Independence Ratios of Nearly Planar Graphs

Mike Albertson Smith College

Are there intuitive relaxations of planarity that support a lower bound on the independence ratio?

Sometimes the independence ratio is more fun to look at than the chromatic number.

Outline

- 1. Introduction: the independence ratio
- 2. Embedded graphs
 - a) Early results
 - b) Open questions
- 3. Graphs with given thickness
- 4. Graphs with given crossing number
- Independence questions for new varieties of nearly planar graphs

The Independence Ratio

The Fraction [V65]; The Name [AH75]

Suppose G is a graph with *n* vertices. Let $\alpha(G) = \max\{|U| : U \subseteq V(G); x, y \in U \Rightarrow xy \notin E(G)\}.$ The *independence ratio*, (" $\mu(G)$ "), is defined by

$$\mu(G) = \frac{\alpha(G)}{n}$$

Since a color class is independent, $\alpha(G) \ge \frac{n}{\chi(G)}$. Thus $\mu(G) \ge \frac{1}{\chi(G)}$.

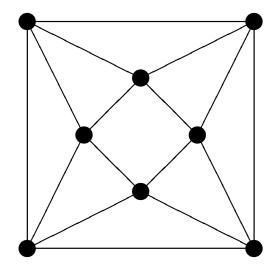
There is a circular refinement viz. $\mu(G) \ge \frac{1}{\chi_c(G)}$.

Planar Graphs

Conj [EV 60s] If G is planar, then $\mu(G) \ge \frac{1}{4}$.

Planar Graphs

Conj [EV 60s] If G is planar, then $\mu(G) \ge \frac{1}{4}$.

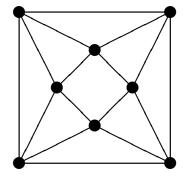


EV is sharp

Planar Graphs

Conj [EV 60s] If G is planar, then $\mu(G) \ge \frac{1}{4}$.

EV is sharp



Th [A74] If G is planar, then $\mu(G) > \frac{2}{9}$.

 $4CT \Rightarrow EV \{ still no independent proof \}$

Embedded Graphs (we know a lot)

Let S_g denote the orientable surface with g handles. **Th** [H91] If G is embedded on S_g , then $\chi(G) \leq H(g) = \lfloor \frac{7 + \sqrt{48g + 1}}{2} \rfloor$. Thus $\mu(G) \geq \frac{1}{H(g)}$. **Cor** If G is toroidal, then $\mu(G) \geq \frac{1}{7}$.

Th [RY68] $K_{H(g)}$ embeds on S_g .

Th [AH75] Suppose G is toroidal. Given $\epsilon > 0, \exists N(\epsilon) : \text{if } n > N(\epsilon), \text{then } \mu(G) > \frac{2}{9} - \epsilon.$

Th [AH75] Suppose G is toroidal. Given $\epsilon > 0, \exists N(\epsilon) : \text{if } n > N(\epsilon), \text{then } \mu(G) > \frac{2}{9} - \epsilon.$

Th [AH75] Suppose *G* embeds on S_g . Given $\epsilon > 0, \exists N(\epsilon, g) : \text{if } n > N(\epsilon, g), \text{then } \mu(G) > \frac{1}{5} - \epsilon$.

Th [AH75] Suppose G is toroidal. Given $\epsilon > 0, \exists N(\epsilon) : \text{if } n > N(\epsilon), \text{then } \mu(G) > \frac{2}{9} - \epsilon.$

Th [AH75] Suppose G embeds on S_g . Given $\epsilon > 0, \exists N(\epsilon, g) : \text{if } n > N(\epsilon, g), \text{then } \mu(G) > \frac{1}{5} - \epsilon$.

Th [AH78, S] Suppose G embeds on S. Given $\epsilon > 0, \exists N(\epsilon, S) : \text{if } n > N(\epsilon, S), \text{then } \mu(G) > \frac{1}{4} - \epsilon$. On any given S only a few graphs have $\mu << \frac{1}{4}$. Sketch of Proof Technique: Cycle $C \subset G$ embedded on S, is *n.c.* if it is not homotopic to a point. Width of G [AH75] $w(G) = \min\{|C| : C \text{ is n.c.}\}$.

On any given S only a few graphs have $\mu \ll \frac{1}{4}$. Sketch of Proof Technique: Cycle $C \subset G$ embedded on S, is *n.c.* if it is not homotopic to a point. Width of G [AH75] $w(G) = \min\{|C| : C \text{ is } n.c.\}$. **Th** [AH78] If G triangulates S, then $w(G) < \sqrt{2n}$. **Cor** If G is embedded on S, then $\exists U \subset V(G) : |U|$ is small and G[V - U] is planar.

Questions for Embedded Graphs [AH74]

- Background:
- **Th** [AS82] *G* toroidal and $w(G) > 3 \Rightarrow \chi(G) \le 5$. **Cor** If *G* is toroidal, then $\mu(G) \ge \frac{1}{5} - \frac{3}{5n}$.

Questions for Embedded Graphs [AH74] Background: Th [AS82] *G* toroidal and $w(G) > 3 \Rightarrow \chi(G) \le 5$. Cor If *G* is toroidal, then $\mu(G) \ge \frac{1}{5} - \frac{3}{5n}$.

Conj G toroidal $\Rightarrow \mu(G) \ge \frac{1}{4} - \frac{3}{4n}$.

Questions for Embedded Graphs [AH74] Background:

Th [AS82] *G* toroidal and $w(G) > 3 \Rightarrow \chi(G) \le 5$. **Cor** If *G* is toroidal, then $\mu(G) \ge \frac{1}{5} - \frac{3}{5n}$.

Conj G toroidal $\Rightarrow \mu(G) \ge \frac{1}{4} - \frac{3}{4n}$.

Q \exists ? M_S : G embeds on $S \Rightarrow \mu(G) \ge \frac{1}{4} - \frac{M_S}{4n}$

Questions for Embedded Graphs [AH74] Background:

Th [AS82] *G* toroidal and $w(G) > 3 \Rightarrow \chi(G) \le 5$. **Cor** If *G* is toroidal, then $\mu(G) \ge \frac{1}{5} - \frac{3}{5n}$.

Conj G toroidal $\Rightarrow \mu(G) \ge \frac{1}{4} - \frac{3}{4n}$.

Q \exists ? M_S : G embeds on $S \Rightarrow \mu(G) \ge \frac{1}{4} - \frac{M_S}{4n}$

Q Does
$$M_{S_g} = 3g$$
?

So where are we?

G embedded on S is a relaxation of G is planar.

Embedding similar to planarity wrt " μ "-behavior.

So where are we?

G embedded on S is a relaxation of G is planar.

Embedding similar to planarity wrt " μ "-behavior.

Where are we going?

What happens with other relaxations of planarity?

If G is *nearly planar*, what about $\mu(G)$?

Nearly Planar Graphs

- Classic Versions
 - thickness
 - crossing number
- Recent versions
 - locally planar graphs
 - k-quasi-planar graphs
 - k-embedded graphs
 - k-quasi*planar graphs

Thickness (we don't know much)

G is said to have thickness t if G is the union of t planar graphs but no fewer.

Rmks If *G* has thickness *t*, then $E \le t(3n - 6)$. So, if *G* has thickness *t*, then $\chi(G) \le 6t$. $\exists G$ with thickness *t* such that $\chi(G) \ge 6t - 2$ (t > 2). When t = 2, all we know is $9 \le \chi(G) \le 12$.

Cor If t(G) = 2, then $\mu(G) \ge \frac{1}{12}$.

Th [BH,AG] $t(K_n) = \lfloor \frac{n+7}{6} \rfloor$ $(n \neq 9, 10)$ $t(K_9) = t(K_{10}) = 3$

Independence for Thickness 2 Graphs

•
$$\exists \mu_2 : t(G) = 2 \Rightarrow \mu(G) \ge \mu_2 \ge \frac{1}{12}$$
.

Old Conj [A] $\mu_2 = \frac{1}{8}$.

Independence for Thickness 2 Graphs

•
$$\exists \mu_2 : t(G) = 2 \Rightarrow \mu(G) \ge \mu_2 \ge \frac{1}{12}$$
.

Old Conj [A] $\mu_2 = \frac{1}{8}$. NOT! [GS] $\exists G : t(G) = 2, n = 17, \mu(G) = \frac{2}{17}$.

NOT! [GS] $\exists G : t(G) = 2, n = 17, \mu(G) = \frac{2}{17}$.

Independence for Thickness 2 Graphs

• $\exists \mu_2 : t(G) = 2 \Rightarrow \mu(G) \ge \mu_2 \ge \frac{1}{12}$.

Old Conj [A] $\mu_2 = \frac{1}{8}$.

NOT! [GS] $\exists G : t(G) = 2, n = 17, \mu(G) = \frac{2}{17}$.

Open Q What is μ_2 ?

Q [A] Given $\epsilon > 0, \exists ? G : t(G) = 2, \frac{1}{9} < \mu(G) < \frac{1}{9} + \epsilon ?$

Independence for Thickness 2 Graphs

•
$$\exists \mu_2 : t(G) = 2 \Rightarrow \mu(G) \ge \mu_2 \ge \frac{1}{12}$$
.

Old Conj [A] $\mu_2 = \frac{1}{8}$.

NOT! [GS] $\exists G : t(G) = 2, n = 17, \mu(G) = \frac{2}{17}$.

Open Q What is μ_2 ?

Q [A] Given $\epsilon > 0, \exists ? \ G : t(G) = 2, \ \frac{1}{9} < \mu(G) < \frac{1}{9} + \epsilon ?$ **Conj** [G] $\mu_2 = \frac{2}{21}$.

26

Crossing Number (we know even less)

The crossing number of G (cr(G)) is the minimum number of crossings in any drawing of G.

Conj cr(
$$K_n$$
) = $Z_n = \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$.

Th [KMPRS] $\lim_{n\to\infty} \operatorname{cr}(K_n)/Z_n \ge 0.83$.

Q Is $\chi(G)$ bounded by a function of (cr(G))? **Q** Is $\mu(G)$ bounded by a function of (cr(G))?

Small Results on Crossings and Colorings [OZ]

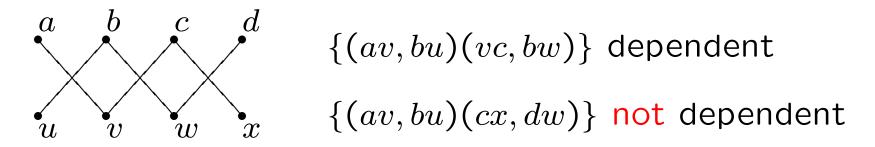
Th If $cr(G) \leq 2$, then $\chi(G) \leq 5$.

Notation: $\omega(G)$ denotes the *clique number*.

Th If $cr(G) \leq 3$ and $\omega(G) \leq 5$, then $\chi(G) \leq 5$.

Q If $cr(G) \leq 5$ and $\omega(G) \leq 5$, is $\chi(G) \leq 5$?

A Small Result on Crossings and Colorings [A] Def In a plane graph, two crossings are *dependent* if their eight incident vertices are not distinct.



Th If G is a plane graph, $cr(G) \le 3$, and crossings are independent, then $\chi(G) \le 5$. Thus $\mu(G) \ge \frac{1}{5}$. **Conj** If G is a plane graph and no two crossings are

dependent, then $\chi(G) \leq 5$ and $\mu(G) \geq \frac{1}{5}$.

Rmk [A,S] If G is a plane graph and no two crossings are dependent, then $\chi(G) \leq 8$. Thus $\mu(G) \geq \frac{1}{8}$.

Th [A] If G is a plane graph and no two crossings are dependent, then $\chi(G) \leq 6$. Thus $\mu(G) \geq \frac{1}{6}$.

Th [A] If G is a plane graph and no two crossings are dependent, then $\mu(G) \ge \frac{3}{16}$.

Th [A] If G is a plane graph and no two crossings are dependent, then $\mu(G) \ge \frac{3}{16}$.

Pf From crossing independence, $n \ge 4 \cdot \operatorname{cr}(G)$. Thus $\exists U \subset V(G) : |U| \le \frac{n}{4} \& G[V - U]$ is planar. $\alpha(G) \ge \alpha(G[V - U]) \ge \frac{1}{4} \cdot \frac{3n}{4} = \frac{3n}{16}$. **Th** [A] If G is a plane graph and no two crossings are dependent, then $\mu(G) \ge \frac{3}{16}$.

Pf From crossing independence, $n \ge 4 \cdot \operatorname{cr}(G)$. Thus $\exists U \subset V(G) : |U| \le \frac{n}{4} \& G[V - U]$ is planar. $\alpha(G) \ge \alpha(G[V - U]) \ge \frac{1}{4} \cdot \frac{3n}{4} = \frac{3n}{16}$.

Rmk The proof of the μ -result is easier than the proof of the χ -result, but the μ -result is stronger.

A Naive Definition of Locally Planar

Given $x \in V(G)$, let $N^d[x] = \{u \in V(G) : dist(x, u) \le d\}.$

If $G[N^d[x]]$ is planar $\forall x \in V(G)$ and d is large, we could say that G seems locally planar. However,

Th [E59] $\forall k, m \in \mathbb{Z}$ there exists a graph G such that $\chi(G) \ge k$, and the girth of $G \ge m$.

Locally Planar Embedded Graphs

Def Suppose G is embedded on S. If w(G) is large, we say that G is *locally planar*.

Note if $d < \frac{w(G)-1}{2}$, then $\forall x, G[N^d[x]]$ is planar.

The previously mentioned results on the independence ratio justify the above definition.

In addition there are similar coloring results.

Th [H84] If G is embedded on S_g and every edge is short enough, then $\chi(G) \leq 5$.

Th [T93] If G is embedded on S_g and $w(G) \ge 2^{28g+6}$, then $\chi(G) \le 5$.

Th [DKM05] If G is embedded on S_g and w(G) is large enough, then $\chi_{\ell}(G) \leq 5$.

A Question on Local Planarity and Thickness

Suppose G is a graph with thickness 2.

For $1 \le r \le 4$, does there exist d = d(r):

if $G[N^d[x]]$ is planar, then $\mu(G) \ge \frac{1}{4+r}$?

New Nearly Planar Graphs

Here are recent attempts to capture near planarity.

Some come with extremal results about |E(G)|.

For each attempt: Is there an idea to get from the intuitively attractive definition to a meaningful theorem about μ ?

Another Version of Locally Planar

Def [PPTT02] G is said to be *r*-locally planar if G contains no self intersecting path of length $\leq r$.

Th [PPTT02] \exists 3-locally planar graphs with $E \ge c \cdot n \log(n)$.

Th [PPTT04] If G is 3-locally planar, then $E = O(n \log(n)).$

Q \exists ? μ_3 such that every 3-locally planar graph has $\mu(G) \geq \mu_3$?

 $\mathbf{Q} \exists ? \mu_3$ such that every 3-locally planar graph has $\mu(G) \geq \mu_3$?

These graphs can have a superlinear number of edges \Rightarrow greedily building an independent set does not work.

 $\mathbf{Q} \exists ? \mu_3$ such that every 3-locally planar graph has $\mu(G) \geq \mu_3$?

These graphs can have a superlinear number of edges \Rightarrow greedily building an independent set does not work.

Looking at *r*-locally planar graphs $(r \ge 4)$ gives similar results.

 $\mathbf{Q} \exists ? \mu_3$ such that every 3-locally planar graph has $\mu(G) \geq \mu_3$?

These graphs can have a superlinear number of edges \Rightarrow greedily building an independent set does not work.

Looking at *r*-locally planar graphs $(r \ge 4)$ gives similar results.

The examples of *r*-locally planar graphs with lots of edges have relatively large μ .

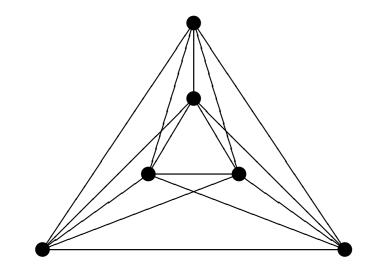
Quasi Planar Graphs

Def [PT97] If, G has a drawing in which no edge crosses more than r other edges, we say that G is r-quasi planar (r-q-p).

Th [PT97] If G is r-q-p, then $E \leq (r+3)(n-2)$. Sharp for $0 \leq r \leq 2$ - not close for large r.

Cor If G is r-q-p, then $\mu(G) \ge \frac{1}{2r+6}$.

Th [B84] If G is 1-q-p, then $\chi(G) \leq 6 \Rightarrow \mu(G) \geq \frac{1}{6}$.



The above theorem is sharp

Def [R] Given a planar graph G, the vertex-face graph G_{vf} has $V(G_{vf}) = V(G) \cup F(G)$. $E(G_{vf}) = \{xy : x \text{ is adjacent to or incident with } y\}.$ **Def** [R] Given a planar graph G, the vertex-face graph G_{vf} has $V(G_{vf}) = V(G) \cup F(G)$. $E(G_{vf}) = \{xy : x \text{ is adjacent to or incident with } y\}.$

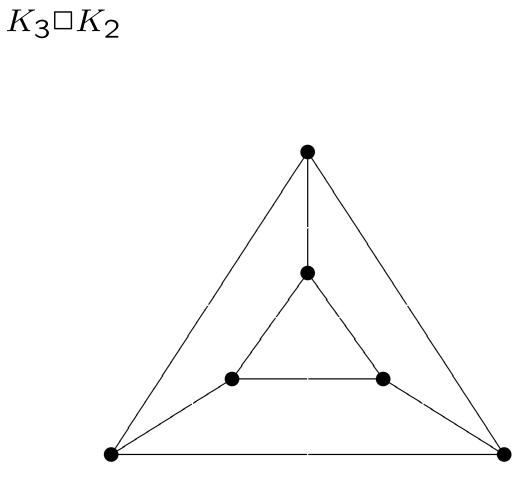
Rmks G planar \Rightarrow G_{vf} is 1-q-p. $K_6 \neq G_{vf}$.

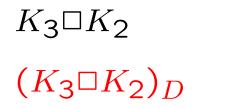
Def [R] Given a planar graph G, the vertex-face graph G_{vf} has $V(G_{vf}) = V(G) \cup F(G)$. $E(G_{vf}) = \{xy : x \text{ is adjacent to or incident with } y\}.$

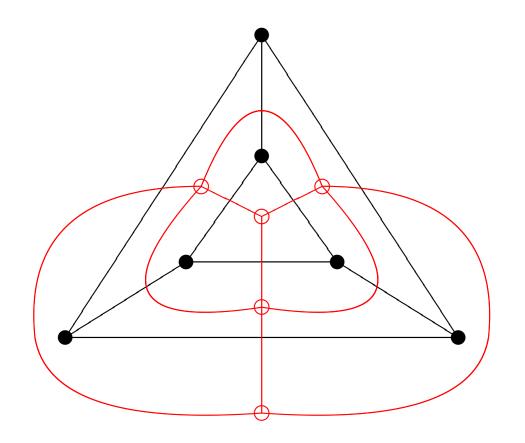
Rmks G planar \Rightarrow G_{vf} is 1-q-p. $K_6 \neq G_{vf}$.

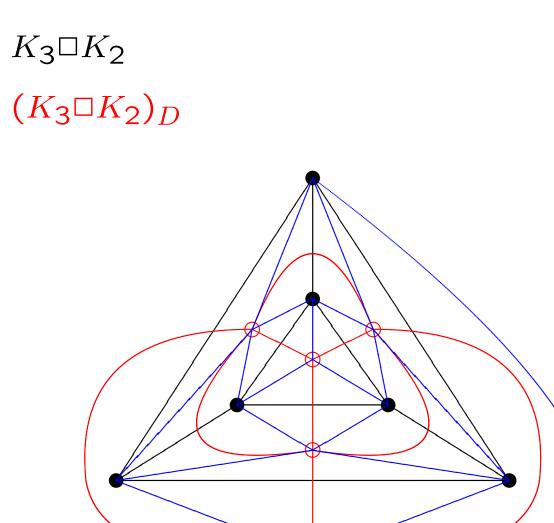
Conj [A] If G is planar, then $\mu(G_{vf}) \geq \frac{2}{11}$.

 $\mu((K_3 \Box K_2)_{vf}) = \frac{2}{11}.$









 $(K_3 \Box K_2)_{vf}$

51

Def A graph G is *k*-embeddable on a surface S_g , a surface of Euler genus g, if G can be drawn on S_g so that no edge crosses more than k other edges. **Def** A graph G is *k*-embeddable on a surface S_g , a surface of Euler genus g, if G can be drawn on S_g so that no edge crosses more than k other edges.

Th [R, AM06] If G is 1-embeddable on S_g , then $\chi_{\ell}(G) \leq \lfloor \frac{9+\sqrt{32g+17}}{2} \rfloor = R(g) \Rightarrow \mu(G) \geq \frac{1}{R(g)}.$ **Def** A graph G is k-embeddable on a surface S_g , a surface of Euler genus g, if G can be drawn on S_g so that no edge crosses more than k other edges.

Th [R, AM06] If G is 1-embeddable on S_g , then $\chi_{\ell}(G) \leq \lfloor \frac{9 + \sqrt{32g + 17}}{2} \rfloor = R(g) \Rightarrow \mu(G) \geq \frac{1}{R(g)}$.

Th [AM06] If G is 1-embeddable on S_g and $w(G) \ge 104g - 204$, then $\chi_{\ell}(G) \le 8 \Rightarrow \mu(G) \ge \frac{1}{8}$. **Def** A graph G is *k*-embeddable on a surface S_g , a surface of Euler genus g, if G can be drawn on S_g so that no edge crosses more than k other edges.

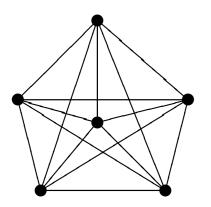
Th [R, AM06] If G is 1-embeddable on S_g , then $\chi_{\ell}(G) \leq \lfloor \frac{9+\sqrt{32g+17}}{2} \rfloor = R(g) \Rightarrow \mu(G) \geq \frac{1}{R(g)}.$

Th [AM06] If G is 1-embeddable on S_g and $w(G) \ge 104g - 204$, then $\chi_{\ell}(G) \le 8 \Rightarrow \mu(G) \ge \frac{1}{8}$.

Q If G is 1-embedded on S_g and w(G) is large enough, is $\mu(G) \ge \frac{1}{6}$?

An Alternate Definition of Q-P

Def [AAPPS95] A graph is k-quasi*planar if it has a drawing in which no k of its edges are pairwise crossing.



A 3-quasi*planar graph

Th [AcT05] If G is simple and 3-quasi*planar, then E < 6.5n The bound is sharp except for a subtractive constant.

Th [AcT05] If G is simple and 3-quasi*planar, then E < 6.5n The bound is sharp except for a subtractive constant.

Cor If G is 3-quasi*planar then $\mu(G) \geq \frac{1}{13}$.

Th [AcT05] If G is simple and 3-quasi*planar, then E < 6.5n The bound is sharp except for a subtractive constant.

Cor If G is 3-quasi*planar then $\mu(G) \geq \frac{1}{13}$.

The graphs which show that the edge bound is sharp have $\mu \geq \frac{1}{6}$.

Th [Ac05] If G is 4-quasi*planar, then $E \leq 36(n-2)$.

Q Do *k*-quasi*planar graphs have a linear number of edges?

Q If G is k-quasi*planar (especially when k = 3), what is the best bound for $\mu(G)$?