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• Generative models take training samples from some data 
distribution and learn a model that represents that distribution. 

• Density estimation: 

• Sample generation:

Generative modeling

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution p

data

and return an estimate of that distribution. The estimate p

model

can be evaluated for
a particular value of x to obtain an estimate p

model

(x) of the true density p

model

(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many di↵erent ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution p

data

, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution p

model

. In some cases, the
model estimates p

model

explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from p

model

, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.
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๏ Autoregressive models 
• PixelCNN 

๏ Latent variable models 
• Variational Autoencoders 

- VAE 
- Improved strategies for inference 

• Generative Adversarial Networks 
- GAN 
- Wasserstein GAN 
- ALI

Generative models II: Outline
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• Autoregressive generative models are well known for sequence data 
(language modeling, time series, etc.) 

• Less obviously applicable to arbitrary  
(non-sequential) observations 

• Some history: 
 

...

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

1

logistic regression for the conditionals (Frey et al., 1996)

neural networks for the conditionals (Bengio and Bengio, 2000)

idem, with new weight sharing (NADE) (Larochelle and Murray, Gregor and Lecun, 2011) 

Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel Network, etc.
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Autoregressive generative models
• Choose an ordering of the dimensions in x. 
• Define the conditionals in the product rule 

expression of p(x).             

• Properties 
- Pros: p(x) is tractable, so easy to train, easy to 

sample (though slower) 
- Cons: doesn’t have a natural latent representation

...

Deep learning

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

October 25, 2012

Abstract

Math for my slides “Deep learning”.

• x h

(1)
h

(2)
h

(3)

1

p(x) =
DY

k=1

p(xk|x<k)
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PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 
arXiv preprint arXiv:1601.06759 (2016).

Idea: use masked convolutions to enforce the autoregressive relationship 

x1
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xn

xn2

Context 

xn2

p(xi | x<i)

0 255
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0

0

0
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =

n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2
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Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats

as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32 ⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0  50  100  150  200  250  0  50  100  150  200  250

 0  50  100  150  200  250  0  50  100  150  200  250

 0                                                                               255

0                                                                            255 0                                                                               255  0                                                                               255

 0                                                                               255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”arXiv preprint arXiv:1601.06759 (2016).

p(xi | x<i) = p(xi,R | x<i)p(xi,G | xi,R,x<i)p(xi,B | xi,R, xi,G,x<i)

autoregressive over color channels
R G B

R G B

R G B
Mask A

Mask B

Context

8-bits pixel values (multinoulli distribution)
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PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.

x1

xi

xn

xn2

Context 

xn2

How can convolutions make 
this raster scan faster?

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Use a stack of masked convolutions

Training can be parallelized, though generation is still a sequential operation over pixels
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PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 
arXiv preprint arXiv:1601.06759 (2016).

PixelCNN Row LSTM Diagonal BiLSTMmasked convolution

only depends on pixel 
above and to the left

composing multiple 
layers increases the 

context size
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van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.

There is a problem with this 
form of masked convolution.

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Stacking layers of masked 
convolution creates a blindspot 

 Improving PixelCNN
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van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.

Blind spot

Stacking layers of masked 
convolution creates a blindspot 

Horizontal stack

Vertical stack

Solution: use two stacks of convolution, 
a vertical stack and a horizontal stack

 Improving PixelCNN I
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p

p
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2p

p
Split feature maps

p = #feature maps

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” NIPS 2016.

Use more expressive nonlinearity: hk+1 = tanh(Wk,f ⇤ hk)� �(Wk,g ⇤ hk)

 Improving PixelCNN II

Vertical stack (in) Horizontal stack (in)

Vertical stack (out) Horizontal stack (out)

This information flow (between 
vertical and horizontal stacks) 
preserves the correct pixel 
dependencies
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

PixelCNN: Experimental Results
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

PixelCNN: Experimental Results
Conditional Image Generation with PixelCNN Decoders 

van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

PixelCNN: Experimental Results
Conditional Image Generation with PixelCNN Decoders 

van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016
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Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
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PixelCNN: Experimental Results
Topics: CIFAR-10
• Performance measured in bits/dim

score actually generalize better. Gated PixelCNN outperforms the PixelCNN by 0.11 bits/dim, which
has a very significant effect on the visual quality of the samples produced, and which is close to the
performance of PixelRNN.

Model NLL Test (Train)
Uniform Distribution: [30] 8.00
Multivariate Gaussian: [30] 4.70
NICE: [4] 4.48
Deep Diffusion: [24] 4.20
DRAW: [9] 4.13
Deep GMMs: [31, 29] 4.00
Conv DRAW: [8] 3.58 (3.57)
RIDE: [26, 30] 3.47
PixelCNN: [30] 3.14 (3.08)
PixelRNN: [30] 3.00 (2.93)

Gated PixelCNN: 3.03 (2.90)

Table 1: Test set performance of different models on CIFAR-10 in bits/dim (lower is better), training
performance in brackets.

In Table 2 we compare the performance of Gated PixelCNN with other models on the ImageNet
dataset. Here Gated PixelCNN outperforms PixelRNN; we believe this is because the models are
underfitting, larger models perform better and the simpler PixelCNN model scales better. We were
able to achieve similar performance to the PixelRNN (Row LSTM [30]) in less than half the training
time (60 hours using 32 GPUs). For the results in Table 2 we trained a larger model with 20 layers
(Figure 2), each having 384 hidden units and filter size of 5⇥ 5. We used 200K synchronous updates
over 32 GPUs in TensorFlow [1] using a total batch size of 128.

32x32 Model NLL Test (Train)
Conv Draw: [8] 4.40 (4.35)
PixelRNN: [30] 3.86 (3.83)

Gated PixelCNN: 3.83 (3.77)

64x64 Model NLL Test (Train)
Conv Draw: [8] 4.10 (4.04)
PixelRNN: [30] 3.63 (3.57)

Gated PixelCNN: 3.57 (3.48)

Table 2: Performance of different models on ImageNet in bits/dim (lower is better), training perfor-
mance in brackets.

3.2 Conditioning on ImageNet Classes

For our second experiment we explore class-conditional modelling of ImageNet images using Gated
PixelCNNs. Given a one-hot encoding hi for the i-th class we model p(x|hi). The amount of
information that the model receives is only log(1000) ⇡ 0.003 bits/pixel (for a 32x32 image). Still,
one could expect that conditioning the image generation on class label could significantly improve
the log-likelihood results, however we did not observe big differences. On the other hand, as noted
in [27], we observed great improvements in the visual quality of the generated samples.

In Figure 3 we show samples from a single class-conditional model for 8 different classes. We see that
the generated classes are very distinct from one another, and that the corresponding objects, animals
and backgrounds are clearly produced. Furthermore the images of a single class are very diverse: for
example the model was able to generate similar scenes from different angles and lightning conditions.
It is encouraging to see that given roughly 1000 images from every animal or object the model is able
to generalize and produce new renderings.

5

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016
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Parallel Multiscale Autoregressive Density Estimation  
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner,  Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time of PixelCNN? 
• Yes, via multiscale generation: 

Parallel Multiscale Autoregressive Density Estimation
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Figure 2. Example pixel grouping and ordering for a 4 ⇥ 4 image. The upper-left corners form group 1, the upper-right group 2, and so
on. For clarity we only use arrows to indicate immediately-neighboring dependencies, but note that all pixels in preceding groups can
be used to predict all pixels in a given group. For example all pixels in group 2 can be used to predict pixels in group 4. In our image
experiments pixels in group 1 originate from a lower-resolution image. For video, they are generated given the previous frames.

Figure 3. A simple form of causal upscaling network, mapping from a K ⇥ K image to K ⇥ 2K. The same procedure can be applied in
the vertical direction to produce a 2K ⇥ 2K image. In reference to figure 2, the leftmost images could be considered “group 1” pixels;
i.e. the upper-left corners. The network shown here produces “group 2” pixels; i.e. the upper-right corners, completing the top-corners
half of the image. (A) In the simplest version, a deep convolutional network (in our case ResNet) directly produces the right image from
the left image, and merges column-wise. (B) A more sophisticated version extracts features from a convolutional net, splits the feature
map into spatially contiguous blocks, and feeds these in parallel through a shallow PixelCNN. The result is then merged as in (A).

3. Model
The main design principle that we follow in building the
model is a coarse-to-fine ordering of pixels. Successively
higher-resolution frames are generated conditioned on the
previous resolution (See for example Figure 1). Pixels are
grouped so as to exploit spatial locality at each resolution,
which we describe in detail below.

The training objective is to maximize log P(x; ✓). Since the
joint distribution factorizes over pixel groups and scales,
the training can be trivially parallelized.

3.1. Network architecture

Figure 2 shows how we divide an image into disjoint
groups of pixels, with autoregressive structure among the
groups. The key property to notice is that no two adjacent
pixels of the high-resolution image are in the same group.
Also, pixels can depend on other pixels below and to the
right, which would have been inaccessible in the standard
PixelCNN. Each group of pixels corresponds to a factor in
the joint distribution of equation 2.

Concretely, to create groups we tile the image with 2 ⇥ 2
blocks. The corners of these 2⇥2 blocks form the four pixel
groups at a given scale; i.e. upper-left, upper-right, lower-
left, lower-right. Note that some pairs of pixels both within
each block and also across blocks can still be dependent.
These additional dependencies are important for capturing
local textures and avoiding border artifacts.

Figure 3 shows an instantiation of one of these factors as a
neural network. Similar to the case of PixelCNN, at train-
ing time losses and gradients for all of the pixels within
a group can be computed in parallel. At test time, infer-
ence proceeds sequentially over pixel groups, in parallel
within each group. Also as in PixelCNN, we model the
color channel dependencies - i.e. green sees red, blue sees
red and green - using channel masking.

In the case of type-A upscaling networks (See Figure 3A),
sampling each pixel group thus requires 3 network evalua-
tions 1. In the case of type-B upscaling, the spatial feature

1However, one could also use a discretized mixture of logistics
as output instead of a softmax as in Salimans et al. (2017), in
which case only one network evaluation is needed.



Parallel Multiscale Autoregressive Density Estimation  
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner,  Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time 
of PixelCNN? 

• Yes, via multiscale generation. 
• Also seems to help to provide 

better global structure

Parallel Multiscale Autoregressive Density Estimation

Scott Reed 1 Aäron van den Oord 1 Nal Kalchbrenner 1 Sergio Gómez Colmenarejo 1 Ziyu Wang 1

Dan Belov 1 Nando de Freitas 1

Abstract
PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more e�cient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512⇥ 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow e�cient sampling.

1. Introduction
Many autoregressive image models factorize the joint dis-
tribution of images into per-pixel factors:

p(x1:T ) =
TY

t=1

p(xt |x1:t�1) (1)

For example PixelCNN (van den Oord et al., 2016b) uses
a deep convolutional network with carefully designed fil-
ter masking to preserve causal structure, so that all factors
in equation 1 can be learned in parallel for a given image.
However, a remaining di�culty is that due to the learned
causal structure, inference proceeds sequentially pixel-by-
pixel in raster order.

In the naive case, this requires a full network evaluation
per pixel. Caching hidden unit activations can be used to
reduce the amount of computation per pixel, as in the 1D

1DeepMind. Correspondence to: Scott Reed <reed-
scot@google.com>.

4 8 16 32

64 128

256

64 128 256

“A yellow bird with a black head, orange eyes and an orange bill.”

Figure 1. Samples from our model at resolutions from 4 ⇥ 4 to
256⇥ 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

case for WaveNet (Oord et al., 2016; Ramachandran et al.,
2017). However, even with this optimization, generation is
still in serial order by pixel.

Ideally we would generate multiple pixels in parallel,
which could greatly accelerate sampling. In the autore-
gressive framework this only works if the pixels are mod-
eled as independent. Thus we need a way to judiciously
break weak dependencies among pixels; for example im-
mediately neighboring pixels should not be modeled as in-
dependent since they tend to be highly correlated.

Multiscale image generation provides one such way to
break weak dependencies. In particular, we can model cer-
tain groups of pixels as conditionally independent given a
lower resolution image and various types of context infor-
mation, such as preceding frames in a video. The basic idea
is obvious, but nontrivial design problems stand between
the idea and a workable implementation.

First, what is the right way to transmit global information
from a low-resolution image to each generated pixel of the
high-resolution image? Second, which pixels can we gen-
erate in parallel? And given that choice, how can we avoid
border artifacts when merging sets of pixels that were gen-
erated in parallel, blind to one another?
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Latent Variable Models
• The Variational Autoencoder model: 

- Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning 
Representations (ICLR) 2014. 

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep 
latent Gaussian models. ICML 2014.

z2

z1 x1
x3

x2

g

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 19



Latent Variable Models

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p�(x|z) with the learned parameters �.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
posterior approximation q⇥(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and ⇥
denote the variational mean and s.d. evaluated at datapoint i, and let µj and ⇥j simply denote the
j-th element of these vectors. Then:

⇥
q�(z) log p(z) dz =

⇥
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p�(x|z) with the learned parameters �.
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of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
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Latent Variable Models

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007
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• latent variable model:  learn a mapping from some latent variable z to a complicated 
distribution on x. 

• Can we learn to decouple the true explanatory factors underlying the data distribution? 
E.g. separate identity and expression in face images

p(z) = something simple

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)

p(x | z) = g(z)

21



Latent Variable Models

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007
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• latent variable model:  learn a mapping from some latent variable z to a complicated 
distribution on x. 

• Can we learn to decouple the true explanatory factors underlying the data distribution? 
E.g. separate identity and expression in face images

p(z) = something simple

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)

p(x | z) = g(z)

z :

x :

g(z):

22



• Where does z come from? — The classic DAG problem. 
• The VAE approach: introduce an inference machine                that 

learns to approximate the posterior               . 

• Define a variational lower bound on the data likelihood: 

• What is               ?

Variational Auto-Encoder (VAE)

regularization term reconstruction term

qφ(z | x)
pθ(z | x)

pθ(x) ≥ L(θ,φ, x)

qφ(z | x)

L(�, �, x) = Eq�(z|x) [log p�(x, z) � log q�(z | x)]

= Eq�(z|x) [log p�(x | z) + log p�(z) � log q�(z | x)]

= �DKL (q�(z | x)� p�(z)) + Eq�(z|x) [log p�(x | z)]
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VAE Inference model
• The VAE approach: introduce an inference model                 that learns to 

approximates the intractable posterior                by optimizing the variational 
lower bound:  

• We parameterize                with another neural network:

qφ(z | x)
pθ(z | x)

qφ(z | x)

L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]

z :

x :

f(x):

qφ(z | x) = q(z; f(x,φ))

z :

x :

g(z):

pθ(x | z) = p(x; g(z, θ))

24



Reparametrization trick
• Adding a few details + one really important trick 
• Let’s consider z to be real and 
• Parametrize z as                                            where 
• (optional) Parametrize x as                                           where

x :

f(z):

qφ(z | x) = N (z;µz(x),σz(x))

{ {µz(x) σz(x) z :

g(z):

σx(z) {

µx(z) {

z = µz(x) + σz(x)ϵz ϵz = N (0, 1)

ϵx = N (0, 1)x = µx(z) + σx(z)ϵx

25



Training with backpropagation!
• Due to a reparametrization trick, we can simultaneously train both the generative 

model                  and the inference model                 by optimizing the variational 
bound using gradient backpropagation.

qφ(z | x)pθ(x | z)

Forward propagation

Backward propagation

z

x x̂

qφ(z | x) pθ(x | z)

Objective function: L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]
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vanilla VAE samples

ImageNet (small)Labelled Faces in the Wild (LFW) 27

Impressive … 
 … at the time



Depthdeep encoder/decoder: Some component collapse

28Figures from Laurent Dinh & Vincent Dumoulin
Figures from Laurent Dinh & Vincent Dumoulin



Depthdeeper encoder/decoder: more component collapse

29Figures from Laurent Dinh & Vincent Dumoulin
Figures from Laurent Dinh & Vincent Dumoulin



PixelVAE
• Uses a PixelCNN in the VAE decoder to help avoid the blurring 

caused by the standard VAE assumption of independent pixels.

PixelCNN

PixelCNN

PixelCNN

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed Adrien Ali Taiga, 
Francesco Visin, David Vazquez, Aaron Courville. ICLR 2017



PixelVAE Samples (Gulrajani et al. 2017)

LSUN bedroom scenes (64x64) ImageNet (64x64)
31



PixelVAE

Under review as a conference paper at ICLR 2017

4.2.1 FEATURES MODELED AT EACH LAYER

To see which features are modeled by each of the multiple layers, we draw multiple samples while
varying the sampling noise at only a specific layer (either at the pixel-wise output or one of the
latent layers) and visually inspect the resulting images (Fig. 5). When we vary only the pixel-
level sampling (holding z1 and z2 fixed), samples are almost indistinguishable and differ only in
precise positioning and shading details, suggesting that the model uses the pixel-level autoregressive
distribution to model only these features. Samples where only the noise in the middle-level (8 ⇥
8) latent variables is varied have different objects and colors, but appear to have similar basic room
geometry and composition. Finally, samples with varied top-level latent variables have diverse room
geometry.

Figure 5: We visually inspect the variation in image features captured by the different levels of
stochasticity in our model. For the two-level latent variable model trained on 64 ⇥ 64 LSUN bed-
rooms, we vary only the top-level sampling noise (top) while holding the other levels constant,
vary only the middle-level noise (middle), and vary only the bottom (pixel-level) noise (bottom).
It appears that the top-level latent variables learn to model room structure and overall geometry,
the middle-level latents model color and texture features, and the pixel-level distribution models
low-level image characteristics such as texture, alignment, shading.

4.3 64⇥ 64 IMAGENET

The 64⇥64 ImageNet generative modeling task was introduced in (van den Oord et al., 2016a) and
involves density estimation of a difficult, highly varied image distribution. We trained a heirarchical
PixelVAE model (with a similar architecture to the model in section 4.2) of comparable size to the
models in van den Oord et al. (2016a;b) on 64⇥64 ImageNet in 5 days on 3 NVIDIA GeForce GTX
1080 GPUs. We report validation set likelihood in Table 2. Our model achieves a slightly lower log-
likelihood than PixelRNN (van den Oord et al., 2016a), but a visual inspection of ImageNet samples
from our model (Fig. 6) reveals them to be significantly more globally coherent than samples from
PixelRNN.

7

varying only the top-level 
latent variables

varying only the bottom-
level latent variables

varying only the pixel-level 
noise



Inverse Autoregressive Flow (Kingma et al., NIPS 2016)

• Standard VAE posteriors are factorized - limiting how well they can (marginally) fit 
the prior. 

• IAF greatly improves the flexibility of the posterior distributions, and allows for a 
much better fit between the posteriors and the prior. 

33

(a) Prior distribution (b) Posteriors in standard VAE (c) Posteriors in VAE with IAF

Figure 1: Best viewed in color. We fitted a variational auto-encoder (VAE) with a spherical Gaussian
prior, and with factorized Gaussian posteriors (b) or inverse autoregressive flow (IAF) posteriors (c)
to a toy dataset with four datapoints. Each colored cluster corresponds to the posterior distribution of
one datapoint. IAF greatly improves the flexibility of the posterior distributions, and allows for a
much better fit between the posteriors and the prior.

improving inference models including previously used normalizing flows, this transformation is well
suited to high-dimensional tensor variables, such as spatio-temporally organized variables.

We demonstrate this method by improving inference networks of deep variational auto-encoders.
In particular, we train deep variational auto-encoders with latent variables at multiple levels of the
hierarchy, where each stochastic variable is a three-dimensional tensor (a stack of featuremaps), and
demonstrate improved performance.

2 Variational Inference and Learning

Let x be a (set of) observed variable(s), z a (set of) latent variable(s) and let p(x, z) be the parametric
model of their joint distribution, called the generative model defined over the variables. Given a
dataset X = {x1

, ...,x

N} we typically wish to perform maximum marginal likelihood learning of its
parameters, i.e. to maximize

log p(X) =

NX

i=1

log p(x

(i)
), (1)

but in general this marginal likelihood is intractable to compute or differentiate directly for flexible
generative models, e.g. when components of the generative model are parameterized by neural
networks. A solution is to introduce q(z|x), a parametric inference model defined over the latent
variables, and optimize the variational lower bound on the marginal log-likelihood of each observation
x:

log p(x) � Eq(z|x) [log p(x, z)� log q(z|x)] = L(x;✓) (2)

where ✓ indicates the parameters of p and q models. Keeping in mind that Kullback-Leibler diver-
gences DKL(.) are non-negative, it’s clear that L(x;✓) is a lower bound on log p(x) since it can be
written as follows ):

L(x;✓) = log p(x)�DKL(q(z|x)||p(z|x)) (3)

There are various ways to optimize the lower bound L(x;✓); for continuous z it can be done efficiently
through a re-parameterization of q(z|x), see e.g. (Kingma and Welling, 2013; Rezende et al., 2014).

As can be seen from equation (3), maximizing L(x;✓) w.r.t. ✓ will concurrently maximize log p(x)

and minimize DKL(q(z|x)||p(z|x)). The closer DKL(q(z|x)||p(z|x)) is to 0, the closer L(x;✓) will
be to log p(x), and the better an approximation our optimization objective L(x;✓) is to our true objec-
tive log p(x). Also, minimization of DKL(q(z|x)||p(z|x)) can be a goal in itself, if we’re interested
in using q(z|x) for inference after optimization. In any case, the divergence DKL(q(z|x)||p(z|x))
is a function of our parameters through both the inference model and the generative model, and
increasing the flexibility of either is generally helpful towards our objective.
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• Normalizing flows: the transformation of a probability density 
through a sequence of invertible mappings. 

• Transformation of random variables:                 , 
For invertible functions: 

• Chaining together a sequence:    

34

z′ = f(z) f−1(z′) = z

log qK(zK) = log q0(z0)−
K∑

k=1

log

∣∣∣∣det
∂fk

∂zk

∣∣∣∣

zK = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0)

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣
−1

Normalizing Flows (Rezende and Mohamed, 2015)

by the Inverse 
Function Theorem



Normalizing Flows (Rezende and Mohamed, 2015)

• Law of the unconscious statistician: expectations w.r.t. the 
transformed density qK(zK) can be written as expectations w.r.t. the 
original q0(z0).  For                                                          , 

• The variational lower bound:

35

zK = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0)

EqK

[
g(zK)] = Eq0 [g(fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0))

]

L(�, �, x) = Eq�(z|x) [log p�(x, z) � log q�(z | x)]

= EqK(zK) [log p(x, zK) � log qK(zK)]

= Eq0(z0)

�
log p(x, zK) � log q0(z0) +

K�

k=1

log

����det
�fk

�zk�1

����

�



VAE-IAF: Building rich posteriors via a sequence 
of autoregressive latent variables
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t
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are triangular with zeros on the

diagonal. As a result, dzt
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is triangular with �t on the diagonal, with determinant
QD
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that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
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The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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Algorithm 1: Pseudo-code of an approximate posterior with Inverse Autoregressive Flow (IAF)
Data:

x: a datapoint, and optionally other conditioning information
✓: neural network parameters
EncoderNN(x;✓): encoder neural network, with additional output h
AutoregressiveNN[⇤](z,h;✓): autoregressive neural networks, with additional input h
sum(.): sum over vector elements
sigmoid(.): element-wise sigmoid function

Result:
z: a random sample from q(z|x), the approximate posterior distribution
l: the scalar value of log q(z|x), evaluated at sample ’z’

[µ,�,h] EncoderNN(x;✓)
✏ ⇠ N (0, I)

z � � ✏+ µ
l �sum(log� +

1
2✏

2
+

1
2 log(2⇡))

for t 1 to T do
[m, s] AutoregressiveNN[t](z,h;✓)
�  sigmoid(s)

z � � z+ (1� �)�m

l l � sum(log�)
end

computation involved in this transformation is clearly proportional to the dimensionality D. Since
variational inference requires sampling from the posterior, such models are not interesting for direct
use in such applications. However, the inverse transformation is interesting for normalizing flows, as
we will show. As long as we have �i > 0 for all i, the sampling transformation above is a one-to-one
transformation, and can be inverted: ✏i =

yi�µi(y1:i�1)
�i(y1:i�1)

.

We make two key observations, important for normalizing flows. The first is that this inverse
transformation can be parallelized, since (in case of autoregressive autoencoders) computations of
the individual elements ✏i do not depend on eachother. The vectorized transformation is:

✏ = (y � µ(y))/�(y) (7)
where the subtraction and division are elementwise.

The second key observation, is that this inverse autoregressive operation has a simple Jacobian
determinant. Note that due to the autoregressive structure, @[µi,�i]/@yj = [0, 0] for j � i. As a
result, the transformation has a lower triangular Jacobian (@✏i/@yj = 0 for j > i), with a simple
diagonal: @✏i/@yi = �i. The determinant of a lower triangular matrix equals the product of the
diagonal terms. As a result, the log-determinant of the Jacobian of the transformation is remarkably
simple and straightforward to compute:

log det

����
d✏

dy

���� =
DX

i=1

� log �i(y) (8)

The combination of model flexibility, parallelizability across dimensions, and simple log-determinant,
make this transformation interesting for use as a normalizing flow over high-dimensional latent space.

4 Inverse Autoregressive Flow (IAF)

We propose a new type normalizing flow (eq. (5)), based on transformations that are equivalent to
the inverse autoregressive transformation of eq. (7) up to reparameterization. See algorithm 1 for
pseudo-code of an appproximate posterior with the proposed flow. We let an initial encoder neural
network output µ0 and �0, in addition to an extra output h, which serves as an additional input to
each subsequent step in the flow. We draw a random sample ✏ ⇠ N (0, I), and initialize the chain
with:

z0 = µ0 + �0 � ✏ (9)
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Algorithm 1: Pseudo-code of an approximate posterior with Inverse Autoregressive Flow (IAF)
Data:

x: a datapoint, and optionally other conditioning information
✓: neural network parameters
EncoderNN(x;✓): encoder neural network, with additional output h
AutoregressiveNN[⇤](z,h;✓): autoregressive neural networks, with additional input h
sum(.): sum over vector elements
sigmoid(.): element-wise sigmoid function

Result:
z: a random sample from q(z|x), the approximate posterior distribution
l: the scalar value of log q(z|x), evaluated at sample ’z’

[µ,�,h] EncoderNN(x;✓)
✏ ⇠ N (0, I)

z � � ✏+ µ
l �sum(log� +

1
2✏

2
+

1
2 log(2⇡))

for t 1 to T do
[m, s] AutoregressiveNN[t](z,h;✓)
�  sigmoid(s)

z � � z+ (1� �)�m

l l � sum(log�)
end

computation involved in this transformation is clearly proportional to the dimensionality D. Since
variational inference requires sampling from the posterior, such models are not interesting for direct
use in such applications. However, the inverse transformation is interesting for normalizing flows, as
we will show. As long as we have �i > 0 for all i, the sampling transformation above is a one-to-one
transformation, and can be inverted: ✏i =

yi�µi(y1:i�1)
�i(y1:i�1)

.

We make two key observations, important for normalizing flows. The first is that this inverse
transformation can be parallelized, since (in case of autoregressive autoencoders) computations of
the individual elements ✏i do not depend on eachother. The vectorized transformation is:

✏ = (y � µ(y))/�(y) (7)
where the subtraction and division are elementwise.

The second key observation, is that this inverse autoregressive operation has a simple Jacobian
determinant. Note that due to the autoregressive structure, @[µi,�i]/@yj = [0, 0] for j � i. As a
result, the transformation has a lower triangular Jacobian (@✏i/@yj = 0 for j > i), with a simple
diagonal: @✏i/@yi = �i. The determinant of a lower triangular matrix equals the product of the
diagonal terms. As a result, the log-determinant of the Jacobian of the transformation is remarkably
simple and straightforward to compute:

log det

����
d✏

dy

���� =
DX

i=1

� log �i(y) (8)

The combination of model flexibility, parallelizability across dimensions, and simple log-determinant,
make this transformation interesting for use as a normalizing flow over high-dimensional latent space.

4 Inverse Autoregressive Flow (IAF)

We propose a new type normalizing flow (eq. (5)), based on transformations that are equivalent to
the inverse autoregressive transformation of eq. (7) up to reparameterization. See algorithm 1 for
pseudo-code of an appproximate posterior with the proposed flow. We let an initial encoder neural
network output µ0 and �0, in addition to an extra output h, which serves as an additional input to
each subsequent step in the flow. We draw a random sample ✏ ⇠ N (0, I), and initialize the chain
with:

z0 = µ0 + �0 � ✏ (9)
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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Note that in models with multiple latent variables, the inference model is typically factorized into
partial inference models with some ordering; e.g. q(za, zb|x) = q(za|x)q(zb|za,x). We’ll write
q(z|x, c) to denote such partial inference models, conditioned on both the data x and a further context
c which includes the previous latent variables according to the ordering.

2.1 Requirements for Computational Tractability

Requirements for the inference model, in order to be able to efficiently optimize the bound, are that it
is (1) computationally efficient to compute and differentiate its probability density q(z|x), and (2)
computationally efficient to sample from, since both these operations need to be performed for each
datapoint in a minibatch at every iteration of optimization. If z is high-dimensional and we want
to make efficient use of parallel computational resources like GPUs, then parallelizability of these
operations across dimensions of z is a large factor towards efficiency. This requirement restrict the
class of approximate posteriors q(z|x) that are practical to use. In practice this often leads to the use
of diagonal posteriors, e.g. q(z|x) ⇠ N (µ(x),�2

(x)), where µ(x) and �(x) are often nonlinear
functions parameterized by neural networks. However, as explained above, we also need the density
q(z|x) to be sufficiently flexible to match the true posterior p(z|x).

2.2 Normalizing Flow

Normalizing Flow (NF), introduced by (Rezende and Mohamed, 2015) in the context of stochastic
gradient variational inference, is a powerful framework for building flexible posterior distributions
through an iterative procedure. The general idea is to start off with an initial random variable with a
relatively simple distribution with known (and computationally cheap) probability density function,
and then apply a chain of invertible parameterized transformations ft, such that the last iterate zT has
a more flexible distribution2:

z0 ⇠ q(z0|x), zt = ft(zt�1,x) 8t = 1...T (4)

As long as the Jacobian determinant of each of the transformations ft can be computed, we can still
compute the probability density function of the last iterate:

log q(zT |x) = log q(z0|x)�
TX

t=1

log det

����
dzt

dzt�1

���� (5)

However, (Rezende and Mohamed, 2015) experiment with only a very limited family of such
invertible transformation with known Jacobian determinant, namely:

ft(zt�1) = zt�1 + uh(w

T
zt�1 + b) (6)

where u and w are vectors, wT is w transposed, b is a scalar and h(.) is a nonlinearity, such that
uh(w

T
zt�1+ b) can be interpreted as a MLP with a bottleneck hidden layer with a single unit. Since

information goes through the single bottleneck, a long chain of transformations is required to capture
high-dimensional dependencies.

3 Inverse Autoregressive Transformations

In order to find a type of normalizing flow that scales well to high-dimensional space, we consider
Gaussian versions of autoregressive autoencoders such as MADE (Germain et al., 2015) and the
PixelCNN (van den Oord et al., 2016b). Let y be a variable modeled by such a model, with some
chosen ordering on its elements y = {yi}Di=1. We will use [µ(y),�(y)] to denote the function of the
vector y, to the vectors µ and �. Due to the autoregressive structure, the Jacobian is lower triangular
with zeros on the diagonal: @[µi,�i]/@yj = [0, 0] for j � i. The elements [µi(y1:i�1),�i(y1:i�1)]

are the predicted mean and standard deviation of the i-th element of y, which are functions of only
the previous elements in y.

Sampling from such a model is a sequential transformation from a noise vector ✏ ⇠ N (0, I) to the
corresponding vector y: y0 = µ0 + �0 � ✏0, and for i > 0, yi = µi(y1:i�1) + �i(y1:i�1) · ✏i. The

2where x is the context, such as the value of the datapoint. In case of models with multiple levels of latent
variables, the context also includes the value of the previously sampled latent variables.

3



VAE-IAF: MNIST log likelihood 
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Table 1: Generative modeling results on the dynamically sampled binarized MNIST version used
in previous publications (Burda et al., 2015). Shown are averages; the number between brackets
are standard deviations across 5 optimization runs. The right column shows an importance sampled
estimate of the marginal likelihood for each model with 128 samples. Best previous results are repro-
duced in the first segment: [1]: (Salimans et al., 2014) [2]: (Burda et al., 2015) [3]: (Kaae Sønderby
et al., 2016) [4]: (Tran et al., 2015)

Model VLB log p(x) ⇡

Convolutional VAE + HVI [1] -83.49 -81.94
DLGM 2hl + IWAE [2] -82.90
LVAE [3] -81.74
DRAW + VGP [4] -79.88

Diagonal covariance -84.08 (± 0.10) -81.08 (± 0.08)
IAF (Depth = 2,Width = 320) -82.02 (± 0.08) -79.77 (± 0.06)
IAF (Depth = 2,Width = 1920) -81.17 (± 0.08) -79.30 (± 0.08)
IAF (Depth = 4,Width = 1920) -80.93 (± 0.09) -79.17 (± 0.08)
IAF (Depth = 8,Width = 1920) -80.80 (± 0.07) -79.10 (± 0.07)

Deep 
generative model

x

z3

z2

z1

Bidirectional 
inference model

VAE with 
bidirectional inference

+ =

z3

z2

z1

x

… …

z3

z2

z1

x

… …

x

…

ELU

ELU

+

ELU

ELU

+

Bottom-Up 
ResNet Block

Top-Down 
ResNet Block

Layer Prior: 
z ~ p(zi|z>i)

+

Identity

Layer Posterior: 
z ~ q(zi|z>i,x)

= Convolution ELU = Nonlinearity= Identity

Figure 3: Overview of our ResNet VAE with bidirectional inference. The posterior of each layer is
parameterized by its own IAF.

binarized MNIST: -79.10. On Hugo Larochelle’s statically binarized MNIST, our VAE with deep
IAF achieves a log-likelihood of -79.88, which is slightly worse than the best reported result, -79.2,
using the PixelCNN (van den Oord et al., 2016b).

6.2 CIFAR-10

We also evaluated IAF on the CIFAR-10 dataset of natural images. Natural images contain a much
greater variety of patterns and structure than MNIST images; in order to capture this structure well,
we experiment with a novel architecture, ResNet VAE, with many layers of stochastic variables, and
based on residual convolutional networks (ResNets) (He et al., 2015, 2016). Please see our appendix
for details.

Log-likelihood. See table 2 for a comparison to previously reported results. Our architecture with
IAF achieves 3.11 bits per dimension, which is better than other published latent-variable models,
and almost on par with the best reported result using the PixelCNN. See the appendix for more
experimental results. We suspect that the results can be further improved with more steps of flow,
which we leave to future work.

Synthesis speed. Sampling took about 0.05 seconds/image with the ResNet VAE model, versus
52.0 seconds/image with the PixelCNN model, on a NVIDIA Titan X GPU. We sampled from the
PixelCNN naïvely by sequentially generating a pixel at a time, using the full generative model at each
iteration. With custom code that only evaluates the relevant part of the network, PixelCNN sampling
could be sped up significantly; however the speedup will be limited on parallel hardware due to the
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• Formally, express the game between discriminator D and 
generator G with the minimax objective: 

where:  
-      is the data distribution 
-      is the model distribution implicitly defined by: 

- the generator input     is sampled from some simple 
noise distribution, (e.g. uniform or Gaussian).

GAN Objective

Pr

Pg

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))].

x̃ = G(z), z ∼ p(z)

z
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GAN Theory
• Optimal (nonparametric) discriminator: 

• Under an ideal discriminator, the generator minimizes the 
Jensen-Shannon divergence between      and     .Pr Pg

JS(Pr∥Pg) = KL

(
Pr

∥∥∥∥
Pr + Pg

2

)
+KL

(
Pg

∥∥∥∥
Pr + Pg

2

)

KL(Pr∥Pg) =

∫
log

(
pr(x)

pg(x)

)
pr(x)dµ(x)

D∗(x) =
pr(x)

pr(x) + pg(x)

where
42



• The minimax objective leads to vanishing gradients as the 
discriminator saturates. 

• In practice, Goodfellow et al (2014) advocate the heuristic 
training objective: 

‣ However, this modified loss function can still misbehave in 
the presence of a good discriminator.

GAN Theory … in practice

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))].

max
G

E
x̃∼Pg

[log(D(x̃))].
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Least-Squares GAN

(a) Generated by LSGANs.

(b) Generated by DCGANs (Reported in [13]).

Figure 5: Generated images on LSUN-bedroom.

where �(·) denotes the linear mapping function and y denotes the label vectors.

4 Experiments

In this section, we first present the details of datasets and implementation. Next,
we present the results of evaluating LSGANs on several scene datasets. Then we
compare the stability between LSGANs and regular GANs by two comparison
experiments. Finally, we evaluate LSGANs on a handwritten Chinese characters
dataset which contains 3740 classes.

Table 1: Statistics of the datasets.

Dataset #Samples #Categories
LSUN Bedroom 3, 033, 042 1
LSUN Church 126, 227 1
LSUN Dining 657, 571 1
LSUN Kitchen 2, 212, 277 1

LSUN Conference 229, 069 1
HWDB1.0 1,246,991 3,740

10

Xudong Mao, Qing Li†, Haoran Xie, Raymond 
Y.K. Lau and Zhen Wang, ArXiv, Feb. 2017

128x128 LSUN bedroom scenes
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GAN — Generative Adversarial Networks 
3D-GAN — Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling 
acGAN — Face Aging With Conditional Generative Adversarial Networks 
AC-GAN — Conditional Image Synthesis With Auxiliary Classifier GANs 
AdaGAN — AdaGAN: Boosting Generative Models 
AEGAN — Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets 
AffGAN — Amortised MAP Inference for Image Super-resolution 
AL-CGAN — Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts 
ALI — Adversarially Learned Inference 
AMGAN — Generative Adversarial Nets with Labeled Data by Activation Maximization 
AnoGAN — Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery 
ArtGAN — ArtGAN: Artwork Synthesis with Conditional Categorial GANs 
b-GAN — b-GAN: Unified Framework of Generative Adversarial Networks 
Bayesian GAN — Deep and Hierarchical Implicit Models 
BEGAN — BEGAN: Boundary Equilibrium Generative Adversarial Networks 
BiGAN — Adversarial Feature Learning 
BS-GAN — Boundary-Seeking Generative Adversarial Networks 
CGAN — Conditional Generative Adversarial Nets 
CCGAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks 
CatGAN — Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks 
CoGAN — Coupled Generative Adversarial Networks 
Context-RNN-GAN — Contextual RNN-GANs for Abstract Reasoning Diagram Generation 
C-RNN-GAN — C-RNN-GAN: Continuous recurrent neural networks with adversarial training 
CS-GAN — Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets 
CVAE-GAN — CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training 
CycleGAN — Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 
DTN — Unsupervised Cross-Domain Image Generation 
DCGAN — Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 
DiscoGAN — Learning to Discover Cross-Domain Relations with Generative Adversarial Networks 
DR-GAN — Disentangled Representation Learning GAN for Pose-Invariant Face Recognition 
DualGAN — DualGAN: Unsupervised Dual Learning for Image-to-Image Translation 
EBGAN — Energy-based Generative Adversarial Network 
f-GAN — f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization 
GAWWN — Learning What and Where to Draw 
GoGAN — Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking 
GP-GAN — GP-GAN: Towards Realistic High-Resolution Image Blending 
IAN — Neural Photo Editing with Introspective Adversarial Networks 
iGAN — Generative Visual Manipulation on the Natural Image Manifold 
IcGAN — Invertible Conditional GANs for image editing 
ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network 
Improved GAN — Improved Techniques for Training GANs 
InfoGAN — InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 
LAGAN — Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis 
LAPGAN — Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks 
LR-GAN — LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation 
LSGAN — Least Squares Generative Adversarial Networks

LS-GAN — Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities 
MGAN — Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks 
MAGAN — MAGAN: Margin Adaptation for Generative Adversarial Networks 
MAD-GAN — Multi-Agent Diverse Generative Adversarial Networks 
MalGAN — Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN 
MaliGAN — Maximum-Likelihood Augmented Discrete Generative Adversarial Networks 
MARTA-GAN — Deep Unsupervised Representation Learning for Remote Sensing Images 
McGAN — McGan: Mean and Covariance Feature Matching GAN 
MDGAN — Mode Regularized Generative Adversarial Networks 
MedGAN — Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks 
MIX+GAN — Generalization and Equilibrium in Generative Adversarial Nets (GANs) 
MPM-GAN — Message Passing Multi-Agent GANs 
MV-BiGAN — Multi-view Generative Adversarial Networks 
pix2pix — Image-to-Image Translation with Conditional Adversarial Networks 
PPGN — Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space 
PrGAN — 3D Shape Induction from 2D Views of Multiple Objects 
RenderGAN — RenderGAN: Generating Realistic Labeled Data 
RTT-GAN — Recurrent Topic-Transition GAN for Visual Paragraph Generation 
SGAN — Stacked Generative Adversarial Networks 
SGAN — Texture Synthesis with Spatial Generative Adversarial Networks 
SAD-GAN — SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks 
SalGAN — SalGAN: Visual Saliency Prediction with Generative Adversarial Networks 
SEGAN — SEGAN: Speech Enhancement Generative Adversarial Network 
SeGAN — SeGAN: Segmenting and Generating the Invisible 
SeqGAN — SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient 
SimGAN — Learning from Simulated and Unsupervised Images through Adversarial Training 
SketchGAN — Adversarial Training For Sketch Retrieval 
SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes 
Softmax-GAN — Softmax GAN 
SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 
S²GAN — Generative Image Modeling using Style and Structure Adversarial Networks 
SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks 
StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 
TGAN — Temporal Generative Adversarial Nets 
TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network 
TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis 
Triple-GAN — Triple Generative Adversarial Nets 
Unrolled GAN — Unrolled Generative Adversarial Networks 
VGAN — Generating Videos with Scene Dynamics 
VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models 
VAE-GAN — Autoencoding beyond pixels using a learned similarity metric 
VariGAN — Multi-View Image Generation from a Single-View 
ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks 
WGAN — Wasserstein GAN 
WGAN-GP — Improved Training of Wasserstein GANs 
WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

GAN Zoo Deep Hunt, blog by Avinash Hindupur
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DCGAN samples (Radford, Metz and Chintala; 2016)

LSUN bedroom scenes

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Z-space interpolations

48



Cartoon of the Image manifold
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What makes GANs special?
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Training a GAN: Distances between Manifolds
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Jensen-Shannon Divergence
z

Figure 1: These plots show ⇢(P✓,P0) as a function of ✓ when ⇢ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,P✓) is a continuous loss function on ✓ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z ⇥ Rd ! X be a function, that will
be denoted g✓(z) with z the first coordinate and ✓ the second. Let P✓ denote the
distribution of g✓(Z). Then,

1. If g is continuous in ✓, so is W (Pr,P✓).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,P✓)
is continuous everywhere, and di↵erentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,P✓) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let g✓ be any feedforward neural network4 parameterized by ✓, and
p(z) a prior over z such that Ez⇠p(z)[kzk] < 1 (e.g. Gaussian, uniform, etc.).

3
The argument for why this happens, and indeed how we arrived to the idea that Wasserstein

is what we should really be optimizing is displayed in Appendix A. We strongly encourage the

interested reader who is not afraid of the mathematics to go through it.

4
By a feedforward neural network we mean a function composed by a�ne transformations and

pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,

softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more

technical (even though very similar) so we omit it.

5

𝜽

JS
(P

r
∥P

g
)

JS(Pr∥Pg) =

{
log 2 if θ ̸= 0,

0 if θ = 0,
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• JS divergence is not a useful learning signal to train GANs.  

• An alternative: Earth-Mover (also called Wasserstein-1) 
distance. 

‣ Minimum cost of transporting mass to transform the 
distribution       into the distribution     .  

‣ The EM distance is continuous everywhere and 
differentiable almost everywhere (under mild assumptions). 

Earth-Movers Distance

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥]

Pr Pg
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Wasserstein Distance
z

• What is the EM (or Wasserstein) 
distance in this simple case?

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥]
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Wasserstein Distance

𝜽

z

Figure 1: These plots show ⇢(P✓,P0) as a function of ✓ when ⇢ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,P✓) is a continuous loss function on ✓ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z ⇥ Rd ! X be a function, that will
be denoted g✓(z) with z the first coordinate and ✓ the second. Let P✓ denote the
distribution of g✓(Z). Then,

1. If g is continuous in ✓, so is W (Pr,P✓).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,P✓)
is continuous everywhere, and di↵erentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,P✓) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let g✓ be any feedforward neural network4 parameterized by ✓, and
p(z) a prior over z such that Ez⇠p(z)[kzk] < 1 (e.g. Gaussian, uniform, etc.).

3
The argument for why this happens, and indeed how we arrived to the idea that Wasserstein

is what we should really be optimizing is displayed in Appendix A. We strongly encourage the

interested reader who is not afraid of the mathematics to go through it.

4
By a feedforward neural network we mean a function composed by a�ne transformations and

pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,

softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more

technical (even though very similar) so we omit it.

5

𝜽

W(Pr∥Pg) = |θ|

W
(P

r
∥P

g
)
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Wasserstein Distance

𝜽

z

Figure 1: These plots show ⇢(P✓,P0) as a function of ✓ when ⇢ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,P✓) is a continuous loss function on ✓ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z ⇥ Rd ! X be a function, that will
be denoted g✓(z) with z the first coordinate and ✓ the second. Let P✓ denote the
distribution of g✓(Z). Then,

1. If g is continuous in ✓, so is W (Pr,P✓).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,P✓)
is continuous everywhere, and di↵erentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,P✓) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let g✓ be any feedforward neural network4 parameterized by ✓, and
p(z) a prior over z such that Ez⇠p(z)[kzk] < 1 (e.g. Gaussian, uniform, etc.).

3
The argument for why this happens, and indeed how we arrived to the idea that Wasserstein

is what we should really be optimizing is displayed in Appendix A. We strongly encourage the

interested reader who is not afraid of the mathematics to go through it.

4
By a feedforward neural network we mean a function composed by a�ne transformations and

pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,

softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more

technical (even though very similar) so we omit it.

5

𝜽

W(Pr∥Pg) = |θ|

W
(P

r
∥P

g
)

∇θW (Pr,Pg)
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•                    might have nice properties compared to  

• However, the infimum is intractable in:  

• Can exploit Kantorovich-Rubinstein duality: 

where the supremum is over all the 1-Lipschitz functions f :

Wasserstein GAN Arjovsky, Chintala, Bottou (2017) 

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥]

W (Pr,Pg) JS(Pr,Pg)

W (Pr,Pg) = sup
∥f∥L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

X → R
59



• The WGAN Objective function: 

where      is the set of 1-Lipschitz functions. 

• Open question: how to effectively enforce the Lipschitz constraint 
on the critic D? 
- Arjovsky et al. (2017) propose to clip the weights of the critic to 

lie within a compact space [-c, c]. 
- Results in a subset of the k-Lipschitz functions (k is a function of c).

Wasserstein GAN Arjovsky, Chintala, Bottou (2017) 

min
G

max
D∈D

E
x∼Pr

[
D(x)

]
− E

x̃∼Pg

[
D(x̃))

]

D
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1. Underuse capacity 
2. Exploding and vanishing gradients

Issues with Weight Clipping

8 Gaussians 25 Gaussians Swiss Roll

Weight clipping

Gradient penalty

Figure 1: Value surfaces of WGAN critics trained to optimality on toy datasets. Critics trained with
weight clipping fail to capture higher moments of the data distribution. The ‘generator’ is held fixed
at the real data plus Gaussian noise.
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Figure 2: (a) Gradient norms of deep WGAN critics during training on toy datasets. Gradients
in WGAN with weight clipping always either explode or vanish, depending on the clipping value.
Training with gradient penalty provides stable gradients to earlier layers. (b) Histograms of weight
values for WGAN with weight clipping (left) and gradient penalty (right). Weight clipping pushes
weights to the extremes of the clipping range, and when this range is high, causes exploding gradi-
ents and slows training.

3.2 Exploding and vanishing gradients

We observe that the WGAN optimization process is difficult because of interactions between the
weight constraint and the cost function, which inevitably result in either vanishing or exploding
gradients, depending on the value of the clipping threshold c.

If the weights are constrained to be too small, the gradient vanishes as we backpropagate through
previous layers. This prevents earlier layers in the critic (and the generator) from receiving useful
training signal and can make learning very slow for deep nets.

On the other hand, if the weight constraint is too large, we find that the network suffers from ex-
ploding gradients instead. This is because the training objective encourages all of the weights in the
critic to lie at the extremes of their allowed range (we demonstrate this experimentally in Figure 2b).

To demonstrate the presence of vanishing and exploding gradients in weight-clipped WGAN, we
train WGAN on the Swiss Roll toy dataset, varying the clipping threshold c in [10

�1, 10

�2, 10

�3],
and plot the norm of the gradient of the critic loss with respect to successive layers of activations.
Our generator and critic are both 12-layer-deep ReLU MLPs without batch normalization. We show
in Figure 2a that for each of these values, the gradient either grows or decays exponentially as we
move farther back in the network. We find our method results in more stable gradients that neither
vanish nor explode, allowing training of more complicated networks.

4

61



• A property of the optimal WGAN critic: If                then there is a point       
.               such that for all points                                       (on a straight 
line between     and    ) then: 

• This implies the optimal WGAN critic has gradient norm 1 at   

• Gradient Penalty version of WGAN (i.e. the WGAN-GP) objective:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]

︸ ︷︷ ︸
Our gradient penalty

x ∼ Pr,
x̃ ∼ Pg

xt = tx+ (1− t)x̃

∇D∗(xt) =
x− xt

∥x− xt∥
xt

x x̃

62

Gradient Penalty Approach  
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (2017) 



x

x1

x2

x̃

x̂ Sample along straight lines:

� � U [0, 1], x � Pr, x̃ � Pg

x̂ = �x + (1 � �)x̃

E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
Gradient penalty:

Gradient Penalty Approach  
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (2017) 
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Comparison on difficult to train architectures

• Comparison based on 
recommended default 
parameter setting for 
each algorithm. 

• WGAN-GP is more 
robust to variations in 
training setups.

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D: DCGAN

G: 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

Gated multiplicative nonlinearities everywhere in G and D

tanh nonlinearities everywhere in G and D

101-layer ResNet G and D

Figure 4: Difficult GAN architectures trained with different methods. Only WGAN with gradient
penalty succeeds in training every architecture with a single choice of default settings, though the
other methods might have worked with tuning.

8
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other methods might have worked with tuning.
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Comparison on difficult to train architectures

• Comparison based on 
recommended default 
parameter setting for 
each algorithm. 

• WGAN-GP is more 
robust to variations in 
training setups.
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WGAN with Gradient Penalty
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But what about inference…
• How can we use generative models? 

- GANs can generate content, but somethings you want to make 
inference about observed data.   

• Can we incorporate an inference mechanism into GANs? 

• Can we learn an inference mechanisms using an adversarial 
training paradigm?
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Two papers, one model
• ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro                                    

Ben Poole, Alex Lamb, Martin Arjovsky (2016) ADVERSARIALLY 
LEARNED INFERENCE, arXiv:1606.00704 

• BiGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL 
FEATURE LEARNING, arXiv:1605.09782 

• But also showing results on Hierarchical ALI by Ishmael Belghazi, 
Sai Rajeshwar, Olivier Mastropietro  and Negar Rostamzadeh
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Adversarially learned inference: Main idea

• Cast the learning of both an inference model (encoder) and a 
generative model (decoder) in a GAN-like adversarial framework. 

• Discriminator is trained to discriminate between joint samples (x, z) 
from:   

- Encoder distribution q(x, z) = q(x) q(z | x),  or 

- Decoder distribution p(x, z) = p(z) p(x | z). 

• Generator learns conditionals q(z | x) and p(x | z) to fool the 
discriminator.

Data distribution

Prior distribution
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ALI: model diagram

D(x, z)

z ~ q(z | x)

x ~ q(x)

z ~ p(z)

x ~ p(x | z)

G
z(x

) G
x(z)

En
co

de
r D
ecoder
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Prior distribution
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Toy Example
• Learning the Identity function: 

Encoder: X ~ N(0,1) 
Decoder: Z ~ N(0,1)

Zihang Dai 71



Theoretical properties

In analogy with GAN, under an ideal 
discriminator, the generator minimizes 
the Jensen-Shannon divergence 
between p(x, z) and q(x, z).
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Samples Reconstructions

SVHN
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Samples Reconstructions

CelebA face dataset
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Hierarchical ALI: model diagram

D(x, z1, z2)z1 ~ q(z1 | x)

x ~ q(x)

G
z 1
(x

)En
co

de
r D

ecoder

G
z 2
(z

1)

z2 ~ q(z2 | z1)

z1 ~ p(z1 | z2)

x ~ p(x | z1)

z2 ~ p(z2)

G
x(z

1 )
G

z
1 (z

2 )
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Hierarchical ALI

Model samples

CelebA-128X128
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Reconstructions given z1, z2 Reconstructions given z2Re
co

n

D
at

a

Re
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n

D
at
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Hierarchical ALI:  CelebA-128X128
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Unconditional
ImageNet-128X128

Model samples

Hierarchical ALI
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Hierarchical ALI: ImageNet-128X128
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๏ Autoregressive models 
• PixelCNN 

๏ Latent variable models 
• Variational Autoencoders 

- VAEs 
- Inverse Autoregressive Flow: An improved strategy for inference 

• Generative Adversarial Networks 
- GAN 
- Wasserstein GAN 
- ALI

Generative models II: Outline
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