without crossings)

Visualize partial cube by projecting lattice embedding

Works for any partial cube
Parallel edges in lattice shown parallel in drawing (embedding structure is visible)

Space-efficient for hypercube
Can be less closely packed for other partial cubes

Planar projection of three-dimensional lattices

Easy to find good projection of fixed 3d embedding:

Always along main diagonal
Projects onto hex lattice
Open: how to find projectable embedding?

partial orders on 3 elements

Planar graphs with centrally-symmetric faces

= region graphs of (weak) pseudoline arrangements
[E. 2004]

pseudolines: curve topologically equivalent to lines (unbounded, partition plane, cross at most once)
weak: some pairs of pseudolines may not cross

Examples of planar graphs with centrally-symmetric faces

benzenoid system (chemistry)

Penrose rhombic aperiodic tiling

Arrangement of translates of a wedge

Wedge translates are pseudolines Region graph forms partial cube

Theorem: wedge-representable partial cubes are exactly antimatroids with order dim = 2
[E. 2006]

Upright-quad drawing

Place vertex at upper left corner of each region

Region graph of arrangement has all faces convex quads with bottom and left sides axis-parallel

All drawings of this type come from order-dim-2 antimatroids

Outline

Definitions
Examples
Dimension
Graph Drawing
Cubic Partial Cubes
Flip Distance

Cubic (3-regular) partial cubes

Previously known:

one infinite family (prisms over even polygons) a small number of additional sporadic examples
[Bonnington, Klavzar, Lipovec 2003]
[Bresar, Klavzar, Lipovec, Mohar 2004]
[Deza, Dutour-Sikiric, Shpectorov 2004] [Klavzar, Lipovec 2003]

Desargues graph, only known nonplanar cubic partial cube

Cubic partial cubes from simplicial arrangements

[E., 2006]

Central projection lifts lines in plane to planes through origin in 3d

Cell of line arrangement forms two cells of 3d arrangement
Simplicial line arrangement gives cubic region graph

Infinite families of cubic partial cubes

Several infinite families of simplicial arrangements known [Grünbaum 1972] Simplest: pencil of lines (leading to even prism partial cubes) Second simplest: two mirrors and a laser

Additional sporadic cubic partial cubes

Connection to symmetric-face planar drawing

simplicial arrangement

> planar dual:
> symmetric-faced drawing

connect to inverted copy of drawing: cubic partial cube

Sometimes, connecting two different drawings works

Sufficient condition:

overlaying the two drawings produces another symmetric-faced planar drawing

Summary of progress on cubic partial cubes

Several new infinite families (both lines and pseudolines)

Very large number of sporadic examples

Small number of new non-arrangement examples

Still open: are there infinitely many cubic partial cubes not formed from a line or pseudoline arrangement?

Outline

Definitions

Examples

Dimension

Graph Drawing

Cubic Partial Cubes

Flip Distance

Flip graphs of point sets

Vertices $=$ triangulations (here, of 3×3 grid)

Edges = change triangulation by one edge ("flip")

Important in mesh generation

Generalizes rotation in binary trees

Important open problem in algorithms: compute flip distance

Delaunay triangulation

Connect two points if there exists a circle containing them and no others

Flip towards DT of the four flipped vertices: always reaches DT of whole set in $\mathrm{O}\left(n^{2}\right)$ flips

Any two triangulations have flip distance $0\left(n^{2}\right)$: flip both to Delaunay

The quadrilateral graph of a point set

Vertices:
Unobstructed line segments
= Possible edges of triangulations

Edges:
Pairs of segments that cross
= Possible flips of triangulations
= Empty quadrilaterals

Flip graphs and partial cubes

Theorem [E., 2007]. The following are equivalent: the flip graph is a partial cube iff the flip graph is bipartite iff the quadrilateral graph is a forest iff the quadrilateral graph is bipartite iff the points have no empty convex pentagon

Proof ideas:

If empty pentagon exists, other statements all false (easy)
else...

Orient quad graph by flipping towards Delaunay triangulation Each node has a unique parent, so must be a forest
Embed flip graph into product of its trees
Use Constrained DT to show that distance-reducing flip exists
Leads to quadratic-time flip distance algorithm:
flip both triangulations towards Delaunay count edges occurring in only one flip sequence

Point sets with no empty pentagon

Cannot be in general position and have 10 or more points [Harborth 1978] But many non-general-position examples possible...

any convex subset of a lattice any set of points on two lines many additional sporadic examples

Conclusions: Geometry and partial cubes

Geometric constructions can help us understand the structure of partial cubes
(e.g. cubic partial cube examples)

Geometric information about partial cubes is interesting and useful to study
(e.g. dimension, graph drawing techniques)

Understanding partial cubes can help us solve geometry problems
 (e.g. flip distance)

