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Are there intuitive relaxations of planarity that support a lower

bound on the independence ratio?

Sometimes the independence ratio is more fun to look at than

the chromatic number.
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The Independence Ratio

The Fraction [V65]; The Name [AH75]

Suppose G is a graph with n vertices. Let

α(G) = max{|U | : U ⊆ V (G); x, y ∈ U ⇒ xy 6∈ E(G)} .

The independence ratio, (“µ(G)”), is defined by

µ(G) = α(G)
n .

Since a color class is independent, α(G) ≥ n
χ(G).

Thus µ(G) ≥ 1
χ(G) .

There is a circular refinement viz. µ(G) ≥ 1
χc(G) .
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Planar Graphs

Conj [EV 60s] If G is planar, then µ(G) ≥ 1
4 .
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Th[A74] If G is planar, then µ(G) > 2
9 .

4CT ⇒ EV C {still no independent proof}
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Embedded Graphs (we know a lot)

Let Sg denote the orientable surface with g handles.

Th [H91] If G is embedded on Sg, then

χ(G) ≤ H(g) = b7+
√

48g+1
2 c. Thus µ(G) ≥ 1

H(g) .

Cor If G is toroidal, then µ(G) ≥ 1
7 .

Th [RY68] KH(g) embeds on Sg .
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Th [AH75] Suppose G 6= K7, K6, K7 ∪K4,or C
3

11 .

If G is toroidal, then µ(G) ≥ 1
5 . Th [AH75] Suppose

G is toroidal. Given

ε > 0, ∃ N(ε) : if n > N(ε), then µ(G) > 2
9 − ε .

Th [AH75] Suppose G embeds on Sg. Given

ε > 0, ∃ N(ε, g) : if n > N(ε, g), then µ(G) > 1
5 − ε .

Th [AH78] Suppose G embeds on S. Given

ε > 0, ∃ N(ε, S) : if n > N(ε, S), then µ(G) > 1
4 − ε .
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On any given S only a few graphs have µ << 1
4 .

Sketch of Proof Technique: Cycle C ⊂ G embedded

on S, is n.c. if it is not homotopic to a point.

Width of G [AH75] w(G) = min{|C| : C is n.c.} .

Th [AH78] If G triangulates S, then w(G) ≤
√

2n .

Cor If G is embedded on S, then ∃ U ⊂ V (G) : |U | is

small and G[V − U ] is planar.
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Questions for Embedded Graphs [AH74]

Background:

Th [AS82] G toroidal and w(G) > 3 ⇒ χ(G) ≤ 5 .

Cor If G is toroidal, then µ(G) ≥ 1
5 −

3
5n .

Conj G toroidal ⇒ µ(G) ≥ 1
4 −

3
4n .

Q ∃?MS : G embeds on S ⇒ µ(G) ≥ 1
4 −

MS
4n

Q Does MSg = 3g?
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So where are we?

G embedded on S is a relaxation of G is planar.

Embedding similar to planarity wrt “µ”-behavior.

Where are we going?

What happens with other relaxations of planarity?

If G is nearly planar, what about µ(G)?
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Nearly Planar Graphs

• Classic Versions

- thickness

- crossing number

• Recent versions

- locally planar graphs

- k-quasi-planar graphs

- k-embedded graphs

- k-quasi*planar graphs
20



Thickness (we don’t know much)

G is said to have thickness t if G is the union of t

planar graphs but no fewer.

Rmks If G has thickness t, then E ≤ t(3n− 6).

So, if G has thickness t, then χ(G) ≤ 6t.

∃G with thickness t such that χ(G) ≥ 6t− 2 (t > 2).

When t = 2, all we know is 9 ≤ χ(G) ≤ 12.

Cor If t(G) = 2, then µ(G) ≥ 1
12 .

Th [BH,AG] t(Kn) = bn+7
6 c (n 6= 9,10)

t(K9) = t(K10) = 3
21



Independence for Thickness 2 Graphs

• ∃µ2 : t(G) = 2 ⇒ µ(G) ≥ µ2 ≥ 1
12 .

Old Conj [A] µ2 = 1
8 .

NOT! [GS] ∃G : t(G) = 2, n = 17, µ(G) = 2
17 .

Open Q What is µ2

Q [A] Given ε > 0, ∃? G : t(G) = 2, 1
9 < µ(G) < 1

9 + ε?

Conj [G] µ2 = 2
21 .
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Crossing Number (we know even less)

The crossing number of G (cr(G)) is the minimum

number of crossings in any drawing of G.

Conj cr(Kn) = Zn = 1
4b

n
2cb

n−1
2 cbn−2

2 cbn−3
2 c.

Th [KMPRS] limn→∞ cr(Kn)/Zn ≥ 0.83.

Q Is χ(G) bounded by a function of (cr(G))?

Q Is µ(G) bounded by a function of (cr(G))?
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Small Results on Crossings and Colorings [OZ]

Th If cr(G) ≤ 2, then χ(G) ≤ 5.

Notation: ω(G) denotes the clique number.

Th If cr(G) ≤ 3 and ω(G) ≤ 5, then χ(G) ≤ 5.

Q If cr(G) ≤ 5 and ω(G) ≤ 5, is χ(G) ≤ 5?
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A Small Result on Crossings and Colorings [A]

Def In a plane graph, two crossings are dependent if

their eight incident vertices are not distinct.
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Th If G is a plane graph, cr(G) ≤ 3, and crossings

are independent, then χ(G) ≤ 5 . Thus µ(G) ≥ 1
5.

Conj If G is a plane graph and no two crossings are

dependent, then χ(G) ≤ 5 and µ(G) ≥ 1
5 .
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Rmk [A,S] If G is a plane graph and no two crossings

are dependent, then χ(G) ≤ 8 . Thus µ(G) ≥ 1
8 .

Th [A] If G is a plane graph and no two crossings

are dependent, then χ(G) ≤ 6 . Thus µ(G) ≥ 1
6 .

30



Th [A] If G is a plane graph and no two crossings

are dependent, then µ(G) ≥ 3
16 .

Pf From crossing independence, n ≥ 4 · cr(G).

Thus ∃U ⊂ V (G) : |U | ≤ n
4 & G[V − U ] is planar.

α(G) ≥ α(G[V − U ]) ≥ 1
4 ·

3n
4 = 3n

16 .

Rmk The proof of the µ-result is easier than the

proof of the χ-result, but the µ-result is stronger.
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A Naive Definition of Locally Planar

Given x ∈ V (G), let

Nd[x] = {u ∈ V (G) : dist(x, u) ≤ d}.

If G[Nd[x]] is planar ∀x ∈ V (G) and d is large, we

could say that G seems locally planar. However,

Th [E59] ∀k, m ∈ Z there exists a graph G such that

χ(G) ≥ k, and the girth of G ≥ m.
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Locally Planar Embedded Graphs

Def Suppose G is embedded on S. If w(G) is large,

we say that G is locally planar.

Note if d < w(G)−1
2 , then ∀x, G[Nd[x]] is planar.

The previously mentioned results on the

independence ratio justify the above definition.

In addition there are similar coloring results.
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Th [H84] If G is embedded on Sg and every edge is

short enough, then χ(G) ≤ 5.

Th [T93] If G is embedded on Sg and

w(G) ≥ 228g+6, then χ(G) ≤ 5.

Th [DKM05] If G is embedded on Sg and w(G) is

large enough, then χ`(G) ≤ 5.
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A Question on Local Planarity and Thickness

Suppose G is a graph with thickness 2.

For 1 ≤ r ≤ 4, does there exist d = d(r):

if G[Nd[x]] is planar, then µ(G) ≥ 1
4+r?
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New Nearly Planar Graphs

Here are recent attempts to capture near planarity.

Some come with extremal results about |E(G)|.

For each attempt: Is there an idea to get from

the intuitively attractive definition to a

meaningful theorem about µ?
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Another Version of Locally Planar

Def [PPTT02] G is said to be r-locally planar if G

contains no self intersecting path of length ≤ r.

Th [PPTT02] ∃ 3-locally planar graphs with

E ≥ c · n log(n).

Th [PPTT04] If G is 3-locally planar, then

E = O(n log(n)).
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Q ∃? µ3 such that every 3-locally planar graph has

µ(G) ≥ µ3?

These graphs can have a superlinear number of

edges ⇒ greedily building an independent set does

not work.

Looking at r-locally planar graphs (r ≥ 4) gives

similar results.

The examples of r-locally planar graphs with lots of

edges have large µ.
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Quasi Planar Graphs

Def [PT97] If, G has a drawing in which no edge

crosses more than r other edges, we say that G is

r-quasi planar (r-q-p).

Th [PT97] If G is r-q-p, then E ≤ (r + 3)(n− 2).

Sharp for 0 ≤ r ≤ 2 - not close for large r.

Cor If G is r-q-p, then µ(G) ≥ 1
2r+6.
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Th [B84] If G is 1-q-p, then χ(G) ≤ 6 ⇒ µ(G) ≥ 1
6 .
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Def [R] Given a planar graph G, the vertex-face

graph Gvf has V (Gvf) = V (G) ∪ F (G).

E(Gvf) = {xy : x is adjacent to or incident with y}.

Rmks G planar ⇒ Gvf is 1-q-p. K6 6= Gvf .

Conj [A] If G is planar, then µ(Gvf) ≥ 2
11.

µ((K32K2)vf) = 2
11 .
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Def A graph G is k-embeddable on a surface Sg, a

surface of Euler genus g, if G can be drawn on Sg so

that no edge crosses more than k other edges.

Th [R, AM06] If G is 1-embeddable on Sg, then

χ`(G) ≤ b9+
√

32g+17
2 c = R(g) ⇒ µ(G) ≥ 1

R(g) .

Th [AM06] If G is 1-embeddable on Sg and

w(G) ≥ 104g − 204 , then χ`(G) ≤ 8 ⇒ µ(G) ≥ 1
8 .

Q If G is 1-embedded on Sg and w(G) is large

enough, is µ(G) ≥ 1
6?
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surface of Euler genus g, if G can be drawn on Sg so

that no edge crosses more than k other edges.

Th [R, AM06] If G is 1-embeddable on Sg, then

χ`(G) ≤ b9+
√

32g+17
2 c = R(g) ⇒ µ(G) ≥ 1

R(g) .

Th [AM06] If G is 1-embeddable on Sg and

w(G) ≥ 104g − 204 , then χ`(G) ≤ 8 ⇒ µ(G) ≥ 1
8 .

Q If G is 1-embedded on Sg and w(G) is large

enough, is µ(G) ≥ 1
6 ?
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An Alternate Definition of Q-P

Def [AAPPS95] A graph is k-quasi*planar if it has a

drawing in which no k of its edges are pairwise

crossing.
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A 3-quasi*planar graph
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Th [AAPPS95] If G is 3-quasi*planar, then

E = O(n). Th [AcT05] If G is simple and

3-quasi*planar, then E < 6.5n The bound is sharp

except for a subtractive constant.

Cor If G is 3-quasi*planar then µ(G) ≥ 1
13 .

The graphs which show that the bound is sharp have

µ ≥ 1
6 .
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Th [AAPPS95] If G is 3-quasi*planar, then

E = O(n).

Th [AcT05] If G is simple and 3-quasi*planar, then

E < 6.5n The bound is sharp except for a subtractive

constant. Cor If G is 3-quasi*planar then µ(G) ≥ 1
13 .

The graphs which show that the bound is sharp have

µ ≥ 1
6 .
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Th [AAPPS95] If G is 3-quasi*planar, then

E = O(n).

Th [AcT05] If G is simple and 3-quasi*planar, then

E < 6.5n The bound is sharp except for a subtractive

constant.

Cor If G is 3-quasi*planar then µ(G) ≥ 1
13 . The

graphs which show that the bound is sharp have

µ ≥ 6 .
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Th [AAPPS95] If G is 3-quasi*planar, then

E = O(n).

Th [AcT05] If G is simple and 3-quasi*planar, then

E < 6.5n The bound is sharp except for a subtractive

constant.

Cor If G is 3-quasi*planar then µ(G) ≥ 1
13 .

The graphs which show that the edge bound is sharp

have µ ≥ 1
6 .
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Th [Ac05] If G is 4-quasi*planar, then E ≤ 36(n−2).

Q Do k-quasi*planar graphs have a linear number of

edges?

Q If G is k-quasi*planar (especially when k = 3),

what is the best bound for µ(G)?
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