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Regular maps

A map M is a 2-cell embedding of a connected graph or
multigraph on a surface.

The faces of the map are the simply-connected components
of the complement of the graph or multigraph in the surface.

Every automorphism of a map M is uniquely determined by
its effect on a given flag (incident vertex-edge-face triple),
and it follows that |AutM | ≤ 4|E| where E is the edge set.

A map M is regular if AutM is transitive on flags, and is
orientably-regular (or rotary) if the group of all its orientation-
preserving automorphisms is transitive on the ordered edges
(arcs) of M .



Some history:

• Platonic solids — the tetrahedron, cube, octahedron,
dodecahedron & icosahedron are regular maps on the sphere

• Theory developed by Brahana (1920s), Coxeter, Wilson,
Jones & Singerman, and many others

• Connections with algebraic geometry & Galois theory —
Belyi (1980), Grothendieck (1997), Jones et al (2006)



Classification of regular maps:

Regular and orientably-regular maps have been the subject

of attention from three main perspectives:

• Classification by underlying graph

— e.g. embeddings of Kn or Kn,n as a regular map

• Classification by surface

— orientable genus 2 to 100 inclusive (chiral and reflexible)

— non-orientable genus 2 to 200 inclusive

• Classification by group

— rotation group or full automorphism group.



Regular maps (cont.)

If M is (orientably) regular then every face has the same

number of edges (say m) and every vertex has the same

valency (say k), and M has type {k, m}.

Examples: Graphs of Platonic solids embedded on the sphere,

of types {3,3}, {3,4}, {4,3}, {3,5}, {5,3}, and embeddings

of honeycomb graphs on the torus, of types {3,6} and {6,3}.

Reflexible vs chiral

If the orientable map M admits automorphisms that reverse

orientation, then M is called reflexible, and otherwise chiral.



If M is a regular map of type {k, m}, then for any given flag

(v, e, f) there exist automorphisms a, b and c such that

• a fixes (e, f) but takes v to the other incident vertex v′

• b fixes (v, f) but takes e to the other incident edge e′

• c fixes (v, e) but takes f to the other incident face f ′
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These generate the automorphism group AutM, and satisfy

the (2, k, m) triangle group relations

a2 = b2 = c2 = (ab)m = (bc)k = (ac)2 = 1.



Conversely ...

Given any group epimorphism θ : (2, k, m) → G with torsion-

free kernel K, a regular map M may be constructed with

automorphism group G:

Take as vertices of M the right cosets of V = K〈b, c〉, edges

the right cosets of E = K〈a, c〉, and faces the right cosets

of F = K〈a, b〉, and let incidence be non-empty intersection.

Then (2, k, m) acts on M by right multiplication, inducing

the automorphism group (2, k, m)/K ∼= G.

Thus regular maps of type {k, m} correspond to non-degenerate

homomorphic images of the (2, k, m) triangle group.



Genus calculations

• If M is an orientably-regular map M of type {k, m} that
has |V | vertices, |E| edges and |F | faces, then

k|V | = 2|E| = m|F | = |AutoM |

so its genus g and Euler characteristic χ are given by

2− 2g = χ = |V | − |E|+ |F | = |AutoM | (1/k − 1/2 + 1/m).

• Similarly, if the map M of type {k, m} is regular then

2k|V | = 4|E| = 2m|F | = |AutM |

so its Euler characteristic χ is given by

χ = |V | − |E|+ |F | = |AutM | (1/2k − 1/4 + 1/2m).



Questions about the genus spectrum

• Is there an orientably-regular map of every genus?
Answer: Yes, for every g > 1 there exists a regular map of
type {4g,4g} with dihedral automorphism group of order 8g
— but with only one vertex and one face, and multiple edges

• What are the genera of orientably-regular maps that have
simple underlying graphs (with no multiple edges)?

• Are there non-orientable regular maps of all but finitely
many genera?
Answer: No, since Breda, Nedela and Siráň (2005) proved
that there’s only one such map of genus p + 2 where p is a
prime congruent to 1 mod 12 (viz. one map of genus 15)

• What are the genera of orientably-regular but chiral maps?



Chirality

Recall that if an orientably-regular map M has no orientation-

reversing automorphisms, then M is chiral (or irreflexible).

In that case AutM = AutoM is not a quotient of the full

(2, k, m) triangle group ∆ = 〈 a, b, c | a2 = b2 = c2 = (ab)m =

(bc)k = (ca)2 = 1 〉, but is a quotient ∆o/K of its index 2

subgroup ∆o = 〈x, y, z | x2 = yk = zm = xyz = 1 〉 where

x = ac, y = cb and z = ba. This group ∆o is the ordinary

(2, k, m) triangle group.

Chiral maps occur in pairs, with each map being a ‘mirror

image’ of the other (and with the corresponding normal

subgroups of ∆o(2, k, m) interchanged by the generator a).
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∆ = 〈a, b, c〉

∆o = 〈ab, bc, ca〉

a
K Ka

K ∩Ka

K = Ka iff map M is reflexible

(when AutoM ∼= ∆o/K)



Simplicity

Let M be an orientably-regular map of type {k, m}, so that

AutoM is a quotient of the ordinary (2, k, m) triangle group

∆o(2, k, m) = 〈x, y, z | x2 = yk = zm = xyz = 1 〉.

Then the underlying graph of M or its dual is simple if and

only if the subgroup generated by the image of y or z in

AutoM is core-free — that is, contains no non-trivial normal

subgroup of AutoM .



Low index normal subgroups

Small homomorphic images of a finitely-presented group G

can be found as the groups of permutations induced by G on

cosets of subgroups of small index. This gives G/K where K

is the core of H, but produces only images that have small

degree faithful permutation representations.

Alternatively, the low index subgroups method can be adapted

to produce only normal subgroups (of small index in G).

A new method has been developed recently by Derek Holt

and his student David Firth, which systematically enumer-

ates the possibilities for the composition series of the factor

group G/K, for any normal subgroup K of small index in G.



Determination of regular maps of small genus

Genus 0: regular polyhedra (incl. “dihedra” and their duals)

Genus 1 and 2: Brahana [1927] and Coxeter [1957]

Genus 3: Sherk [1959]

Genus 4, 5 and 6: Garbe [1969]

MC & Peter Dobcsányi [2001]:
• All orientably-regular maps of genus 2 to 15
• All non-orientable regular maps of genus 2 to 30.

MC [2006]:
• All orientably-regular maps of genus 2 to 101
• All non-orientable regular maps of genus 2 to 202.



Digression: Symmetric cubic graphs

The same computational techniques applied to different fam-

ilies of finitely-presented groups (such as the modular group

〈x, y |x2 = y3 = 1 〉) can be used to find all arc-transitive

3-valent graphs of small order, extending the Foster census:

MC & Peter Dobcsányi [2001]: up to 768 vertices

MC [2006]: up to 2048 vertices

Bonus find: largest known 3-valent graph of diameter 10

[This has 1250 vertices, and is a cover of the Petersen graph

with covering group Z5 × Z5 × Z5]



Summary of maps data for small genus

Orientably-regular maps (up to isomorphism & duality)
Genus 2: 6 reflexible, 0 chiral
Genus 3: 12 reflexible, 0 chiral
Genus 4: 12 reflexible, 0 chiral
Genus 5: 16 reflexible, 0 chiral
Genus 6: 13 reflexible, 0 chiral
Genus 7: 12 reflexible, 2 chiral pairs
Genus 2 to 101: 3378 reflexible, 594 chiral pairs

Non-orientable regular maps (up to isomorphism & duality)
Genus 2 or 3: 0
Genus 4: 2
Genus 14: 3
Genus 2 to 202: 862



Observations

• There is no orientably-regular but chiral map of genus 2,

3, 4, 5, 6, 9, 13, 23, 24, 30, 36, 47, 48, 54, 60, 66, 84, 95,

108, 116, 120, 139, 150, 167, 168, 174, 180, 186 or 198

• There is no regular orientable map of genus 20, 32, 38,

44, 62, 68, 74, 80 or 98 with simple underlying graph

• A lot of these exceptional genera are of the form p + 1

where p is prime.



Theorems

• If M is an irreflexible (chiral) orientably-regular map of

genus p + 1 where p is prime, then
either p ≡ 1 mod 3 and M has type {6,6},

or p ≡ 1 mod 5 and M has type {5,10},
or p ≡ 1 mod 8 and M has type {8,8}.

In particular, there are no such maps of genus p+1 whenever

p is a prime such that p− 1 is not divisible by 3, 5 or 8.

[MC & Jozef Siráň (October 2006)]

• There is no regular map M with simple underlying graph

on an orientable surface of genus p + 1 where p is a prime

congruent to 1 mod 6, for p > 13.

[MC & Tom Tucker (December 2006)]



In fact, even more ...

• A complete classification of all regular and orientably-

regular maps M for which |AutM | is coprime to the Euler

characteristic χ (if χ is odd) or to χ/2 (if χ is even)

[MC, Jozef Siráň & Tom Tucker (January 2007)]

This has all three main results to date as corollaries:

• No chiral orientably-regular maps of genus p+1 for primes

p not congruent to 1 mod 3, 5 or 8

• No regular orientable maps with simple underlying graph

and genus p + 1 for primes p > 13 congruent to 1 mod 6,

• No non-orientable regular maps of genus p +2 for primes

p > 13 congruent to 1 mod 12.



Coprime classification: |G| coprime to χ or χ/2

• If M has type {k, m} and G is the subgroup of AutM
generated by vertex- and face-stabilizers, then

−χ = |G|(1/2− 1/k − 1/m) = |G|(km− 2k − 2m)/2km

where 1/84 ≤ (km− 2k − 2m)/2km < 1/2 for −χ > 0

• The coprime assumption gives km − 2k − 2m = (−χ)td
or (−χ/2)td for some t, where d = gcd(k, m), and hence

|G| = 2 lcm(k, m)/t or 4 lcm(k, m)/t

where t = 1,2 or 4

• Every cyclic subgroup of G odd order is conjugate to a
subgroup of the vertex-stabilizer (of order k) or the face-
stabilizer (of order m), and hence G is ’almost Sylow-cyclic’



Coprime classification (cont.)

• ’Almost Sylow-cyclic’ groups have been classified: by
Zassenhaus (1936) for solvable groups, and by Suzuki (1955)
and Wong (1966) for non-solvable groups

• Let X and Y be generators of the stabilizers of a face
and an incident vertex of M , so that X and Y generate G
and satisfy Xm = Y k = (XY )2 = 1

• The map M (or its topological dual) has simple underlying
graph if and only if 〈Y 〉 (resp. 〈X〉) is ‘core-free’ in G

• When 〈X〉 ∩ 〈Y 〉 is trivial, we have |G| ≥ |〈X〉〈Y 〉| = km,
and since also |G| = 2 lcm(k, m)/t or 4 lcm(k, m)/t where
t ∈ {1,2,4}, this gives us only a small number of cases to
consider, according to the values of d = gcd(k, m) and t



Cases where 〈X〉 ∩ 〈Y 〉 is trivial

We use fairly standard combinatorial group theory to deduce
the following possibilities in these cases:

1) k = 2, and G is dihedral of order 2m where m is odd,

2) |G| = km, with gcd(k, m) = 2, and 〈X2, Y 2〉 is a cyclic
normal subgroup, with (X2)Y = X−2 and (Y 2)X = Y −2,
and with quotient C2 × C2

3) k = 4 or 8, m is divisible by 3, and gcd(k, m) = 1, and
G is an extension of Cm/3 by PGL(2,3) or GL(2,3)

4) k = m = 3, and G ∼= A4

5) k, m = {3,5}, and G ∼= A5.



Cases where 〈X〉 ∩ 〈Y 〉 is non-trivial

• Here the subgroup N = 〈X〉 ∩ 〈Y 〉 is centralized by X and
Y and hence by all of 〈X, Y 〉 = G

• We use the transfer homomorphism h 7→ h|G:N | from G to
N (and Schur’s theorem, which says that the order of every
element of the derived group G′ divides the index |G : Z(G)|)
to determine all possibilities in each of the five cases for G/N

• This completes the classification.

Note: We require 〈X〉 ∩ 〈Y 〉 to be trivial if the map or its
dual has simple underlying graph, and those cases were dealt
with previously.

Also: In all of these cases, the map M is reflexible!



Type Genus |G| Comments

{8n,8n} 2n 8n G cyclic

{4n+1,8n+2} 2n 8n+2 G cyclic, n 6≡ 2 mod 3

{2n, vn} v(n−1)/2 2vn G ∼= Cn ×Dv, n ≡ 1 mod 4

{2rn,2sn} rsn−r−s+1 4rsn G has quotient C2 × C2

{4n,3vn} 6vn−3v−3 24vn G has quotient S4

{8n,3vn} 12vn−3v−7 48vn G has genus 2 quotient

{3n,3n} 3n−3 12n G ∼= Cn o A4, n odd

{3n,5n} 15n−15 60n G ∼= Cn ×A5, gcd(n,60) = 1



Approach when −χ = p or 2p for p prime

For such a map M , let G be the subgroup of AutM gener-

ated by vertex- and face-stabilizers. Then:

• For small p, we know all examples

• For large p when p divides |G|, we can use Sylow theory

to reduce the case of a quotient G/P acting on a map of

small genus

• For large p when p does not divides |G|, we can use the

‘coprime classification’.



Summary: new theorems

• If M is an irreflexible (chiral) orientably-regular map of

genus p + 1 where p is prime, then
either p ≡ 1 mod 3 and M has type {6,6},

or p ≡ 1 mod 5 and M has type {5,10},
or p ≡ 1 mod 8 and M has type {8,8}.

In particular, there are no such maps of genus p+1 whenever

p is a prime such that p− 1 is not divisible by 3, 5 or 8.

[MC & Jozef Siráň (October 2006)]

• There is no regular map M with simple underlying graph

on an orientable surface of genus p + 1 where p is a prime

congruent to 1 mod 6, for p > 13.

[MC & Tom Tucker (December 2006)]



How prevalent is chirality?

Orientably-regular maps of small genus:

Genus 2: 6 reflexible, 0 chiral

Genus 3: 12 reflexible, 0 chiral

Genus 4: 12 reflexible, 0 chiral

Genus 5: 16 reflexible, 0 chiral

Genus 6: 13 reflexible, 0 chiral

Genus 7: 12 reflexible, 2 chiral pairs

Genus 2 to 101: 3378 reflexible, 594 chiral pairs

What about for larger genera?



Another viewpoint ....

Theorem [Liebeck and Shalev (2004)]

Let ∆ be a Fuchsian group, let H be a randomly chosen

subgroup of index n in ∆, and let K be the core of H in ∆

— that is, the kernel of the natural permutation representa-

tion of ∆ on (right) cosets of H. Then the probability that

∆/K is the alternating group An or the symmetric group Sn

tends to 1 as n →∞.

Consequence: Almost all orientably-regular maps of a given

hyperbolic type {k, m} have an alternating or symmetric

group as their orientation-preserving automorphism group.



Further consequence for chirality?

Also for n large with respect to k and m, one cannot expect a

given epimorphism from the ordinary (2, k, m) triangle group

∆o(2, k, m) to An or Sn to be ‘reflexible’ — that is, one

cannot expect an extension to to a homomorphism from

the full triangle group ∆(2, k, m) — so the corresponding

map will be chiral in almost all cases. Thus:

Hence in some respects, for large maps of a given type,

chirality occurs quite frequently!
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