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Aut(Γ), is the set of all automorphisms of Γ, which is a group.
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Definition 2 A permutation group G acting on a set X is tran-

sitive if for every x, y ∈ X there exists g ∈ G such that g(x) = y.

A graph Γ is said to be vertex-transitive if Aut(Γ) is a transitive

group acting of V (Γ).

Definition 3 Let G be a group and S ⊂ G−{1} such that S−1 =

S. Define a graph Γ = Γ(G, S) by V (Γ) = G and E(Γ) = {(g, gs) :

g ∈ G, s ∈ S}. The graph Γ(G, S) is the Cayley graph of G with

connection set S. Note that the group GL of all bijections g → hg

(multiplication by h on the left) is a subgroup of Aut(Γ) and is

transitive. Thus a Cayley graph is a vertex-transitive graph.
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The Main Problem

The main problem of this talk is to calculate the full automor-

phism group of a vertex-transtive graph.

Although we will usually say graph, almost all results hold for

digraphs and in fact edge-colored digraphs.



The Petersen graph is vertex-transitive but not isomorphic to

a Cayley graph of any group. It’s full automorphism group is

isomorphic to S5.



A circulant graph of order n is simply a Cayley graph of Zn. The

following graph is Γ(Z11, {1,3,5,6,8,10}). Notice that there is

an edge between any two vertices if and only if the difference of

the vertices (modulo 11) is an element of {1,3,5,6,8,10}.
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Other Related Problems

1. The Cayley isomorphism problem - determine necessary and

sufficient conditions for two Cayley graphs of the same group

G to be isomorphic. It is known that this is basically equiv-

alent to determining the conjugacy classes of GL in the full

automorphism group.

2. Normal Cayley graphs - determine Cayley graphs Γ of G such

that GL is normal in Aut(Γ).

3. Is it true that almost all Cayley graphs have automorphism

group as small as possible? are normal? These are conjec-

tures of B. Alspach and M. Y. Xu.



4. Determine arc-transitive and half arc-transitive graphs.

Arc-transitive graphs are vertex-transitive graphs that transi-

tive on the set of directed edges while half arc-transitive are

vertex-transitive and edge-transitive but not arc-transitive.

Every automorphism group of a vertex-transitive graph can

be written as the intersection of the automorphism groups

of arc or half arc-transitive graphs.
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Observe that every vertex-transitive graph Γ of prime order is

isomorphic to a circulant graph of prime order as Aut(Γ) contains

a subgroup of order p, which, after a relabeling, we may assume

is 〈(0,1, . . . , p− 1)〉 = 〈x → x + 1〉 = (Zp)L. So circulant!
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Automorphisms of prime order
vertex-transitive graphs

Observe that every vertex-transitive graph Γ of prime order is
isomorphic to a circulant graph of prime order as Aut(Γ) contains
a subgroup of order p, which, after a relabeling, we may assume
is 〈(0,1, . . . , p− 1)〉 = 〈x → x + 1〉 = (Zp)L. So circulant!

Theorem 1 (Burnside, 1901) Let G ≤ Sp, p a prime, contain
(Zp)L. Then G ≤ AGL(1, p) = {x → ax + b : a ∈ Z∗p, b ∈ Zp} or G

is doubly-transitive.

Definition 4 A permutation group G acting on a set X is doubly-
transitive if for every x1, y1, x2, y2 ∈ X with x1 6= y1, x2 6= y2,
there exists g ∈ G such that g(x1) = x2 and g(y1) = y2.

Note that if G ≤ Aut(Γ) is doubly-transitive, then Aut(Γ) = SX
and Γ is complete or has no edges.



This gives an algorithm for determining the full automorphism

group of a circulant graph Γ = Γ(Zp, S). Note that x → x + b is

always contained in Aut(Γ), so we need only check which a ∈ Z∗p
satisfy a · S = {as : s ∈ S} = S (we observe that AGL(1, p) is

itself doubly-transitive, so if all such x → ax are in Aut(Γ), then

Aut(Γ) = Sp). Doing this with our example Γ on 11 vertices, we

see that Aut(Γ) = D11.
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This gives an algorithm for determining the full automorphism

group of a circulant graph Γ = Γ(Zp, S). Note that x → x + b is

always contained in Aut(Γ), so we need only check which a ∈ Z∗p
satisfy a · S = {as : s ∈ S} = S (we observe that AGL(1, p) is

itself doubly-transitive, so if all such x → ax are in Aut(Γ), then

Aut(Γ) = Sp). Doing this with our example Γ on 11 vertices, we

see that Aut(Γ) = D11.

B. Alspach (1973) first observed this, and went on to explicitly

enumerate the vertex-transitive graphs of prime order.

Burnside’s Theorem is equivalent to

Theorem 2 Let G ≤ Sp, p a prime, be transitive. Then either G

contains a normal Sylow p-subgroup or G is doubly-transitive.
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Can Burnside’s Theorem be generalized?

Theorem 3 (D., D. Witte, 2002) There are exactly 2p−1 tran-

sitive p-subgroups P of Sp2 up to conjugation, and all but three

have the property that if G ≤ Sp2 with Sylow p-subgroup P , then

either P/G or G is doubly-transitive.

Theorem 4 (D., 2005) Let P be a transitive p-subgroup of

Spk, p an odd prime, k ≥ 1, such that every minimal transi-

tive subgroup of P is cyclic. If G ≤ Spk with Sylow p-subgroup

P , then either P/G or G is doubly-transitive.

It is probable that many more generalizations are true, but it also

seems likely that “most” automorphism groups of graphs cannot

be obtained in this way. We will see an indication of why this

may be true later.
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A General Strategy

We have a strategy to determine automorphism groups of vertex-
transitive graphs of prime-power order:

1. Determine the Sylow p-subgroups of vertex-transitive graphs
of prime-power order

2. Determine the overgroups of the previously obtained Sylow
subgroups, and

3. Determine which can be automorphism groups of vertex-
transitive graphs

We employ the above strategy to determine the automorphism
groups of Cayley graphs of Zp × Zp, p a prime.



Some more terminology

Definition 5 Let G be a transitive group acting on X and B ⊆ X.

If g(B) = B or g(B) ∩ B = ∅ for every g ∈ G, then B is a block

of G. Singletons and the set X are always blocks and are called

trivial. If B is a block, then B = {g(B) : g ∈ G} is called a

complete block system of G - each element of B is a block, and

B partitions X. We remark that in this case G also acts on

B. If G has a nontrivial block, then G is imprimitive, otherwise

primitive.
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Definition 5 Let G be a transitive group acting on X and B ⊆ X.

If g(B) = B or g(B) ∩ B = ∅ for every g ∈ G, then B is a block

of G. Singletons and the set X are always blocks and are called

trivial. If B is a block, then B = {g(B) : g ∈ G} is called a

complete block system of G - each element of B is a block, and

B partitions X. We remark that in this case G also acts on

B. If G has a nontrivial block, then G is imprimitive, otherwise

primitive.

In general, primitive groups can, under many circumstances, be

explicitly determined using the O’Nan-Scott Theorem (which

gives the structure of primitive groups, usually in terms of a

normal direct product of simple groups) and the Classification of

the Finite Simple Groups. We say no more about this ...



We remark that there exist vertex-transitive graphs whose au-

tomorphism group is imprimitive, but the induced action on

the complete block system is not the automorphism group of

a graph. There are also vertex-transitive graphs whose auto-

morphism group is imprimitive, but the induced action on a

block (the set-wise stabilizer) is not the automorphism group

of a graph. This basically says that induction on the number of

prime divisors of the order of a graph will not work easily ...
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morphism group is imprimitive, but the induced action on a
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Definition 6 Let G act on X and H act on Y . The wreath

product of G and H, written G oH, is the set of all permutations

of X × Y of the form (x, y) → (g(x), hx(y)), g ∈ G, and each

hx ∈ H. We remark that the fibers {x} × Y form a complete

block system of G oH.

We remark that a Sylow p-subgroup of Sp2 is isomorphic to ZpoZp.



Automorphism groups of Cayley graphs

of Zp × Zp



Automorphism groups of Cayley graphs

of Zp × Zp

The Sylow p-subgroups of automorphism groups of Cayley graphs

of Zp×Zp were determined by C. Godsil (1983). They are Zp×Zp

and Zp o Zp.



Automorphism groups of Cayley graphs

of Zp × Zp

The Sylow p-subgroups of automorphism groups of Cayley graphs

of Zp×Zp were determined by C. Godsil (1983). They are Zp×Zp

and Zp o Zp.

Note that if p ≥ 5, then Sp × Sp and Sp o Sp are both transitive

but do not have a normal Sylow p-subgroup, and their Sylow

p-subgroups are Zp × Zp and Zp o Zp, so both of these transitive

p-groups are among the three exceptions given above ... In gen-

eral, we cannot obtain a generalization of Burnside’s Theorem

for groups with Sylow p-subgroup a direct product or a wreath

product.



If a Sylow p-subgroup of Aut(Γ) is ZpoZp, then Aut(Γ) = Aut(Γ1)o
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If a Sylow p-subgroup of Aut(Γ) is ZpoZp, then Aut(Γ) = Aut(Γ1)o
Aut(Γ2), where Γ1 and Γ2 are prime order circulants or Aut(Γ) =

Sp2 by a classical result of Sabidussi (1959). Otherwise, we need

the following result of G. Jones (1979)

Theorem 5 Let G ≤ Sp2 be transitive with Sylow p-subgroup

isomorphic to Zp × Zp. Then G contains a normal subgroup H

such that H = H1 × H2 where Hi is a nonabelian simple group

or Hi = Zp.

Determining which such H correspond to automorphism groups

of graphs and calculating their normalizers (all straightforward)

we have:
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Theorem 6 (D, Witte, 2002) Let G be the automorphism group

of a Cayley graph of Zp × Zp. Then

1. If G is doubly transitive, then G = Sp2.

2. If G is simply primitive and solvable, then G ≤ AGL(2, p).

3. If G is simply primitive and nonsolvable, then G ≤ AGL(2, p)

or G = S2 o Sp in its product action.
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4. If G is imprimitive, solvable, and has elementary abelian Sylow

p-subgroup, then either G < AGL(1, p) × AGL(1, p) or G =

S3 × S3 (and p = 3).

5. If G is imprimitive, nonsolvable, and has elementary abelian

Sylow p-subgroup, then either G = Sp × Sp or G = Sp × A,

where A < AGL(1, p).

6. If G is imprimitive with Sylow p-subgroup of order at least

p3, then G = G1 o G2, where G1 and G2 are automorphism

groups of circulant graphs of order p.



Sylow p-subgroups of automorphism groups of Cayley graphs of

Zp×Zp2 are known (D, 2000) and for Zp×Zp×Zp (D, 1995, and

M.Y. Xu, unpublished). Corresponding subgroups for Zp × Z2
q

are known (D, and independently, I. Kovacs and M. Muzychuk).

The same strategy can be implemented (D.) for Zp×Zp2 - there

are 8 families of p-groups to consider which lead to 8 families of

automorphism groups. In a similar fashion, the full automorphism

groups of Cayley graphs of Z3
p and Zp × Z2

q should be obtainable

for p and q primes.



The following result generalizes Jones’ result mentioned above:

Theorem 7 Let G ≤ Spk, p a prime and k ≥ 2 be transitive

with Sylow p-subgroup P = Z
p`1 × Z

p`2, `1 + `2 = k. Then G

contains a normal subgroup H = H1 × H2 where each Hi is a

doubly-transitive simple group or Hi
∼= Z

p`i
.



The following result generalizes Jones’ result mentioned above:

Theorem 7 Let G ≤ Spk, p a prime and k ≥ 2 be transitive

with Sylow p-subgroup P = Z
p`1 × Z

p`2, `1 + `2 = k. Then G

contains a normal subgroup H = H1 × H2 where each Hi is a

doubly-transitive simple group or Hi
∼= Z

p`i
.

Note that both this result and Jones’ result can be viewed as

“Burnside type” results, with the obvious exceptions of direct

products.
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Further directions for resolving automorphism groups of prime-

power order:

1. generalizations of Burnside’s Theorem

2. choosing particular families of p-groups that are the Sylow

p-subgroups of automorphism groups, and then calculating

their overgroups

3. determining Sylow p-subgroups of automorphism groups

4. algorithms to produce automorphism groups without a listing

of the automorphism groups
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Automorphism Groups of Circulants

The following result is a group-theoretic translation of several
papers on Schur rings by Leung and Man (1996 and 1998), and
Evdomikov and Ponomarenko (2002)

Theorem 8 Let Γ be a circulant graph of order n. Then one of
the following holds:

1. Aut(Γ) = G1 ×G2 × · · · ×Gr, where r ≥ 1, each Gi ≤ Sni and
Gi

∼= Sni, or contains a normal regular cyclic group, such that
gcd(ni, nj) = 1 and n = n1n2 · · ·nr, or

2. Aut(Γ) = G1∩G2, where G1 = Sr oH1 and G2 = H2 oSk, H1 is
an automorphism group of a circulant graph of order mk/r,
and H2 is an automorphism group of order m, r|m.



This translation appears in a paper of C. H. Li (2005), where he

used it to determine all arc-transitive circulant graphs - I. Ko-

vacs independently determined all arc-transitive circulant graphs

(2005).



This translation appears in a paper of C. H. Li (2005), where he

used it to determine all arc-transitive circulant graphs - I. Ko-

vacs independently determined all arc-transitive circulant graphs

(2005).

D. and J. Morris in 2005 independently proved the an equivalent

form of the above result when n is square-free.



Let CGn be the set of all circulant digraphs of order n, and

DRRn be the set of all circulant digraphs Γ of order n such that

Aut(Γ) ∼= Zn. Thus DRRn is the set of all circulant digraphs

that are digraphical regular representations (DRR’s) of Zn.



Let CGn be the set of all circulant digraphs of order n, and

DRRn be the set of all circulant digraphs Γ of order n such that

Aut(Γ) ∼= Zn. Thus DRRn is the set of all circulant digraphs

that are digraphical regular representations (DRR’s) of Zn.
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Let CGn be the set of all circulant digraphs of order n, and

DRRn be the set of all circulant digraphs Γ of order n such that

Aut(Γ) ∼= Zn. Thus DRRn is the set of all circulant digraphs

that are digraphical regular representations (DRR’s) of Zn.

Theorem 9 (J. Araújo, D., J. Konieczny, J. Morris) Almost

all circulant digraphs are DRR’s. That is,

lim
n→∞

|DRRn|
|CGn|

= 1.

The only other result on whether almost all Cayley digraphs are

DRR’s is by Godsil (1981) for certain p-groups.
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Survey

Full automorphism groups are known for

• all vertex-transitive graphs of order p (Alspach, 1973)

• all vertex-transitive graphs of order p2 (circulants by Klin and
Pöschel, 1978, Cayley graphs of Zp × Zp by D. and Witte,
2002)

• all vertex-transitive graphs of order pq (D. 2005, many others
involved)

• Zp × Zp2, p a prime (D. (group theoretic))
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