# Chirality, genera and simplicity of orientably-regular maps 

Marston Conder<br>University of Auckland<br>m. conder@auckland.ac.nz

Partly joint work with Jozef Siráň \& Tom Tucker

## Regular maps

A map $M$ is a 2-cell embedding of a connected graph or multigraph on a surface.

The faces of the map are the simply-connected components of the complement of the graph or multigraph in the surface.

Every automorphism of a map $M$ is uniquely determined by its effect on a given flag (incident vertex-edge-face triple), and it follows that $\mid$ Aut $M|\leq 4| E \mid$ where $E$ is the edge set.

A map $M$ is regular if Aut $M$ is transitive on flags, and is orientably-regular (or rotary) if the group of all its orientationpreserving automorphisms is transitive on the ordered edges (arcs) of $M$.

## Some history:

- Platonic solids - the tetrahedron, cube, octahedron, dodecahedron \& icosahedron are regular maps on the sphere

- Theory developed by Brahana (1920s), Coxeter, Wilson, Jones \& Singerman, and many others
- Connections with algebraic geometry \& Galois theory Belyi (1980), Grothendieck (1997), Jones et al (2006)


## Classification of regular maps:

Regular and orientably-regular maps have been the subject of attention from three main perspectives:

- Classification by underlying graph
- e.g. embeddings of $K_{n}$ or $K_{n, n}$ as a regular map
- Classification by surface
- orientable genus 2 to 100 inclusive (chiral and reflexible)
- non-orientable genus 2 to 200 inclusive
- Classification by group
- rotation group or full automorphism group.

Regular maps (cont.)
If $M$ is (orientably) regular then every face has the same number of edges (say $m$ ) and every vertex has the same valency (say $k$ ), and $M$ has type $\{k, m\}$.

Examples: Graphs of Platonic solids embedded on the sphere, of types $\{3,3\},\{3,4\},\{4,3\},\{3,5\},\{5,3\}$, and embeddings of honeycomb graphs on the torus, of types $\{3,6\}$ and $\{6,3\}$.

## Reflexible vs chiral

If the orientable map $M$ admits automorphisms that reverse orientation, then $M$ is called reflexible, and otherwise chiral.

If $M$ is a regular map of type $\{k, m\}$, then for any given flag ( $v, e, f$ ) there exist automorphisms $a, b$ and $c$ such that

- $a$ fixes $(e, f)$ but takes $v$ to the other incident vertex $v^{\prime}$
- $b$ fixes $(v, f)$ but takes $e$ to the other incident edge $e^{\prime}$
- $c$ fixes $(v, e)$ but takes $f$ to the other incident face $f^{\prime}$


These generate the automorphism group Aut $M$, and satisfy the ( $2, k, m$ ) triangle group relations

$$
a^{2}=b^{2}=c^{2}=(a b)^{m}=(b c)^{k}=(a c)^{2}=1
$$

## Conversely

Given any group epimorphism $\theta:(2, k, m) \rightarrow G$ with torsionfree kernel $K$, a regular map $M$ may be constructed with automorphism group $G$ :

Take as vertices of $M$ the right cosets of $V=K\langle b, c\rangle$, edges the right cosets of $E=K\langle a, c\rangle$, and faces the right cosets of $F=K\langle a, b\rangle$, and let incidence be non-empty intersection. Then $(2, k, m)$ acts on $M$ by right multiplication, inducing the automorphism group $(2, k, m) / K \cong G$.

Thus regular maps of type $\{k, m\}$ correspond to non-degenerate homomorphic images of the $(2, k, m)$ triangle group.

## Genus calculations

- If $M$ is an orientably-regular map $M$ of type $\{k, m\}$ that has $|V|$ vertices, $|E|$ edges and $|F|$ faces, then

$$
k|V|=2|E|=m|F|=\left|\mathrm{Aut}^{o} M\right|
$$

so its genus $g$ and Euler characteristic $\chi$ are given by

$$
2-2 g=\chi=|V|-|E|+|F|=\left|\mathrm{Aut}^{0} M\right|(1 / k-1 / 2+1 / m) .
$$

- Similarly, if the map $M$ of type $\{k, m\}$ is regular then

$$
2 k|V|=4|E|=2 m|F|=\mid \text { Aut } M \mid
$$

so its Euler characteristic $\chi$ is given by

$$
\chi=|V|-|E|+|F|=\mid \text { Aut } M \mid(1 / 2 k-1 / 4+1 / 2 m) .
$$

## Questions about the genus spectrum

- Is there an orientably-regular map of every genus?

Answer: Yes, for every $g>1$ there exists a regular map of type $\{4 g, 4 g\}$ with dihedral automorphism group of order $8 g$ - but with only one vertex and one face, and multiple edges

- What are the genera of orientably-regular maps that have simple underlying graphs (with no multiple edges)?
- Are there non-orientable regular maps of all but finitely many genera?
Answer: No, since Breda, Nedela and Siráñ (2005) proved that there's only one such map of genus $p+2$ where $p$ is a prime congruent to 1 mod 12 (viz. one map of genus 15)
- What are the genera of orientably-regular but chiral maps?


## Chirality

Recall that if an orientably-regular map $M$ has no orientationreversing automorphisms, then $M$ is chiral (or irreflexible).

In that case Aut $M=\operatorname{Aut}^{\circ} M$ is not a quotient of the full ( $2, k, m$ ) triangle group $\Delta=\langle a, b, c| a^{2}=b^{2}=c^{2}=(a b)^{m}=$ $\left.(b c)^{k}=(c a)^{2}=1\right\rangle$, but is a quotient $\Delta^{o} / K$ of its index 2 subgroup $\Delta^{o}=\left\langle x, y, z \mid x^{2}=y^{k}=z^{m}=x y z=1\right\rangle$ where $x=a c, y=c b$ and $z=b a$. This group $\Delta^{o}$ is the ordinary ( $2, k, m$ ) triangle group.

Chiral maps occur in pairs, with each map being a 'mirror image' of the other (and with the corresponding normal subgroups of $\Delta^{o}(2, k, m)$ interchanged by the generator $\left.a\right)$.

$K=K^{a}$ iff map $M$ is reflexible (when $\left.\operatorname{Aut}^{o} M \cong \Delta^{o} / K\right)$

## Simplicity

Let $M$ be an orientably-regular map of type $\{k, m\}$, so that Aut ${ }^{\circ} M$ is a quotient of the ordinary ( $2, k, m$ ) triangle group $\Delta^{o}(2, k, m)=\left\langle x, y, z \mid x^{2}=y^{k}=z^{m}=x y z=1\right\rangle$.

Then the underlying graph of $M$ or its dual is simple if and only if the subgroup generated by the image of $y$ or $z$ in Aut ${ }^{o} M$ is core-free - that is, contains no non-trivial normal subgroup of $\mathrm{Aut}^{0} M$.

## Low index normal subgroups

Small homomorphic images of a finitely-presented group $G$ can be found as the groups of permutations induced by $G$ on cosets of subgroups of small index. This gives $G / K$ where $K$ is the core of $H$, but produces only images that have small degree faithful permutation representations.

Alternatively, the low index subgroups method can be adapted to produce only normal subgroups (of small index in $G$ ).

A new method has been developed recently by Derek Holt and his student David Firth, which systematically enumerates the possibilities for the composition series of the factor group $G / K$, for any normal subgroup $K$ of small index in $G$.

## Determination of regular maps of small genus

Genus 0: regular polyhedra (incl. "dihedra" and their duals)
Genus 1 and 2: Brahana [1927] and Coxeter [1957]
Genus 3: Sherk [1959]
Genus 4, 5 and 6: Garbe [1969]
MC \& Peter Dobcsányi [2001]:

- All orientably-regular maps of genus 2 to 15
- All non-orientable regular maps of genus 2 to 30 .

MC [2006]:

- All orientably-regular maps of genus 2 to 101
- All non-orientable regular maps of genus 2 to 202.


## Digression: Symmetric cubic graphs

The same computational techniques applied to different families of finitely-presented groups (such as the modular group $\left\langle x, y \mid x^{2}=y^{3}=1\right\rangle$ ) can be used to find all arc-transitive 3 -valent graphs of small order, extending the Foster census:

MC \& Peter Dobcsányi [2001]: up to 768 vertices
MC [2006]: up to 2048 vertices

Bonus find: largest known 3-valent graph of diameter 10 [This has 1250 vertices, and is a cover of the Petersen graph with covering group $\mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ ]

## Summary of maps data for small genus

Orientably-regular maps (up to isomorphism \& duality)
Genus 2: 6 reflexible, 0 chiral
Genus 3: 12 reflexible, 0 chiral
Genus 4: 12 reflexible, 0 chiral
Genus 5: 16 reflexible, 0 chiral
Genus 6: 13 reflexible, 0 chiral
Genus 7: 12 reflexible, 2 chiral pairs
Genus 2 to 101: 3378 reflexible, 594 chiral pairs
Non-orientable regular maps (up to isomorphism \& duality) Genus 2 or 3: 0
Genus 4: 2
Genus 14: 3
Genus 2 to 202: 862

## Observations

- There is no orientably-regular but chiral map of genus 2, $3,4,5,6,9,13,23,24,30,36,47,48,54,60,66,84,95$, $108,116,120,139,150,167,168,174,180,186$ or 198
- There is no regular orientable map of genus $20,32,38$, 44, 62, 68, 74, 80 or 98 with simple underlying graph
- A lot of these exceptional genera are of the form $p+1$ where $p$ is prime.


## Theorems

- If $M$ is an irreflexible (chiral) orientably-regular map of genus $p+1$ where $p$ is prime, then either $p \equiv 1 \bmod 3$ and $M$ has type $\{6,6\}$,
or $p \equiv 1 \bmod 5$ and $M$ has type $\{5,10\}$,
or $\quad p \equiv 1 \bmod 8$ and $M$ has type $\{8,8\}$.
In particular, there are no such maps of genus $p+1$ whenever $p$ is a prime such that $p-1$ is not divisible by 3,5 or 8 .
[MC \& Jozef Siráñ (October 2006)]
- There is no regular map $M$ with simple underlying graph on an orientable surface of genus $p+1$ where $p$ is a prime congruent to $1 \bmod 6$, for $p>13$.
[MC \& Tom Tucker (December 2006)]


## In fact, even more ...

- A complete classification of all regular and orientablyregular maps $M$ for which $\mid$ Aut $M \mid$ is coprime to the Euler characteristic $\chi$ (if $\chi$ is odd) or to $\chi / 2$ (if $\chi$ is even)
[MC, Jozef Sirán̆ \& Tom Tucker (January 2007)]

This has all three main results to date as corollaries:

- No chiral orientably-regular maps of genus $p+1$ for primes $p$ not congruent to 1 mod 3, 5 or 8
- No regular orientable maps with simple underlying graph and genus $p+1$ for primes $p>13$ congruent to $1 \bmod 6$,
- No non-orientable regular maps of genus $p+2$ for primes $p>13$ congruent to $1 \bmod 12$.


## Coprime classification: $|G|$ coprime to $\chi$ or $\chi / 2$

- If $M$ has type $\{k, m\}$ and $G$ is the subgroup of Aut $M$ generated by vertex- and face-stabilizers, then

$$
-\chi=|G|(1 / 2-1 / k-1 / m)=|G|(k m-2 k-2 m) / 2 k m
$$

where $1 / 84 \leq(k m-2 k-2 m) / 2 k m<1 / 2$ for $-\chi>0$

- The coprime assumption gives $k m-2 k-2 m=(-\chi) t d$ or $(-\chi / 2) t d$ for some $t$, where $d=\operatorname{gcd}(k, m)$, and hence

$$
|G|=2 \operatorname{lcm}(k, m) / t \text { or } 4 \operatorname{Icm}(k, m) / t
$$

where $t=1,2$ or 4

- Every cyclic subgroup of $G$ odd order is conjugate to a subgroup of the vertex-stabilizer (of order $k$ ) or the facestabilizer (of order $m$ ), and hence $G$ is 'almost Sylow-cyclic'


## Coprime classification (cont.)

- 'Almost Sylow-cyclic' groups have been classified: by Zassenhaus (1936) for solvable groups, and by Suzuki (1955) and Wong (1966) for non-solvable groups
- Let $X$ and $Y$ be generators of the stabilizers of a face and an incident vertex of $M$, so that $X$ and $Y$ generate $G$ and satisfy $X^{m}=Y^{k}=(X Y)^{2}=1$
- The map $M$ (or its topological dual) has simple underlying graph if and only if $\langle Y\rangle$ (resp. $\langle X\rangle$ ) is 'core-free' in $G$
- When $\langle X\rangle \cap\langle Y\rangle$ is trivial, we have $|G| \geq|\langle X\rangle\langle Y\rangle|=k m$, and since also $|G|=2 \operatorname{lcm}(k, m) / t$ or $4 \mathrm{Icm}(k, m) / t$ where $t \in\{1,2,4\}$, this gives us only a small number of cases to consider, according to the values of $d=\operatorname{gcd}(k, m)$ and $t$


## Cases where $\langle X\rangle \cap\langle Y\rangle$ is trivial

We use fairly standard combinatorial group theory to deduce the following possibilities in these cases:

1) $k=2$, and $G$ is dihedral of order $2 m$ where $m$ is odd,
2) $|G|=k m$, with $\operatorname{gcd}(k, m)=2$, and $\left\langle X^{2}, Y^{2}\right\rangle$ is a cyclic normal subgroup, with $\left(X^{2}\right)^{Y}=X^{-2}$ and $\left(Y^{2}\right)^{X}=Y^{-2}$, and with quotient $C_{2} \times C_{2}$
3) $k=4$ or $8, m$ is divisible by 3 , and $\operatorname{gcd}(k, m)=1$, and $G$ is an extension of $C_{m / 3}$ by $\operatorname{PGL}(2,3)$ or $\operatorname{GL}(2,3)$
4) $k=m=3$, and $G \cong A_{4}$
5) $k, m=\{3,5\}$, and $G \cong A_{5}$.

## Cases where $\langle X\rangle \cap\langle Y\rangle$ is non-trivial

- Here the subgroup $N=\langle X\rangle \cap\langle Y\rangle$ is centralized by $X$ and $Y$ and hence by all of $\langle X, Y\rangle=G$
- We use the transfer homomorphism $h \mapsto h^{|G: N|}$ from $G$ to $N$ (and Schur's theorem, which says that the order of every element of the derived group $G^{\prime}$ divides the index $\left.|G: Z(G)|\right)$ to determine all possibilities in each of the five cases for $G / N$
- This completes the classification.

Note: We require $\langle X\rangle \cap\langle Y\rangle$ to be trivial if the map or its dual has simple underlying graph, and those cases were dealt with previously.

Also: In all of these cases, the map $M$ is reflexible!

$$
\begin{array}{cccl}
\text { Type } & \text { Genus } & |G| & \text { Comments } \\
\{8 n, 8 n\} & 2 n & 8 n & G \text { cyclic } \\
\{4 n+1,8 n+2\} & 2 n & 8 n+2 & G \text { cyclic, } n \not \equiv 2 \bmod 3 \\
\{2 n, v n\} & v(n-1) / 2 & 2 v n & G \cong C_{n} \times D_{v}, n \equiv 1 \bmod 4 \\
\{2 r n, 2 s n\} & r s n-r-s+1 & 4 r s n & G \text { has quotient } C_{2} \times C_{2} \\
\{4 n, 3 v n\} & 6 v n-3 v-3 & 24 v n & G \text { has quotient } S_{4} \\
\{8 n, 3 v n\} & 12 v n-3 v-7 & 48 v n & G \text { has genus } 2 \text { quotient } \\
\{3 n, 3 n\} & 3 n-3 & 12 n & G \cong C_{n} \rtimes A_{4}, n \text { odd } \\
\{3 n, 5 n\} & 15 n-15 & 60 n & G \cong C_{n} \times A_{5}, \operatorname{gcd}(n, 60)=1
\end{array}
$$

## Approach when $-\chi=p$ or $2 p$ for $p$ prime

For such a map $M$, let $G$ be the subgroup of Aut $M$ generated by vertex- and face-stabilizers. Then:

- For small $p$, we know all examples
- For large $p$ when $p$ divides $|G|$, we can use Sylow theory to reduce the case of a quotient $G / P$ acting on a map of small genus
- For large $p$ when $p$ does not divides $|G|$, we can use the ‘coprime classification'.


## Summary: new theorems

- If $M$ is an irreflexible (chiral) orientably-regular map of genus $p+1$ where $p$ is prime, then either $p \equiv 1 \bmod 3$ and $M$ has type $\{6,6\}$,
or $p \equiv 1 \bmod 5$ and $M$ has type $\{5,10\}$,
or $p \equiv 1 \bmod 8$ and $M$ has type $\{8,8\}$.
In particular, there are no such maps of genus $p+1$ whenever $p$ is a prime such that $p-1$ is not divisible by 3,5 or 8 .
[MC \& Jozef Siráñ (October 2006)]
- There is no regular map $M$ with simple underlying graph on an orientable surface of genus $p+1$ where $p$ is a prime congruent to $1 \bmod 6$, for $p>13$.
[MC \& Tom Tucker (December 2006)]


## How prevalent is chirality?

Orientably-regular maps of small genus:
Genus 2: 6 reflexible, 0 chiral
Genus 3: 12 reflexible, 0 chiral
Genus 4: 12 reflexible, 0 chiral
Genus 5: 16 reflexible, 0 chiral
Genus 6: 13 reflexible, 0 chiral
Genus 7: 12 reflexible, 2 chiral pairs
Genus 2 to 101: 3378 reflexible, 594 chiral pairs

What about for larger genera?

## Another viewpoint ....

Theorem [Liebeck and Shalev (2004)]
Let $\Delta$ be a Fuchsian group, let $H$ be a randomly chosen subgroup of index $n$ in $\Delta$, and let $K$ be the core of $H$ in $\Delta$ - that is, the kernel of the natural permutation representation of $\Delta$ on (right) cosets of $H$. Then the probability that $\Delta / K$ is the alternating group $A_{n}$ or the symmetric group $S_{n}$ tends to 1 as $n \rightarrow \infty$.

Consequence: Almost all orientably-regular maps of a given hyperbolic type $\{k, m\}$ have an alternating or symmetric group as their orientation-preserving automorphism group.

## Further consequence for chirality?

Also for $n$ large with respect to $k$ and $m$, one cannot expect a given epimorphism from the ordinary $(2, k, m)$ triangle group $\Delta^{o}(2, k, m)$ to $A_{n}$ or $S_{n}$ to be 'reflexible' - that is, one cannot expect an extension to to a homomorphism from the full triangle group $\Delta(2, k, m)$ - so the corresponding map will be chiral in almost all cases. Thus:

Hence in some respects, for large maps of a given type, chirality occurs quite frequently!

## References

W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Computation 24 (1997), 235-265.
M.D.E. Conder and P. Dobcsányi, Determination of all regular maps of small genus, J. Combinatorial Theory Series B 81 (2001), 224-242.
M.D.E. Conder and P. Dobcsányi, Applications and adaptations of the low index subgroups procedure, Mathematics of Computation 74 (2005), 485-497.
M.D.E. Conder, J. Siráñ and T.W. Tucker, Chirality, genera and simplicity of orientably-regular maps, in preparation.
D. Garbe, Über die regulären Zerlegungen geschlossener orientierbarer Flächen, J. Reine Angew. Math. 237 (1969), 39-55.
M.W. Liebeck and A. Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004) 552-601.

Abstract

