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I. k-valent

two-faced polyhedra
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Polyhedra and planar graphs

A graph is called k-connected if after removing any set of
k − 1 vertices it remains connected.

The skeleton of a polytope P is the graph G(P ) formed by
its vertices, with two vertices adjacent if they generate a
face of P .
Theorem (Steinitz)
(i) A graph G is the skeleton of a 3-polytope if and only if it is
planar and 3-connected.
(ii) P and P ′ are in the same combinatorial type if and only if
G(P ) is isomorphic to G(P ′).

The dual graph G∗ of a plane graph G is the plane graph
formed by the faces of G, with two faces adjacent if they
share an edge.
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Example

The regular cube its planar graph
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Example

A perturbed cube its planar graph
A 3-polytope is usually represented by the Schlegel
diagram of its skeleton, the program used for this is CaGe
by G. Brinkmann, O. Delgado, A. Dress and T. Harmuth.
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k-valent two-faced polyhedra

The Euler formula for plane graphs V − E + F = 2,
take the following form for k-valent graphs:

12 =
∑

i(6 − i)pi if k = 3

and 8 =
∑

i(4 − i)pi if k = 4

With pi the number of faces of gonality i.
A k-valent plane graph is called two-faced if the gonality of
its faces has only two possible values a and b.

3-valent plane graphs with n vertices and faces of
gonality q and 6 (classes qn),

4-valent plane graphs with n vertices and faces of
gonality 3 or 4 (octahedrites).
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Examples

An octahedrite A 324 plane graph

A 426 plane graph A 528 plane graph
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Classes and their generation

k (a, b) Polyhedra Exist if and only if pa n

3 (3, 6) 3n
p6

2
∈ N − {1} p3 = 4 4 + 2p6

3 (4, 6) 4n p6 ∈ N − {1} p4 = 6 8 + 2p6

3 (5, 6) 5n (fullerenes) p6 ∈ N − {1} p5 = 12 20 + 2p6

4 (3, 4) octahedrite p4 ∈ N − {1} p3 = 8 6 + p4

Generation programs

3-valent: CPF for two-faced maps on the sphere by T.
Harmuth
3-valent: CGF for two-faced maps on surfaces of genus
g by T. Harmuth

4-valent: ENU by T. Heidemeier

General: plantri by G. Brinkmann and B. McKay
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Finite isometry groups

All finite groups of isometries of 3-space are classified. In
Schoenflies notations:

C1 is the trivial group

Cs is the group generated by a plane reflexion

Ci = {I3,−I3} is the inversion group

Cm is the group generated by a rotation of order m of
axis ∆

Cmv (≃ dihedral group) is the group formed by Cm and
m reflexion containing ∆

Cmh = Cm × Cs is the group generated by Cm and the
symmetry by the plane orthogonal to ∆

SN is the group of order N generated by an antirotation
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Finite isometry groups

Dm (≃ dihedral group) is the group formed of Cm and m
rotations of order 2 with axis orthogonal to ∆

Dmh is the group generated by Dm and a plane
symmetry orthogonal to ∆

Dmd is the group generated by Dm and m symmetry
planes containing ∆ and which does not contain axis of
order 2

D2h D2d
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Finite isometry groups

Ih = H3 ≃ Alt5 × C2 is the group of isometries of the
regular Dodecahedron

I ≃ Alt5 is the group of rotations of the regular
Dodecahedron

Oh = B3 is the group of isometries of the regular Cube

O ≃ Sym(4) is the group of rotations of the regular Cube

Td = A3 ≃ Sym(4) is the group of isometries of the
regular Tetrahedron

T ≃ Alt(4) is the group of rotations of the regular
Tetrahedron

Th = T ∪ −T
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Point groups

(point group) Isom(P ) ⊂ Aut(G(P )) (combinatorial group)
Theorem (Mani, 1971)
Given a 3-connected planar graph G, there exist a
3-polytope P , whose group of isometries is isomorphic to
Aut(G) and G(P ) = G.

● For octahedrites: (C1, Cs, Ci), (C2, C2v, C2h, S4), (D2,
D2d, D2h), (D3, D3d, D3h), (D4, D4d, D4h), (O, Oh). (Deza
and al.)

● For 3n: (D2, D2h, D2d), (T , Td) (Fowler and al.)

● For 4n: (C1, Cs, Ci), (C2, C2v, C2h), (D2, D2d, D2h), (D3,
D3d, D3h), (D6, D6h), (O, Oh) (Deza and al.)

● For 5n: (C1, Cs, Ci), (C2, C2v, C2h, S4), (C3, C3v, C3h, S6),
(D2, D2h, D2d), (D3, D3h, D3d), (D5, D5h, D5d), (D6, D6h,
D6d), (T , Td, Th), (I, Ih) (Fowler and al.)
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k-connectedness

Theorem

(i) Any octahedrite is 3-connected.

(ii) Any 3-valent plane graph without (> 6)-gonal faces is
2-connected.

(iii) Moreover, any 3-valent plane graph without (> 6)-gonal
faces is 3-connected except of the following serie Gn:
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Medial graph

Given a plane graph G, the 4-valent plane graph Med(G) is
defined as the graph having as vertices the edges of G with
two vertices adjacent if and only if they share a vertex and
belong to a common face.
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Medial graph

Given a plane graph G, the 4-valent plane graph Med(G) is
defined as the graph having as vertices the edges of G with
two vertices adjacent if and only if they share a vertex and
belong to a common face.Med(G) = Med(G∗)
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Inverse medial graph

If G is a 4-valent plane graph, we want to find the graphs H
such that G = Med(H).

– p. 12/77



Inverse medial graph

Take C1( ), C2( ) a bipartition of the face-set of G or in
other word a chess coloring.
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Inverse medial graph

We form two plane graphs Hblack and Hwhite with the black
and white faces.

From the black faces From the white faces
Note that Hblack can be isomorph to Hwhite;
Med(Tetrahedron) = Octahedron.
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II. Zigzags

and

central circuits
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Central circuits

A 4−valent plane graph G
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Central circuits

Take an edge of G
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Central circuits

Continue it straight ahead ...
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Central circuits

... until the end
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Central circuits

A self−intersecting central circuit
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Central circuits

A partition of edges of G

CC=4 ,  6,  82
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Zigzags

A plane graph G
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Zigzags

take two edges
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Zigzags

Continue it left−right alternatively ....

– p. 15/77



Zigzags

... until we come back.
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Zigzags

A self−intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector 2,0
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Intersection types for zigzags

Let Z and Z ′ be (possibly, Z = Z ′) zigzags of a plane graph
G and let an orientation be selected on them. An edge of
intersection Z ∩ Z ′ is called of type I or type II, if Z and Z ′

traverse e in opposite or same direction, respectively

ee

type  I type  II

Z’Z
Z Z’
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Intersection types for zigzags

Let Z and Z ′ be (possibly, Z = Z ′) zigzags of a plane graph
G and let an orientation be selected on them. An edge of
intersection Z ∩ Z ′ is called of type I or type II, if Z and Z ′

traverse e in opposite or same direction, respectively

ee

type  I type  II

Z’Z
Z Z’

The types of self-intersection depends on orientation
chosen on zigzags except if Z = Z ′:

type  IItype  I
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Intersection types for central circuits

Let G be a 4-valent plane graph
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Intersection types for central circuits

Take C1( ), C2( ) a bipartition of the face-set of G
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Intersection types for central circuits

Let C and C ′ be two central circuits of G and let an
orientation be selected on them.

C’

C
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Intersection types for central circuits

Local View on a vertex v and type

Type  IIType  I

v

C C’ C

v

C’
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Intersection types for central circuits

C and C ′ have 2 intersections I and 2 intersection II

I

II
II

I
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Duality and types

Theorem
The zigzags of a plane graph G are in one-to-one
correspondence with zigzags of G∗. The length is
preserved, but intersection of type I and II are interchanged.

Theorem
Let G be a plane graph; for any orientation of all zigzags of
G, we have:
(i) The number of edges of type II, which are incident to any
fixed vertex, is even.
(ii) The number of edges of type I, which are incident to any
fixed face, is even.
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Medial, zigzags and central circuits

Zigzags of a plane graph G are in one-to-one
correspondence with zigzags of G∗.

Types are interchanged.
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Medial, zigzags and central circuits

Zigzags of a plane graph G are in one to one
correspondence with central circuits of Med(G).

– p. 19/77



Notation

ZC-circuit stands for “zigzag or central circuit” in 3- or
4-valent plane graphs.

The length of a ZC-circuit is the number of its edges.

The ZC-vector of a 3- or 4-valent plane graph G0 is the
vector . . . , cmk

k , . . . where mk is the number of
ZC-circuits of length ck.

A graph is ZC-transitive if its group of automorphism is
transitive on the set of ZC-circuits.

Zigzags are also called left-right paths (Shank) or
Petri paths, from Petri polygons of polytopes (Coxeter).
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Zigzags versus spanning trees

Given a plane graph G with vertices v1, . . . vn and the
agjacency matrix A(G), the Laplacian of G is the matrix
L(G) = D(G) − A(G), where D(G) is a diagonal matrix
with dii being the degree of vertex vi.

Kirchhoff: the the number of spanning trees of G is
equal to the determinant of any minor of L(G).

Shank: to every zigzag z of G corresponds an element
x(z) ∈ {0, 1}n which is a basic element of the kernel of
L(G) (equation Lx = 0 over {0, 1}).

So, the number of zigzags Z(G) is equal to corank of
L(G) over Z

2; co-rank of any minor of L(G) is Z(G)-1.

Godsil-Royle: the number of spanning trees of G is odd
if and only if G is z-knotted.
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Intersection of two simple ZC-circuits
For the class of graph 4n the size of the intersection of
two simple zigzags belongs to {0, 2, 4, 6}.

For classes of octahedrites, graph 3n or graph 5n the
size of the intersection of two simple ZC-circuits can be
any even number.

Two simple zigzags
of a graph 5n with
|Z ∩ Z ′| = 8.

On surfaces of
genus g ≥ 1, the
intersection can be
odd.
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Bipartite graphs

Remark A plane graph is bipartite if and only if its faces have
even gonality.
Theorem (Shank-Shtogrin)
For any planar bipartite graph G there exist an orientation of
zigzags, with respect to which each edge has type I.
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III. Railroad

structure

and tightness
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Railroads, 4-valent case

A railroad in an octahedrite is a circuit of square faces, such
that any of them is adjacent to its neighbors on opposite
faces. Any railroad is bordered by two central circuits.

Railroads, as well as central circuits, can self-intersect.
An octahedrite is called tight if it has no railroad.
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Railroads, 3-valent case

A railroad in graph qn, q = 3, 4, 5 is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3h) 442(C2v)

Railroads, as well as zigzags, can self-intersect (doubly or
triply). A graph qn is called tight if it has no railroad.
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First IPR fullerene with self-int. railroad

F96(D6d); realizes projection of Conway knot (4 × 6)∗
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Triple self-intersection

466(D3h)
It is smallest such 4n graph.

5176(C3v)
Conjecture: It is smallest

such 5n graph.
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Railroads with triple points in small 4n

1−1

1−2 1−3 1−4

1−5 1−6

2−1

2−2
2−3

2−4

2−5 2−6
2−7

2−11

2−12
2−13

4−1

6−1 6−2
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Removing central circuits

Take a 4-valent plane graph G and a central circuit.
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Removing central circuits

Remove the edges of the central circuit.
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Removing central circuits

Remove the vertices of degree 0 or 2.
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Removing zigzags

Take a plane graph G and a zigzag.
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Removing zigzags

Go to the medial.
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Removing zigzags

Remove the central circuit.
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Removing zigzags

Take one (out of two) inverse medial graph.

– p. 31/77



Extremal problem

Given a class of tight graphs (octahedrites, graphs qn),
there exist a constant C such that any element of the class
has at most C ZC-circuits.

Every tight octahedrite has at most 6 central circuits.
Proof method: Local analysis + case by case analysis.

Every tight 3n has exactly 3 zigzags.
Proof method: Uses an algebraic formalism on the
graphs 3n.

Every tight 4n has at most 9 zigzags.
Conjecture: The correct upper bound is 8. Checked for
n ≤ 400.

Every tight 5n has at most 15 zigzags.
Attempted proof: Uses a local analysis on zigzags.
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Tight with simple central circuits

Theorem 1 There is exactly 8 tight octahedrites with simple
central circuits.
Proof method: After removing a central circuit, the obtained
graph has faces of gonality at most 4.

6 Oh

43

12 Oh

64

12 D3h

64
14 D4h

62, 82
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Tight with simple central circuits

Theorem 2 There is exactly 8 tight octahedrites with simple
central circuits.
Proof method: After removing a central circuit, the obtained
graph has faces of gonality at most 4.

20 D2d

85

22 D2h

83, 102
30 O

106

32 D4h

104, 122
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Tight with simple zigzags

All tight 3n have simple zigzags
➠Infinity of such graphs

There are exactly 2 tight graph 4n with simple zigzags:
Cube and Truncated Octahedron=GC1,1(Cube).
Proof method: The size
of intersection of two sim-
ple zigzags is at most
6. There is at most 9
zigzags.
➠Upper bound on n. 6 Oh, 64 24 Oh, 106

There is at least 9 tight graphs 5n with simple zigzags.
G. Brinkmann and T. Harmuth computation of fullerenes
with simple zigzags up to 200 vertices.
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Tight 5n with simple zigzags

20 Ih, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 Ih, 1810 76 D2d, 224, 207
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Tight 5n with simple zigzags

88 T , 2212 92 Th, 246, 226

140 I, 2815
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Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 Ih 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60, IPR Ih 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224, 207 1,2,4,4 4, 29 and 210

88, IPR T 2212 12 211

92 Th 226, 246 6,6 211 and 210, 4

140, IPR I 2815 15 214

Conjecture: this list is complete (checked for n ≤ 200).
It gives 7 Grünbaum arrangements of plane curves.
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IV. Goldberg-Coxeter

construction
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The construction

Take a 3- or 4-valent plane graph G0. The graph G∗
0 is

formed of triangles or squares.

Break the triangles or squares into pieces according to
parameter (k, l).

3−valent case

k=5

l=2
l=2

k=5

4−valent case
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Gluing the pieces

Glue the pieces together in a coherent way.

We obtain another triangulation or quadrangulation of
the plane.
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Final steps

Go to the dual and obtain a 3- or 4-valent plane graph,
which is denoted GCk,l(G0) and called
“Goldberg-Coxeter construction”.

The construction works for any 3- or 4-valent map on
oriented surface.

Operation GC2,0 on Tetrahedron, Cube and Dodecahedron
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Goldberg-Coxeter for Cube
1,0 1,1

2,0 2,1
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Goldberg-Coxeter for Octahedron
1,0 1,1

2,0 2,1
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The case (k, l) = (1, 1)

Case 3-valent Case 4-valent
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The case (k, l) = (1, 1)

Case 3-valent Case 4-valent
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The case (k, l) = (1, 1)

Case 3-valent
GC1,1 is called leapfrog

(=Truncation of the dual)

Case 4-valent
GC1,1 is called medial
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Properties

One associates z = k + leiπ

3 (Eisenstein integer) or
z = k + li(Gaussian integer) to the pair (k, l) in 3- or
4-valent case.

If one writes GCz(G0) instead of GCk,l(G0), then one
has:

GCz(GCz′(G0)) = GCzz′(G0)

If G0 has n vertices, then GCk,l(G0) has

n(k2 + kl + l2) = n|z|2 vertices if G0 is 3-valent,
n(k2 + l2) = n|z|2 vertices if G0 is 4-valent.

If G0 has a symmetry plane, then GCz(G0) = GCz(G0).

GCz(G0) has all rotational symmetries of G0 and all
symmetries if l = 0 or l = k.
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The special case GCk,0

Any ZC-circuit of G0 corresponds to k ZC-circuits of
GCk,0(G0) with length multiplied by k.

If the ZC-vector of G0 is . . . , cml

l , . . . , then the ZC-vector
of GCk,0(G0) is . . . , (kcl)

kml, . . . .
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(k, l)-product formalism

Given a 3-valent plane graph G, the zigzags of the
Goldberg-Coxeter construction of GCk,l(G) are obtained by:

associating to G two elements L and R of a group
called moving group,

computing the value of the (k, l)-product L ⊙k,l R,

the lengths of zigzags are obtained by computing the
cycle structure of L ⊙k,l R.

For GCk,l(Dodecahedron) with gcd(k, l) = 1, this gives 6, 10 or
15 zigzags.
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Illustration

For any ZC-circuit of GCk,l(G0), there exist α ≥ 1

length(ZC)=2(k2 + kl + l2)α 3-valent case
length(ZC)=(k2 + l2)α 4-valent case

The [ZC]-vector of GCk,l(G0) is the vector . . . , αmk

k , . . .

where mk is the number of ZC-circuits with order αk.

If gcd(k, l) = 1, then GCk,l(Cube) has 6 zigzags if k ≡ l

(mod 3) and 4 otherwise.

For Truncated Icosidodecahedron, possible [ZC]:

230, 340 230, 524 320, 524

260, 320 260, 512 340, 512

290 360 536

920 630 1512
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V. Parametrizing

graphs
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Parametrizing graphs qn

Idea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg (1937) All 3n, 4n or 5n of symmetry (T , Td), (O,
Oh) or (I, Ih) are given by Goldberg-Coxeter
construction GCk,l.

Fowler and al. (1988) All 5n of symmetry D5, D6 or T
are described in terms of 4 parameters.

Graver (1999) All 5n can be encoded by 20 integer
parameters.

Thurston (1998) The 5n are parametrized by 10 complex
parameters.

Sah (1994) Thurston’s result implies that the Nrs of 3n,
4n, 5n ∼ n, n3, n9.
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The structure of graphs 3n

4 triangles in Z[ω]
The corresponding trian-
gulation

The graph 320(D2d)
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z- and railroad-structure of graphs 3n

All zigzags and railroads are simple.

The z-vector is of the form

(4s1)
m1 , (4s2)

m2 , (4s3)
m3 with simi =

n

4
;

the number of railroads is m1 + m2 + m3 − 3.

G has ≥ 3 zigzags with equality if and only if it is tight.

If G is tight, then z(G) = n3 (so, each zigzag is a
Hamiltonian circuit).

All 3n are tight if and only if n
4

is prime.

There exists a tight 3n if and only if n
4

is odd.
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General theory

Extensions:

3-valent or 4-valent graphs.

Classes of graphs with fixed pi, i 6= 6.

Classes with a fixed symmetry.

Maps on surfaces.

Dictionnary

3-valent graph G0 4-valent graph G0

ring Eisenstein integers Z[ω] Gaussian integers Z[i]

Euler formula
P

i(6 − i)pi = 12
P

i(4 − i)pi = 8

zero-curvature hexagons squares

ZC-circuits zigzags central circuits

Operation leapfrog graph medial graph
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Number of parameters

Octahedrites:

Group #param.

C1 6

C2 4

D2 3

D3 2

D4 2

O 1

Graphs 3n:

Groups #param.

D2 2

T 1

Graphs 4n:

Group #param.

C1 4

C2 3

D2 2

D3 2

O 1

Graph 5n:

Group #param.

C1 10

C2 6

C3 4

D2 4

D3 3

D5 2

D6 2

T 2

I 1

If there is just one parameter, then this is Goldberg-Coxeter
construction (of Octahedron, Tetrahedron, Cube,
Dodecahedron for octahedrite, 3n, 4n, 5n, respectively).

– p. 53/77



Conjecture on 4n(D3h, D3d or D3)

4n(D3 ⊂ D3h, D3d, D6, D6h, O,Oh) are described by two
complex parameters. They exists if and only if n ≡ 0, 2
(mod 6) and n ≥ 8.

4n(D3) with one zigzag The defining triangles

4n(D3d ⊂ Oh, D6h) exists if and only if n ≡ 0, 8 (mod 12),
n ≥ 8.

If n increases, then part of 4n(D3) amongst
4n(D3h, D3d, D3) goes to 100%.
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More conjectures
All 4n with only simple zigzags are:

GCk,0(Cube), GCk,k(Cube) and

the family of 4n(D3 ⊂ . . .) with parameters (m, 0) and
(i,m − 2i) with n = 4m(2m − 3i) and
z = (6m − 6i)3m−3i, (6m)m−2i, (12m − 18i)i.

They have symmetry D3d or Oh or D6h

Any 4n(D3 ⊂ . . .) with one zigzag is a 4n(D3).

For tight graphs 4n(D3 ⊂ . . .) the z-vector is of the form
ak with k ∈ {1, 2, 3, 6} or ak, bl with k, l ∈ {1, 3}.

Tight 4n(D3d) exist if and only if n ≡ 0 (mod 12), they are
z-transitive with:

z = (n/2)6n/36,0 iff n ≡ 24 (mod 36) and, otherwise,

z = (3n/2)2n/4,0 iff n ≡ 0, 12 (mod 36)
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VI. Zigzags

on

surfaces
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Zigzags of 2-complexes (surface maps)

Klein map: z = 821 Dyck map: z = 616

Zigzags (and central circuits), being local notions, are
defined on any surface, even on a non-orientable one.

Zigzags are also called left-right paths (Shank) or
Petri paths, from Petri polygons of polytopes (Coxeter).

A map and its dual have the same zigzag vector z.
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Zigzags of regular maps

A flag-transitive map is called regular.
Zigzags of regular maps are simple
(i.e., not self-intersecting).

map n rot. group z z(GCk,l)/k2 + kl + l2

Dod. {53} 20 A5 106 106 or 610 or 415

Klein∗ {73} 56 PSL(2, 7) 821 821 or 628

Dyck∗ {83} 32 (∗) 616 616 or 812

{113} 220 PSL(2, 11) 1066 1066 or 6110 or 1255

(∗) is a solvable group of order 96 generated by two
elements R, S subject to the relations
R3 = S8 = (RS)2 = (S2R−1)3 = 1.
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Lins trialities

(v, f , z) → notation in [2] notation in [1]
(v, f , z) M Graph-Ecoded Map M

(f, v, z) M∗ dual gem M∗

(z, f , v) phial(M) phial gem s((s(M))∗)

(f, z, v) (phial(M))∗ skew-dual gem s(M∗)

(v, z, f) skew(M) skew gem s(M)

(z, v, f) (skew(M))∗ skew-phial gem (s(M))∗

Jones, Thornton, 1987: those are only “good” dualities.
The group S3 of trialities is isomorphic to Sym(3).

1. S. Lins, Graph-Encoded Maps, J. Comb. Theory B-32 (1982) 171–181

2. D. and M.Dutour, Zigzag Structure of Complexes, SEAMS Math. Bull.
29-2 (2005), 301–320; papers/math.CO/0405279 of LANL archive.
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Example: Tetrahedron

phial(Tetrahedron) skew(Tetrahedron)

Two Lins maps on projective plane.

The phial(Tetrahedron) is the complex obtained by
taking the octahedron and identifying opposite points.

skew(Cube) and phial(Octahedron) are toric maps.
phial(Cube) and skew(Octahedron) are maps on a
non-oriented surface of genus 4, i.e., with χ = 2.
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Bipartite skeleton case

4

1

6

8 7

5

2

3

3 6

3

8 7

5 6 4

1 2

3 5

4

8 7

6

Two representation of skew(Cube): on Torus and as a Cube
with cyclic orientation of vertices (marked by ) reversed.

Theorem
For bipartite graph embedded in oriented surface, the skew operation is,
in fact, reversing orientation of one of the part of the bipartition.
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Trialities of prisms and antiprisms

Let χ denotes the Euler characteristic.
Conjecture (checked up to n = 100):

skew(Prismm) has χ = gcd(m, 4) − m and is oriented
iff m is even;

phial(Prismm) has χ = 2 + gcd(m, 4) − 2m and is
non-oriented.

skew(APrismm) has χ = 1 + gcd(m, 3) − 2m and is
non-oriented;

phial(APrismm) has χ = 3 + gcd(m, 3) − 2m and is
oriented.
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VII. Zigzags

on n-dimensional

complexes
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Zigzags on n-dimensional polytopes

A (maximal) flag u = (f0, . . . , fn−1) is a sequence of i-faces
fi (of polytope P ) with fi ⊂ fi+1.
Given a flag u, there exist an unique flag σi(u), which differs
from u only in position i, i.e., in f ′

i 6= fi, fi−1 ∈ fi, f
′
i ∈ fi+1.

A zigzag z is a circuit of flags (uj)0≤j≤l, such that u0 = u,
uj = σn . . . σ1(uj−1); so, u1 = (f ′

0, . . . , f
′
n−1).

The number of flags is called its length.

The zigzags partition the flag-set of P .
z-vector of P is a vector, listing zigzags with their lengths.

Proposition: if the dimension of polytope is odd, then the
length of any zigzag is even.

Problem: generalize Lins triality of maps on d-complexes.

– p. 64/77



Zigzags of regular/semiregular polytopes

d d-polytope z-vector

3 Dodecahedron 106

4 24-cell 1248

4 600-cell 30240

d d-simplex=αd (n + 1)n!/2

d d-cross-polytope=βd (2n)2
n−2(n−1)!

4 octicosahedric 4-polytope 45480

4 snub 24-cell 20144

4 021=Med(α4) 1512

5 121=Half-5-Cube 12240

6 221=Schläfli polytope (in E6) 184320

7 321=Gosset polytope (in E7) 9048384

8 421 (240 roots of E8) 3629030400
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Zigzags of reg. and semireg. polyhedra

# edges polyhedron z-vector int. vector

6 Tetrahedron 43 (1, 1)2

12 Cube, Octahedron 64 (0, 2)3

30 Dodecahedron, Icosahedron 106 (0, 2)5

24 Cuboctahedron 86 (0, 2)4, (0, 0)

60 Icosidodecahedron 1012 (0, 2)5, (0, 0)6

48 Rhombicuboctahedron 128 (0, 2)6, (0, 0)

120 Rhombicosidodecahedron 2012 (0, 2)10, (0, 0)

72 Truncated Cuboctahedron 188 (0, 6), (0, 2)6

180 Truncated Icosidodecahedron 3012 (0, 10), (0, 2)10

18 Truncated Tetrahedron 123 (3, 3)2

36 Truncated Octahedron 126 (0, 4), (0, 2)4
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36 Truncated Cube 184 (2, 4)3

90 Truncated Icosahedron 1810 (0, 2)9

90 Truncated Dodecahedron 306 (2, 4)5

60 Snub Cube 304
3,0 (4, 4)3

150 Snub Dodecahedron 506
5,0 (4, 4)5

3m Prismm, m ≡ 0 (mod 4) ( 3m
2 )4 (0, m

2 )3

3m Prismm, m ≡ 2 (mod 4) (3mm

2
,0)

2 (0, 2m)

3m Prismm, m ≡ 1, 3 (mod 4) 6mm,2m

4m APrismm, m ≡ 0 (mod 3) (2m)4 (0, 2m
3 )3

4m APrismm, m ≡ 1, 2 (mod 3) 2m; 6m0,2m

84 Klein map(oriented, genus 3 surface) 821 (0, 1)8, 012

48 Dyck map(oriented, genus 3 surface) 616 (0, 1)6, 09
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Regular-faced and Conway’s polytopes

d d-polytope z-vector

4 Pyr(Icosahedron) 2512

4 BPyr(Icosahedron) 4012

4 021 + Pyr(β3) 426

d Pyr(βd−1), d ≥ 4 ( 2(d2
−1)

gcd(d,2) )
x

d BPyr(αd−1), d ≥ 5 ( 2d2

gcd(d,2) )
y

4 Grand Antiprism 3020, 5040, 9020

4 Cp × Cq ( 2pq
t )2t, ( 4pq

t )2t

(put t = gcd(p, q)) if both, p and q, are odd

( 2pq
t )6t, otherwise
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VIII. Special fullerenes 5n

1. All (8) with every hexagon being in a ring

2. z-uniform and z-transitive fullerenes

3. z-knotted fullerenes
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All 5n with hexagons in 1 ring

30 D5h

railroad 32 D2 32 D3d

36 D2d 40 D2 – p. 70/77



All 5n with hexagons in (> 1) rings

32 D3h;
6-gons in two

3-rings

38 C3v;
6-gons in 3- and

6-ring
5-gons in 3- and

9-ring

40 D5h;
6-gons in two

5-rings
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z-uniform 5n with n ≤ 60
n isomer orbit lengths z-vector int. vector

20 Ih:1 6 106

0,0 25

28 Td:2 4,3 127

0,0 26

40 Td:40 4 304

0,3 83

44 T :73 3 443

0,4 182

44 D2:83 2 662

5,10 36

48 C2:84 2 722

7,9 40

48 D3:188 3,3,3 169

0,0 28

52 C3:237 3 523

2,4 202

52 T :437 3 523

0,8 182

56 C2:293 2 842

7,13 44

56 C2:349 2 842

5,13 48

56 C3:393 3 563

3,5 202

60 C2:1193 2 902

7,13 50

60 D2:1197 2 902

13,8 48

60 D3:1803 6,3,1 1810

0,0 29

60 Ih:1812 10 1810

0,0 29
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Two 560 with z-vector 1810
0,0

C60(Ih) F60(D3)

This pair was first answer on a question in B.Grunbaum
"Convex Polytopes" (Wiley, New York, 1967) about
non-existance of simple polyhedra with the same p-vector
but different zigzags.
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z-uniform IPR 5n with n ≤ 100

n isomer orbit lengths z-vector int. vector

80 Ih:7 12 2012

0,0 0, 210

84 Td:20 6 426

0,1 85

84 D2d:23 4,2 426

0,1 85

86 D3:19 3 863

1,10 322

88 T :34 12 2212

0,0 211

92 T :86 6 466

0,3 85

94 C3:110 3 943

2,13 322

100 C2:387 2 1502

13,22 80

100 D2:438 2 1502

15,20 80

100 D2:432 2 1502

17,16 84

100 D2:445 2 1502

17,16 84

IPR means the absence of adjacent pentagonal faces;
IPR enhanced stability of putative fullerene molecule.
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IPR z-knotted 5n with n ≤ 100

n signature isomers

86 43, 86∗ C2:2

90 47, 88 C1:7

53, 82 C2:19

71, 64 C2:6

94 47, 94∗ C1:60; C2:26, 126

65, 76 C2:121

69, 72 C2:7

96 49, 95 C1:65

53, 91 C1:7, 37, 63

98 49, 98∗ C2:191, 194, 196

63, 84 C1:49

75, 72 C1:29

77, 70 C1:5; C2:221

100 51, 99 C1:371, 377; C3:221

53, 97 C1:29, 113, 236

55, 95 C1:165

57, 93 C1:21

61, 89 C1:225

65, 85 C1:31, 234

The symbol ∗ above means that fullerene forms a Kékule
structure, i.e., edges of self-intersection of type I cover
exactly once the vertex-set of the fullerene graph (in other
words, they form a perfect matching of the graph).

– p. 75/77



Perfect matching on 5n graphs
Let G be a graph 5n with one
zigzag with self-intersection numbers
(α1, α2).

(i) α1 ≥ n
2 . If α1 = n

2 then
the edges of self-intersection of
type I form a perfect matching
PM

(ii) every face incident to 0 or 2

edges of PM

(iii) two faces, F1 and F2 are free of
PM , PM is organized around
them in concentric circles.

F2

F1
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Statistics of z-knotted 5n with n ≤ 74

n # of 5n # of z-knotted

34 6 1

36 15 0

38 17 4

40 40 1

42 45 6

44 89 9

46 116 15

48 199 23

50 271 30

52 437 42

54 580 93

56 924 87

58 1205 186

60 1812 206

62 2385 341

64 3465 437

66 4478 567

68 6332 894

70 8149 1048

72 11190 1613

74 14246 1970

It will be interesting to estimate the relative order of
magnitude of z-knotted fullerenes among all 5n.
From Schaeffer and Zinn-Justin, 2004: the proportion,
among all 3-valent n-vertex plane graphs, of those having
≤ m zigzags (for any fixed m) goes to 0 with n → ∞.
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