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Overview:

• Machine	Learning	as	Computational	Statistics

• Graphical	Models:	
• Bayes	nets	
• MRFs
• Latent	variable	models	

• Inference:	
• Variational inference	
• MCMC

• Learning:
• EM
• Amortized	EM
• Variational autoencoder

• Generative	versus	discriminative	modeling

• Deep	Learning:
• CNN
• Dropout

• Bayesian	inference
• Bayesian	deep	models
• Compression
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ML	as	Statistics

• Data:	

• Optimize	objective:	

• maximize	log	likelihood:	

• minimize	loss:	

• ML	is	more	than	an	optimization	problem:	it’s	a	statistical	inference	problem.
• E.g.:	you	should	not	optimize	parameters	more	precisely	than	the	scale	at	which	the	MLE	fluctuates	

under	resampling	the	data:																																																	,	or	risk	overfitting.			

(unsupervised)

(supervised)

(supervised)
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Bias	Variance	Tradeoff

http://scott.fortmann-roe.com/docs/BiasVariance.html3



Graphical	Models

• A	graphical	representation	to	concisely	represent	(conditional)	independence	relations	between	variables.
• There	is	a	one-to-one	correspondence	between	the	dependencies	implied	by	the	graph	and	the	probabilistic	model.

• E.g.	Bayes	Nets	

P(all)	=	P(traffic-jam	|	rush-hour,	bad-weather,	accident)	x
P(sirens	|	accident)	x
P(accident	|	bad-weather)	x
P(bad-weather)	x	P(rush-hour)

P(rush-hour)	independent	P(bad-weather)		ßà sum_{traffic-jam,sirens,accident)	P(all)	=	P(rush-hour)	P(bad-weather)	
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Rush-hour	independent	of	bad-weather

Source:
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Markov	Random	Fields

Source:	Bishop

A	independent	B	given	C
(for	independence,	all	paths	must	be	blocked)

Undirected	edges

(Conditional)	independence	relationships	easy:	

Probability	distribution:	

:	maximal	clique	=	largest	completely	connected	subgraphs

Hammersley-Clifford	Theorem:	if	P>0	all	x,	then	all	(conditional)	independencies	in	P	match	those	of	the	graph. 6



Latent	Variable	Models

• Introducing	latent	(unobserved)	variables	will	dramatically	increase	the	capacity	of	a	model.

• Problem:	P(Z|X)	is	intractable	for	most	nontrivial	models
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Approximate	Inference

Variational Inference Sampling

Variational Family Q

q⇤

All probability distributions

• Deterministic
• Biased	
• Local	minima
• Easy	to	assess	convergence

• Stochastic	(sample	error)
• Unbiased
• Hard	to	mix	between	modes
• Hard	to	assess	convergence

p
p
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Independence	Samplers	&	MCMC

Generating Independent Samples

Sample from g and suppress samples with low p(θ|X) 
e.g.  a) Rejection Sampling  b) Importance Sampling

- Does not scale to high dimensions

Markov Chain Monte Carlo

• Make steps by perturbing previous sample

• Probability of visiting a state is equal to P(θ|X)

g

p(✓|X)
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Sampling	101	– What	is	MCMC?

Burn-in ( Throw away)

✓0 ✓1

T (✓t+1|✓t)

Given target distribution S0, design transitions s.t. pt(✓t) ! S0 as t ! 1

✓t+1

Samples from S0

Auto correlation time 
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Hamiltonian Monte Carlo

✓t

t t

High	τ Low		τ

✓t

I = hfiS0 ⇡ Î =
1

T

TX

t=1

f(✓t)

Bias(Î) = E[Î � I] = 0

Var(Î) = ⌧
Var(f)

T
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Sampling	101	– Metropolis-Hastings

Transition Kernel T(θt+1|θt)

✓0 ⇠ q(✓0|✓t)

Accept/Reject TestPropose

✓t+1  
⇢

✓0 with probability Pa

✓t with probability 1� Pa

✓t ✓t+1

Is the new state 
more probable?

Is it easy to come back 
to the current state?

Pa = min


1,

q(✓t|✓0)
q(✓0|✓t)

S0(✓0)

S0(✓t)

�

S0(✓) / p(✓)
NY

i=1

p(xi|✓)For Bayesian Posterior Inference, 

V ar[Î] / 1

T
2)                      is too high.

1) Burn-in is unnecessarily slow.
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Approximate MCMC

Low 
Variance
( Fast )

High 
Variance
( Slow )

High Bias Low Bias
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hfiP � hfiP✏

Minimizing	Risk

X	Axis	– ϵ,		Y	Axis	– Bias2,	Variance,	Risk
Computational	Time

Risk Bias Variance

E
h
(I � Î)2

i = +

2

�2⌧/T
Given finite sampling 
time, ϵ=0 is not the 
optimal setting.
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Stochastic Gradient Ascent

Gradient Ascent

Stochastic Gradient Langevin Dynamics

Langevin Dynamics

e.g.

↓
Metropolis-Hastings	Accept	Step

Stochastic Gradient Langevin Dynamics

Metropolis-Hastings	Accept	Step

Welling	&	Teh	2011
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Demo:	Stochastic	Gradient	LD
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A Closer Look …

large
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A Closer Look …

small
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Demo	SGLD:	large	stepsize
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Demo	SGLD:	small	stepsize
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Variational Inference

• Choose	tractable	family	of	distributions	(e.g.	Gaussian,	discrete)

• Minimize	over	Q:	

• Equivalent	to	maximize	over						:

P

Q

�
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Learning:	Expectation	Maximization

E-step:

Bound

M-step:

Gap:	

(variational inference)

(approximate	learning)
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Amortized	Inference

• Bij making	q(z|x)	a	function	of	x	and	sharing		
parameters					,	we	can	do	very	fast	inference	at	test	
time	(i.e.	avoid	iterative	optimization	of	qtest(z))

�
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Deep	NN	as	a	glorified	conditional	distribution	

X Y

P(Y|X)
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The	“Deepify”	Operator

• Find	a	graphical	model	with	conditional	distributions	and	replace	those	with	a	deep	NN.

• Logistic	regression	à deep	NN.

• “deep	survival	analysis”.	Cox’s	proportional	hazard	function:

• Latent	variable	model:	replace	generative	and	recognition	models	with	deep	NNs:	
à ”Variational Autoencoder”	(VAE).	

Replace	with	deep	NN!
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Variational Autoencoder

deepify

deepify
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Deep	Generative	Model:
The	Variational	Auto-Encoder

deterministic
NN	node

unobserved	
stochastic	node
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deep	neural	net
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Stochastic	Variational Bayesian	Inference	

very	high	variance

Sample	Z
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subsample	mini-batch	X	

B(Q) =

X

Z

Q(Z|X,�)(logP (X|Z,⇥) + logP (Z)� logQ(Z|X,�))

r�B(Q) =

X

Z

Q(Z|X,�)r� logQ(Z|X,�)(logP (X|Z,⇥) + logP (Z)� logQ(Z|X,�))

r�B(Q) =

1

N

1

S

NX

i=1

SX

s=1

r� logQ(Zis|Xi,�)(logP (Xi|Zis,⇥) + logP (Zis)� logQ(Zis|Xi,�))



Reducing	the	Variance:	
The	Reparametrization Trick
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Kingma 2013,	Bengio 2013,	Kingma &	Welling	2014

• Reparameterization:

• Applied	to	VAE:

• Example: rµ

Z
dzNz(µ,�)z

=

1

S

X

s

zs(zs � µ)/�2, zs ⇠ Nz(µ,�)

or

1

S

X

s

1, ✏s ⇠ N✏(0, 1), z = µ+ �✏

r�B(⇥,�) = r�

Z
dz Q�(z|x)[logP⇥(x, z)� logQ�(z|x)]

⇡ r�[logP⇥(x, zs)� logQ�(zs|x)]zs=g(✏s,�), ✏s ⇠ P (✏)
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Semi-Supervised	VAE	I

Q P

h
Sometimes	
observed
stochastic	
node

D.P.	Kingma,	D.J.	Rezende,	S.	Mohamed,	M.	Welling,	NIPS	2014

(normal	VB	objective)

(boosting	influence	q(y|x)	)





Discriminative	or	Generative?	

• Advantages	generative	models:
• Inject	expert	knowledge	
• Model	causal	relations
• Interpretable
• Data	efficient
• More	robust	to	domain	shift
• Facilitate	un/semi-supervised	learning

-Deep	Learning

-Kernel	Methods

-Random	Forests

-Boosting

-Bayesian	Networks

-Probabilistic	Programs

-Simulator	Models

• Advantages	discriminative	models:
• Flexible	map	from	input	to	target	(low	bias)
• Efficient	training	algorithms	available	
• Solve	the	problem	you	are	evaluating	on.
• Very	successful	and	accurate!
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Big	N	vs.	Small	N?

N=10^8-10^9

-Customer	Intelligence
-Finance
-Video/image
-Internet	of	Things

N	=	100-1000

-Healthcare	(p>>N)
-Generative,	causal	models
generalize	much	better	to	new
unknown	situation	(domain	invariance)

We	need	statistical	efficiency We	need	computational	efficiency
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Combining	Generative	and Discriminative	Models

Use	physics

Use	causality

Use	expert	
knowledge

Black	box	DNN/CNN



Deep	Convolutional	Networks

Backward:	backpropagation	(propagate	error	signal	backward)

Forward:	Filter,	subsample,	filter,	nonlinearity,	subsample,	….,	classify

34

• Input	dimensions	have	"topology”:	(1D,	speech,	2D	image,	3D	MRI,	2+1D	video,	4D	fMRI)



Dropout
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Example:	Dermatology
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Example:	Retinopathy
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What do	these	Problems have	in	common?

It’s	the	same	CNN	in	all	cases:	Inception-v3
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So...,	CNNs	work	really	well.

However:
• They are way too big
• They	consume	too	much	energy
• They use too much memory

• à we need to make them more efficient!
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Reasons	for	Bayesian	Deep	Learning

• Automatic model selection / pruning
• Automatic	regularization
• Realistic	prediction	uncertainty	(important	for	decision	making)

Computer	Aided	Diagnosis Autonomous	Driving



Example

Increased	uncertainty away from data



Bayesian	Learning

Picture credit:

Complex models can have lower 
marginal likelihood:

P (X|M) =

Z
d⇥ P (X|⇥,M)P (⇥|M)

P (⇥|X,M) =
P (X|⇥,M)P (⇥|M)

P (X|M)

P (x|X,M) =

Z
d⇥ P (x|⇥,M)P (⇥|X,M)

P (M |X) =
P (X|M)P (M)

P (X)

P (X) =
X

M

P (X|M)P (M)

(prediction)

(model	selection)

(evidence)

(posterior)

(model	evidence)



Variational Bayes	

logP (X) �
Z

⇥
d⇥ Q(⇥) [logP (X|⇥) + logP (⇥)� logQ(⇥)] ⌘ B(Q(⇥)|X)

= EQ(⇥)[logP (X|⇥)]�KL[Q(⇥)||P (⇥)])
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Sparsifying &	Compressing	CNNs

• DNNs	are	vastly	overparameterized (e.g.	distillation,	Bucilua et	al	2006).

• Interpret	variational	bound	as	coding	cost	for	data transmission (minimum	description	length)

• Idea:	learn	a	soft	weight	sharing	prior,	a.k.a.	quantize	the	weights (Nowlan &	Hinton	1991,	Ullrich	et	al	2016)

error	loss	~N complexity	loss	~const.

= EQ(⇥)[logP (X|⇥)]�KL[Q(⇥)||P (⇥)])
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Full	Bayesian	Deep	Learning

flow	of
information

The	signal	in	NNs	are	very	robust	to	noise	addition	(e.g	dropout)

"neurons"	act	
as	bottlenecks

• Marginalize	out	weights	for	the	price	of	introducing	stochastic	hidden	units.
• Reinterpret	stochasticity	on	hidden	units	as	dropout	noise.
• Use	sparsity	inducing	priors	to	prune	weights	/	hidden	units.	

THE	PLAN:



Stochastic	Variational Bayes	

very	high	variance

sample

48

subsample	mini-batch	X	

B(Q(⇥)|X) =

Z

⇥
d⇥ Q(⇥) [logP (X|⇥) + logP (⇥)� logQ(⇥)]

r�B =

Z

⇥
d⇥ Q�(⇥) r� logQ�(⇥) [logP (X|⇥) + logP (⇥)� logQ�(⇥)]

r�B =

1

S

SX

s=1

r� logQ�(⇥s)

"
N

n

nX

i=1

logP (xi|⇥s) + logP (⇥s)� logQ�(⇥s)

#

• Reparametrization? Yes	but	not	enough:	same	sample								for	all	data	cases	Xi in	minibatch induces	high	
correlations	between	data-cases	and	thus	high	variance	in	gradient.

⇥s



Local	Reparametrization

F

W
• Hidden	units	now	become	stochastic	and	correlated.
• We	draw	different	samples	Fis for	different	data-cases	in	the	minibatch

(and	it’s	much	less	expensive	than	resampling	all	the	weights	
independently	per	data	case)

Conclusion:	using	this	trick	we	can	further	reduce	variance	in	the	gradients

compute exactlyReparameterize:

B(X)

Kingma,	Salimans	&	Welling 2015

P (X|⇥) ! P (Y |W,X)(																																		)



Two	Layers

X Y

W2

W1

F

B H = �(B)
Now use the “normal” 
reparameterization trick



Variational Dropout

multiplicative dropout noise

If                                                                 then

Conclusion: by using a special form of posterior we simulate dropout noise:
i.e. dropout can be understood as variational Bayesian inference with multiplicative noise. 

B=AW

A

W

Y Gal, Z Ghahramani 2016, Dropout	as	a Bayesian approximation:	Representing	model	uncertainty	in deep	learning

S Wang, C Manning, Fast dropout training



Sparsity	Inducing	Priors

(improper prior) (variational dropout posterior)

Learn dropout rate      .  When                    weight is pruned 

(Kingma, Salimans, Welling 2015, Mochanov,	Ashuka,	Vetrov 2017)

Conclusion:	we	can	learn	the	dropout	rates	and	prune	unnecessary	weights.



Variational Dropout	

Animation: Molchanov, D., Ashukha, A. and Vetrov, D. 



Animation: Molchanov, D., Ashukha, A. and Vetrov, D. 
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Node	(instead	of	Weight)	Sparsification

Use hierarchical  prior: 

(dropout multiplicative noise)

Prior-posterior pair

(Louizos,	Ullrich,	Welling,	2017)
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Conclusion:	by	using	special,	hierarchical	priors	we	can	prune	hidden	units	instead	of	individual	weights	
(which	is	much	better	for	compression).

P (W, z) =
Y

hidden units i

p(zi)
Y

units j outgoing from node i

P (wij |zi)



Preliminary	Results	 (Louizos,	Ullrich,	Welling	2017,	submitted)	

• Compression	rate	of	a	factor	700x	with	no	loss	in	accuracy!
• Compression	rates	for	node	sparsity	are	higher	because	

encoding	is	cheaper.

Additional	Bayesian	Bonus:
By	monitoring	posterior	fluctuations
of	weights	one	can	determine	their	
fixed	point	precision.	
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Conclusions
• Deep	learning	is	a	no	silver	bullet:	it	is	mainly	very	good	at	signal	processing	(auditory,	image	data)

• Optimization	plays	an	important	role	in	getting	good	solutions	(e.g.	reducing	variance	gradients)

• But… deep	learning	is	more	than	optimization,	it’s	also	statistics!

• DL	can	be	successfully	combined	with	”classical”	graphical	models	(as	a	glorified	conditional	distribution)

• Bayesian	DL	has	a	elegant	interpretation	as	principled	dropout

• Bayesian	DL	is	ideally	suited	for	compression

• There	is	a	lot	we	do	not	understand	about	DL:
• Why	do	they	not	overfit (easy	to	get	0	training	error	on	data	with	random	labels)
• Why	does	SGD	regularize	so	effectively?
• Strange	behavior	in	the	face	of	adversarial	examples
• Huge	over-parameterization	(up	to	400x)
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