

The University of Dublin

Euro-MOTOR: A multi-centre case-control study of metals and solvents exposure as risk factors for Amyotrophic Lateral Sclerosis

Presented by: Dr James Rooney

HRB Research Fellow (Epidemiology), Trinity College Dublin Presented on behalf of the Euro-MOTOR Consortium

May 2017

Introduction

- Exposure to metals and solvents have been proposed as a risk factor for Amyotrophic Lateral Sclerosis (ALS)
- Mixed results in the literature
 - Complicated by heterogenous study designs
 - Difficult to compare results across studies
 - Difficult to assess historical exposures

Introduction

- Euro-Motor consortium:
 - large case control study of environmental exposures across five
 European populations: Italy x 3, Ireland & The Netherlands
 - explore the pathobiology of ALS using a system biology approach
 - Here we report results from assessment of occupational exposure to metals and solvents and ALS risk

Case Ascertainment

- Between 2011 to 2015
 - Incident cases recruited in Ireland, Italy and The Netherlands
 - Inclusion: Possible, Probable and Definite revised El-Escorial criteria
 - Controls recruited matched by age, gender and location

Methods

Data Collection

- Demographic details:
 - Age, gender, education, residential history
- Clinical details:
 - Age & site of onset, diagnostic delay, EEC, ALSFRS-r
 - Medical history cardiovascular, DM, cancer, trauma
- Other lifestyle factors:
 - Sports, hobbies, cigarettes, alcohol, drugs etc.
- Occupational exposure assessment

Data Collection

- Occupational exposure assessment:
 - Full occupational history obtained
 - Job title, tasks performed, years worked, hrs/week
 - ISCO* coding applied to each job
 - ISCO '68 & '88
 - Job-exposure matrices applied using ISCO codes:
 - ALOHA-JEM: biodust, gasfumes, mineral dust, pesticides, metals, solvents (aromatic, chlorinated & other solvents)
 - DOM-JEM: asbestos, diesel exhaust, chromium, nickel, silica, biodust, endotoxin, PAH

BEN-JEM: benzene

Data Collection

- Occupational exposure assessment:
 - Full occupational history obtained
 - Job title, tasks performed, years worked, hrs/week
 - ISCO* coding applied to each job
 - ISCO '68 & '88
 - Job-exposure matrices applied using ISCO codes:
 - ALOHA-JEM: biodust, gasfumes, mineral dust, pesticides, metals, solvents (aromatic, chlorinated & other solvents)
 - DOM-JEM: asbestos, diesel exhaust, chromium, nickel, silica, biodust, endotoxin, PAH
 - BEN-JEM: benzene

Statistical Analysis

- Multivariate Logistic regression
 - Ever exposure for each variable
 - Corrected for age, education, study site
 - Including & excluding known C9orf72 patients
 - Built additional models adjusting for lifestyle factors after imputation of missing values:
 - Alcohol, smoking, physical activity
 - As sensitivity stratified by gender, education & site of onset
 - Bayesian mixed effects model to allow for heterogeneity by study site

Demographics:

Patients = 1,557 ; Controls = 2922

	Apu	lia	Lomb	ardy		and Valle	Irel	and	The Net	herlands	
	N=3	53	N = 3	376	d'A	osta	N =	526	N = 3	2671	
					N =	552					
Variable	Patients	Controls	Patients	Controls	Patients	Controls	Patients	Controls	Patients	Controls	Overall
	(n = 141)	(n = 213)	(n = 186)	(n = 190)	(n = 262)	(n = 290)	(n = 177)	(n = 349)	(n = 791)	(n = 1880)	missing rate, n (%)
Male, n (%)	81	113	100	101	138	153	106	211	478	1127	0
	(57.4)	(53.1)	(53.8)	(53.2)	(52.7)	(52.8)	(59.9)	(60.5)	(60.4)	(59.9)	(0)
Age at survey		64.8		67.1							
(median IQR)	64.7	(56.9,	66.5	(58.9 <i>,</i>	67.6	65.4	66.4	67.5	65.5	64.8	0
	(58.4, 71.2)	71.4)	(58.8, 72.5)	73.7)	(59.7, 73.9)	(57.3, 72.8)	(57.7, 73.3)	(59.1, 73.0)	(58.4, 71.2)	(58.5, 70.4)	(0)
Age at onset	62.5		64.9		66.2		64.4		64.0		
(median IQR)	(56.5, 69.1)		(57.4 <i>,</i> 70.8)		(57.5, 72.5)		(56.6, 71.2)		(57.2, 69.9)		
Bulbar onset, n	36		55		97		42		275		
(%)	(26.5)		(29.6)		(37.0)		(23.7)		(35.3)		
Education											30 (0.6)
ISCED '97: 0-4	122	192	165	117	239	243	148	273	583	1348	(0.0)
	(92.4)	(90.1)	(90.7)	(63.6)	(93.7)	(84.1)	(83.6)	(78.2)	(74.0)	(71.7)	
ISCED '97: 5-6	10	21	17	67	16	46	29	76	205	532	
L, P	(7.6)	(9.9)	(9.3)	(36.4)	(6.3)	(15.9)	(16.4)	21.8)	(26.0)	(28.3)	

* ISCED = International Standard Classification of Education

Descriptive statistics – lifestyle factors

	Apu N=3		Lomb N = 2	•	Piedmont d'Ac N =	osta	Irel N =	and 526	The Net N = 3	herlands 2671	
- Variable											
Vallable	Patients	Controls	Patients	Controls	Patients	Controls	Patients	Controls	Patients	Controls	Overall
	(n = 141)	(n = 213)	(n = 186)	(n = 190)	(n = 262)	(n = 290)	(n = 177)	(n = 349)	(n = 791)	(n = 1880)	missing rate, n (%)
Ever smoked (%)	100	106	102	99	121	145	98	179	530	1248	36
Ν	(47.4)	(55.7)	(56.2)	(52.4)	(47.6)	(50.2)	(56.0)	(51.4)	(67.4)	(66.4)	(0.7)
Ever drank	93	84	126	133	165	197	148	286	691	1728	22
alcohol (%) ^{A N}	(43.7)	(63.6)	(69.2)	(70.0)	(64.7)	(68.2)	(83.6)	(81.9)	(87.4)	(92.0)	(0.4)
Leisure time							· ·			•	
METs	0.0	0.0	0.3	0.2	0.59	0.45	1.07	0.80	0.76	0.96	1199
Median (IQR) [№]	(0.0, 0.3)	(0.0, 0.3)	(0.0, 1.0)	(0.0, 0.9)	(0.19, 1.46)	(0.12, 1.35)	(0.36, 2.18)	(0.26, 1.84)	(0.23, 1.71)	(0.38, 1.84)	(27)

Exposure models

	Complete cases results ⁺		Excluding 118 C9or	f72 cases †	Adj. for lifestyle factors ⁺⁺	
Exposure	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value	Odds ratio (95% Cl)	P value
DOM-JEM						
Chromium	1.24		1.31		1.33	
	(0.98 – 1.58)	0.075	(1.03 – 1.67)	0.029	(1.04 – 1.79)	0.024
Nickel	1.12		1.18		1.21	
	(0.84 – 1.48)	0.436	(0.89 – 1.57)	0.245	(0.91 – 1.61)	0.192
ALOHA-JEM						
Metals	1.23		1.28		1.26	
	(1.03 – 1.48)	0.021	(1.06 – 1.54)	0.008	(1.05 – 1.51)	0.014
Aromatic solvents	1.20		1.22		1.21	
	(1.03 – 1.40)	0.020	(1.04 – 1.43)	0.014	(1.04 – 1.42)	0.017
Chlorinated solvents	1.13		1.15		1.16	
	(0.96 – 1.34)	0.148	(0.97 – 1.37)	0.103	(0.98 – 1.38	0.088
Other solvents	1.02		1.02		1.02	
	(0.89 – 1.17)	0.766	(0.88 – 1.17)	0.816	(0.88 – 1.18)	0.793
BEN-JEM						
Benzene	1.26		1.29		1.29	
	(1.08 – 1.47)	0.003	(1.11 – 1.51)	0.001	(1.10 – 1.50)	0.002

⁺ Adjusted for age, gender, education and cohort

++ Adjusted for age, gender, education, cohort, physical activity, smoking and alcohol status

Stratified models

	Gender†		Educa	tion++	Site of onset+++	
Exposure	Males	Females	ISED 0 – 4	ISED 5 – 6	Spinal	Bulbar
	(N = 2542)	(N = 1819)	(N = 3331)	(N = 1001)	(N = 956*)	(N = 467*)
DOM-JEM						
Chromium	1.28	0.90	1.21	2.77	1.27	1.25
	(0.99 <i>,</i> 1.65)	(0.36, 2.19)	(0.96, 1.54)	(0.76, 10.1)	(0.97, 1.66)	(0.85, 1.81)
Nickel	1.17	0.74	1.09	2.80	1.17	1.03
	(0.87 <i>,</i> 1.57)	(0.26, 1.93)	(0.82 <i>,</i> 1.45)	(0.65, 12.0)	(0.85 <i>,</i> 1.59)	(0.64, 1.60)
ALOHA-JEM						
Metals	1.23	1.33	1.20	1.40	1.23	1.27
	(1.01, 1.49)	(0.76, 2.29)	(1.00, 1.43)	(0.85, 2.25)	(1.01, 1.51)	(0.95, 1.69)
Aromatic solvents	1.26	1.10	1.26	0.80	1.22	1.26
	(1.05, 1.50)	(0.79 <i>,</i> 1.52)	(1.08, 1.47)	(0.54, 1.19)	(1.02, 1.45)	(0.99, 1.61)
Chlorinated solvents	1.16	1.06	1.22	0.75	1.10	1.26
	(0.96, 1.41)	(0.75 <i>,</i> 1.50)	(1.02, 1.45)	(0.48, 1.15)	(0.91, 1.33)	(0.97, 1.63)
Other solvents	1.08	0.95	1.07	0.87	1.06	0.99
	(0.90, 1.29)	(0.75, 1.20)	(0.91, 1.24)	(0.63, 1.20)	(0.90, 1.25)	(0.80, 1.23)
BEN-JEM						
Benzene	1.28	1.24	1.36	0.72	1.25	1.35
	(1.07, 1.54)	(0.92 <i>,</i> 1.66)	(1.16, 1.60)	(0.47, 1.10)	(1.05, 1.49)	(1.07, 1.71)

++ Adjusted for age, gender, and cohort.

+++ Adjusted for age, gender, education and cohort.

The University of Dublin

* N reflects count of spinal/bulbar patients. Control N for both was 2908

Bayesian Mixed models by study site

Logistic regression	Odds ratio (95% Cl)
Metals	1.28
	(1.06 – 1.54)
Chromium	1.31
	(1.03 – 1.67)
Nickel	1.18
	(0.89 – 1.57)

=> Allowing for heterogeneity leads to increased estimates

Occupational exposure to ALOHA_metals				
Cohort	OR	(95% Cred. Int.)		
Apulia	1.60	1.24 - 2.05		
Lombardy	2.29	1.76 - 2.96	→	
Piedmont & d'Aosta Valley	1.81	1.46 - 2.22		
Ireland	1.21	0.97 - 1.53	+ - -+	
The Netherlands	1.07	0.87 - 1.28	HEH	
Overall	1.54	1.1 - 2.1		
			0 0.5 1 1.5 2 2.5 3	

Occupational exposure to DOM_Chromium

Cohort	OR	(95% Cred. Int.)	
Apulia	1.46	1.1 - 1.95	
Lombardy	2.33	1.69 - 3.22	
Piedmont & d'Aosta Valley	1.79	1.38 - 2.34	
Ireland	1.23	0.9 - 1.67	+ -
The Netherlands	1.01	0.76 - 1.31	H -
Overall	1.50	1.02 - 2.21	

0 0.5 1 1.5 2 2.5 3

Occupational exposure to DOM_Nickel

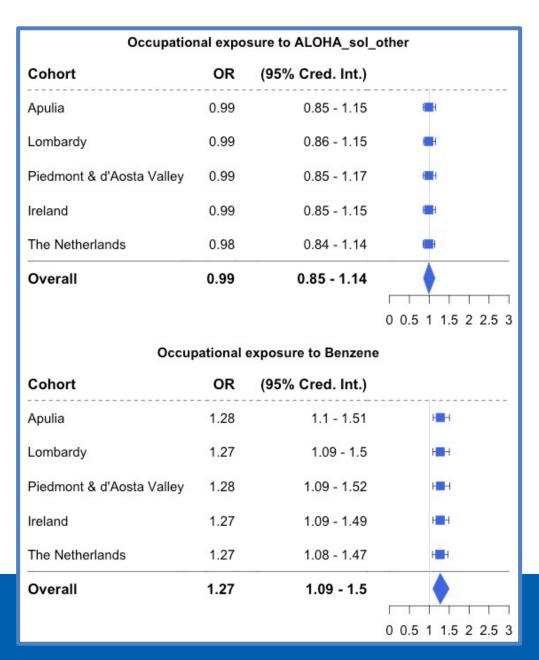
Cohort	OR	(95% Cred. Int.)	
Apulia	1.41	1 - 1.97	
Lombardy	2.13	1.51 - 3.09	· • · · ·
Piedmont & d'Aosta Valley	1.62	1.23 - 2.2	
Ireland	1.09	0.77 - 1.54	·
The Netherlands	0.91	0.68 - 1.23	H -
Overall	1.38	0.92 - 2.15	

0 0.5 1 1.5 2 2.5 3

Bayesian Mixed models by study site

Logistic	Odds ratio
regression	(95% CI)
Aromatic	1.22
solvents	(1.04 – 1.43)
Chlorinated	1.15
solvents	(0.97 – 1.37)

=> Allowing for heterogeneity – little change in estimates



Occupational exposure to ALOHA_sol_aromatic				
Cohort	OR	(95% Cred. Int.)		
Apulia	1.19	1 - 1.4	H	
Lombardy	1.19	1.01 - 1.41	HEH	
Piedmont & d'Aosta Valley	1.19	1.01 - 1.43	HEH	
Ireland	1.19	1 - 1.39	H	
The Netherlands	1.18	1 - 1.38	H	
Overall	1.19	1.01 - 1.4		
			0 0.5 1 1.5 2 2.5 3	
Occupational	exposu	re to ALOHA_sol_chl	orinated	
Cohort	OR	(95% Cred. Int.)		
Apulia	1.13	0.95 - 1.35	H an H	
Lombardy	1.12	0.95 - 1.35	H	
Piedmont & d'Aosta Valley	1.13	0.95 - 1.38	H	
Ireland	1.12	0.94 - 1.34	H	
The Netherlands	1.12	0.94 - 1.32	H	
Overall	1.13	0.95 - 1.33	•	
			0 0.5 1 1.5 2 2.5 3	

Bayesian Mixed models by study site

Logistic regression	Odds ratio (95% CI)
Other solvents	1.02 (0.88 – 1.17)
Benzene	1.29
	(1.11 – 1.51)

=> Allowing for heterogeneity – little change in estimates

Bayesian Mixed models by study site

- Why heterogeneity for metals but not solvents ?
 - Higher prevalence of exposure to metals in Northern Italy compared to other sites determined by occupations
 - Overall prevalence of exposures statistical noise?
 - From entire cohort (N = 4479)
 - » 26% exposed to aromatic solvents (ALOHA)
 - » 25% exposed to benzene (BEN)
 - » 16% exposed to metals (ALOHA)
 - » 8% exposed to chromium (DOM)

Conclusions

Bayesian Mixed models by study site

- 1. Metals, chromium and aromatic solvent exposures associated with increase odds of ALS
 - Robust to adjustment for lifestyle factors
- 2. Removing *C9orf72* patients increases odds ratios.
 - Consistent with multi-step theory of ALS and multiple pathways to ALS
 - Implicates exposures in sporadic ALS
 - ? Exposure studies in ALS may need to stratify by or exclude *C9orf72* expanded patients ?
- 3. Heterogeneity by study site for metals but not solvents

Acknowledgements - collaborators

Trinity College Dublin

Alice Vajda Mark Heverin Orla Hardiman

University of Utrecht

Brain Center Rudolf Magnus Anne E Visser Bas Middlekoop Jan Veldink Leonard van den Berg

Institute for Risk Assessment Sciences Hans Kromhout Susan Peters Calvin Ge Roel Vermeulen

University of Bari

Chiara Zecca Rosanna Tortelli Giancarlo Logroscino

University of Milan

IRCCS–Istituto di Ricerche Farmacologiche "Mario Negri," Elisabetta Pupillo Ettore Beghi

University of Turin

Fabrizio D'Ovidio Federico Casale Andrea Calvo Adriano Chiò

The University of Dublin

Thank You