
Steps Towards Continual Learning

Some elements of Con+nual Learning

•  Learn	new	Skills	(Op0ons)	
•  Learn	new	Knowledge	(Op0on-Condi0onal	Predic0ons)	
• Reuse	/	Incorporate	learned	Skills	and	Knowledge	to	learn	more	
complex	Skills	and	Knowledge	[scalable,	w/o	catastrophic	forgeFng]	

•  Intrinsic	Mo0va0on	to	drive	experience	in	the	absence	of	(or	perhaps	
more	accurately,	too	long	a	delay	in)	Extrinsic	Rewards	

•  More	experienced	agents	(humans)	as	a	par0cularly	salient	target	of	Intrinsic	
Mo0va0on	(imita0on,	demonstra0on,	aLen0on,	etc.)	

•  Increasingly	competent	agent	over	0me	(not	just	in	terms	of	
Knowledge	and	Skills	it	has	but	also	in	terms	at	how	well	it	does	at	
accumula0ng	Extrinsic	Rewards)	[Learning	to	Learn	/	meta-learning]	

RL-centered	view	of	AI	

 A Child’s Playroom Domain (NIPS 2004)
 (An ancient Con+nual Learning Demonstra+on)

Agent	has:	hand,	eye,	marker	
Primi*ve	Ac*ons:	1)	move	hand	to	eye,	move	eye	to	hand,	move	eye	to	marker	

	move	eye	N,	S,	E,	W,	move	eye	to	random	object,	move	marker	to	eye,	
	move	marker	to	hand.	If	both	eye	and	hand	are	on	object,	operate	on	object	
	(e.g.,	push	ball	to	marker,	toggle	light	switch)	

	

Objects:	Switch	controls	room	lights;	Bell	rings	and	moves	one	square	if	ball	hits	it;		
Pressing	blue/red	block	turns	music	on	and	off;	Lights	have	to	be	on	to	see	colors;		
Can	push	blocks;	Money	cries	out	if	bell	and	music	both	sound	in	dark	room		
	Skills:	(example)	

To	make	monkey	cry	out:	Move	eye	to	switch,	move	hand	to	eye,	turn	lights	on,	move	eye	to	blue	block,	move		
hand	to	eye,	turn	music	on,	move	eye	to	switch,	move	hand	to	eye,	turn	light	off,	move	eye	to	bell,	move	marker	
to	eye,	move	eye	to	ball,	move	hand	to	ball,	kick	ball	to	make	bell	ring	
Uses	skills	(op*ons):	turn	lights	on,	turn	music	on,	turn	lights	off,	ring	bell			
	

Singh,	Barto	&	Chentanez	

Coverage of Con+nual Learning elements?
		

Intrinsic	reward	propor0onal	to	error	in	predic*on	of	an	(salient)	event	according	to	
the		op*on	model	for	that	event	(“surprise”);	Mo0vated	in	part	by	the	novelty	
responses	of	dopamine	neurons;	Behavior	determined	by	this	intrinsic	reward.	
•  (Cheat)	Built	in	salient	s0muli:	changes	in	light	intensity,	changes	in	sound	

intensity		
Incremental	Crea0on	of	Skills/Op0ons:	Upon	first	occurrence	of	salient	event	create	an		
op0on	for	that	event		and	add	it	to	skill-KB;	ini0alize	its	policy,	termina0on	condi0ons,	etc.	
	

Incremental	Crea0on	of	Predic0ons/Knowledge:	Upon	ini0a0ng	an	Op0on,	ini0alize	and		
start	building	an	Op0on-Model	
	

Upda0ng	Skills/Knowledge:	All	op0ons	and	op0on-models	are	updated	all	the	0me		
using	intra-op0on	learning		(learning	mul*ple	skills	and	knowledge	in	parallel)	
	

Reuse	of	Skills/Knowledge	to	Learn	Increasingly	Complex	Skills/Knowledge:	Use	model-based		
RL	(with	previously	learned	op0ons	as	ac0ons)	to	learn	new	skills/knowledge.	
	

Hierarchy of Reusable Skills

Saccade	to		
random	object	 marker	to	eye	Hardwired	Primi*ve	

Op*ons	

Turn	Light	On	 Turn	Light	Off	 Ring	Bell	

Turn	Music	On	 Turn	Music	Off	

Ac0vate	Toy	

Do the Intrinsic Mo+va+ons Help?

Discussion
1.  Learned	new	Skills/Op0ons	
2.  Learned	new	knowledge	in	the	form	of	predic0ons	for	the	new	Skills	

(op0on-models)	
3.  Reused	learned	Skills	to	learn	more	complex	Skills	(and	associated	

Knowledge)	
4.  Agent	got	more	competent	over	0me	at	Extrinsic	Reward	
	
Caveats:	
(Extremely)	Contrived	domain	
Intrinsic	Mo0va0ons	were	about	hard-wired	salient	events;	very	limited	form	of	
intrinsic	reward.	
All	Lookup	Tables	(and	so	scaling	and	catastrophic	forgeFng/interference	not	
present)	
	
Next:		On	Deriving	Intrinsic	Mo0va0ons	
	

Schmidhber	
Kaplan	&	Oudeyer	
Thrun	&	Moller	
Ring	
Others….	

On the Optimal Reward Problem*
(Where do Rewards Come From?)

*with	NuLapong	Chentanez,	Andrew	Barto,	Jonathan	Sorg,	Xiaoxiao	Guo	&	Richard	Lewis		
	
																						

Autonomous Agent Problem

•  Env.	State	Space	S	
• Agent	Ac0on	Space	A	
• Rewards	R:	S	->	scalars	
• Policy:	S	->	A	
	
	

Agent

Environment

StatesActions

Rewards

Critic

Agent’s	purpose	is	to	act	so	as	to	maximize	expected		
discounted	sum	of	rewards	over	a	0me	horizon	(the	
agent	may	or	may	not	have	a	model	to	begin	with).	

Preferences-Parameters Confound

•  (Most	oien	the)	star0ng	point	is	an	agent-designer	that	has	an	
objec*ve	reward	func*on	that	specifies	preferences	over	agent	
behavior	(it	is	oien	way	too	sparse	and	delayed)	

• What	should	the	agent’s	reward	func0on	be?	
• A	single	reward	func0on	confounds	two	roles	(from	the	designers	
point	of	view)	simultaneously	in	RL	agents	
1.  (Preferences)	It	expresses	the	agent-designer’s	preferences	over	behaviors	
2.  (Parameters)	Through	the	reward	hypothesis	it	expresses	the	RL	agent’s	

goals/purposes	and	becomes	parameters	of	actual	agent	behavior	

These	roles	seem	dis0nct;	should	they	be	confounded?	

Revised Autonomous Agent

Agent

Environment

StatesActions

Rewards

Critic

Agent

Internal Environment

Rewards

Critic

External Environment

Sensations

StatesDecisions

Actions

"Organism"

Agent	reward	is	internal	to	the	agent	
Parameters	to	be	designed	by	agent-designer	

Approaches to designing reward
•  Inverse	Reinforcement	Learning	(Ng	et.al.)	

•  Designer/operator	demonstrates	op0mal	behavior	
•  Clever	algorithms	for	automa0cally	determining	set	of	reward	func0on	such	
that	observed	behavior	is	op0mal	(e.g.,	Bayesian	IRL;	Ramachandran	&	Amir)	

•  Ideal:	Set	agent	reward	=	objec0ve	reward	(i.e.,	preserve	the	preferences	
parameters	confound)	

•  Reward	Shaping	
•  (Ng	et.al.)	agent	reward	=	objec0ve	reward	+	poten*al-based	reward	(breaks	
PP	confound)	

•  Objec0ve:	To	achieve	agent	with	objec0ve	reward’s	asympto0c	behavior	
faster!	[Also	Bayesian	Reward	Shaping	by	Ramachandran	et.al.]	

•  Preference	Elicita0on	(Ideal:	preserves	PP	confound)	
• Mechanism	Design	(in	Economics)	
•  Other	Heuris0c	Approaches	

Op+mal Reward Problem
• There	are	two	reward	func0ons	

1)  Agent-designer’s:	objec0ve	reward	RO	(given)	
2)  Agent’s:	reward	RI		
Agent	G(RI;Θ)	in		Environment	Env	produces	
(random)	interac0on	h	~	<Env,G(RI;Θ)>	

U0lity	of	interac0on	h	to	agent	is	UI(h)	=	Σt	RI(ht)	
U0lity	to	agent	designer	is	UO(h)	=	Σt	RO(ht)	
Op0mal	Reward	R*I	=		

€

argmaxRi∈{Ri} ExpEnv Exph~<Env,G(Ri;θ)> {UO (h)}{ }
Nested	Op0miza0ons;	Outer	reward	opt.;	Inner	Policy	opt.	

Illustra+on: Fish-or-Bait
E:	Fixed	loca0on	for	fish	and	bait	
A:	movement	ac0ons,	eat,	carry	
A:	observes	loca0on	&	food,	bait	when		
at	those	loca0ons	&	hunger-level	&		
carrying-status	
Bait	can	be	carried	or	eaten	
Fish	can	be	eaten	only	if	bait	is	
				carried	on	agent	
Eat	fish	->	not-hungry	for	1	step	
Eat	bait	->	med-hungry	for	1	step	else	hungry	
Agent	is	a	lookuptable	Q-learner	

Objec0ve	u0lity:	UO(h)	increment	of	1.0	for	each	fish	&	0.04	for	each	bait	eaten	
(but	to	reduce	sensi0vity	of	precise	numbers	chosen	we	will	search	over	addi0ve	
constants)	

Reward Space

!

"

#""

$"""

$#""

%"""

%#""

&"""

" #""" $"""" $#""" %"""" %#""" &"""" &#""" '"""" '#""" #""""

!
"#
$%
&'

(#
)%*

"+
#,
-

.',/0'$

()*+!,-*+./)010)+-02!0)3405!4+!)467!8.09:.2

()*+!;)3405!4+!)467!8.09:.2

Reward	features:	hunger-level	(3	values)	
(thus	generaliza0on	across	loca0on	is	built	in!)	

Mul0ple	experiments:	for	varying	life0mes/horizons	

>	by	3.0	

Life0me	length	at	which	agent		
has	enough	0me	to	learn	to	
eat	fish	with	internal	reward	

Life0me	length	at	which	agent	
has	enough	0me	to	learn	to		
eat	fish	with	designer’s	reward	

!

"#

"$%&

$

$%&

#

#%&

'$$$ ($$$ #'$$$ #($$$ ''$$$ '($$$)'$$$)($$$ *'$$$ *($$$

!"
#
$%
&'
()

"*
*+,
+"
-.
/

0)%+1)-

+,

-,

(PP Confound MaQers?) Mi+ga+on
Increasing	Agent-Designer	
U0lity	

Unbounded	agent	
with	confounded	reward	

Bounded	agent	
with	confounded	reward	

Bounded	agent	with		
op0mal	reward	

Policy Gradient for Reward Design (PGRD)

(Sorg,	Singh,	Lewis;	NIPS	2010)	

PGRD…

• Op0mizes	Reward	for	Planning	Agents	for	Full	depth-D	planning	as	
well	as	for	the	much	more	prac0cal	UCT	

• Computes	D-step	ac0on	values	QD(s,a)	
•  Selects	ac0ons	using	Boltzmann	distribu0on	parameterized	by	ac0on-
values	QD;	policy	denoted	μ	

• Agent	reward	is	parameterized	by	R(:,Θ)	

Deep Learning for Reward Design to Improve
UCT in ATARI (IJCAI 2016)

Forward View: From Rewards to U+lity

•  Monte	Carlo	average	of	root	node	

𝑄(𝑠↓0↑𝑁 ,𝑏)= ∑𝑖↑′ =0↑𝑁−1▒1↓𝑖↑′  (𝑠↓0↑𝑁 ,𝑏,0)/𝑛(𝑠↓0↑𝑁 ,𝑏,
0)  ∑ℎ↑′ =0↑𝐻−1▒𝛾↑ℎ↑′   [𝑅(𝑠↓ℎ↑′ ↑𝑖↑′  , 𝑎↓ℎ↑′ ↑𝑖↑′  )+CNN(
𝑠↓ℎ↑′ ↑𝑖↑′  , 𝑎↓ℎ↑′ ↑𝑖↑′  ;𝜃)]

Reward	Bonuses	

•  Execu0on	policy	of	UCT	

•  UCT’s	u0lity:	

𝜇(𝑎| 𝑠↓0↑𝑁 ;𝜃)=softmax (𝑄(𝑠↓0↑𝑁 ,𝑎;𝜃))	

𝜃↑∗ = argmax↓𝜃  E{∑𝑡=0↑𝑇−1▒𝑅(𝑠↓𝑡 , 𝑎↓𝑡 )| 𝜃}	

Extending	previous	work,	Sorg,	Jonathan,	et	al.	"Reward	design	via	online	gradient	ascent."	NIPS.	2010.	

Backward View: From U+li+es to CNN gradients

•  Monte	Carlo	average	of	root	node	

𝑄(𝑠↓0↑𝑁 ,𝑏)= ∑𝑖↑′ =0↑𝑁−1▒1↓𝑖↑′  (𝑠↓0↑𝑁 ,𝑏,0)/𝑛(𝑠↓0↑𝑁 ,𝑏,
0)  ∑ℎ↑′ =0↑𝐻−1▒𝛾↑ℎ↑′   [𝑅(𝑠↓ℎ↑′ ↑𝑖↑′  , 𝑎↓ℎ↑′ ↑𝑖↑′  )+CNN(
𝑠↓ℎ↑′ ↑𝑖↑′  , 𝑎↓ℎ↑′ ↑𝑖↑′  ;𝜃)]

Reward	Bonuses	

•  Real	execu0on	policy	of	UCT	in	learning:	

•  UCT’s	u0lity:	

𝜇(𝑎| 𝑠↓0↑𝑁 ;𝜃)=softmax (𝑄(𝑠↓0↑𝑁 ,𝑎;𝜃))	

𝜃↑∗ = argmax↓𝜃  E{∑𝑡=0↑𝑇−1▒𝑅(𝑠↓𝑡 , 𝑎↓𝑡 )| 𝜃}	

Gradient	calcula0on	and	variance	reduc0on	details	can	be	found	in	the	paper.	

0.1	 1	 10	 100	

UpNDown	

Cen0pede	

BeamRider	

Berzerk	

Assault	

VideoPinball	

BankHeist	

Phoenix	

SpaceInvaders	

WizarOfWor	

Carnival	

RiverRaid	

Robotank	

Pooyan	

BaLleZone	

MsPacman	

RoadRunner	

Seaquest	

Asterix	

Alien	

Amidar	

Breakout	

Q*Bert	

DemonALack	

StarGunner	

0.1	 1	 10	 100	

UpNDown	

Cen0pede	

BeamRider	

Berzerk	

Assault	

VideoPinball	

BankHeist	

Phoenix	

SpaceInvaders	

WizarOfWor	

Carnival	

RiverRaid	

Robotank	

Pooyan	

BaLleZone	

MsPacman	

RoadRunner	

Seaquest	

Asterix	

Alien	

Amidar	

Breakout	

Q*Bert	

DemonALack	

StarGunner	
Main Results: improving UCT

•  25	ATARI	games	
•  20	games	have	ra0o	larger	than	1	
• Not	an	apples-to-apples	
comparison	

•  ignores	the	computa0onal	overhead	
for	reward	bonus	

• An	apples-to-apples	comparison	
•  comparison	with	UCT	with	same	
0me	cost	per	decision	(i.e.	deeper	
or	wider	UCT)	

•  15	games	have	ra0o	larger	than	1	

Repeated Inverse Reinforcement
Learning

(for Lifelong Learning agents)

Satinder Singh*
Computer	Science	and	Engineering	

University	of	Michigan	
	

May	2017	
*with	Kareem	Amin	&	Nan Jiang

Inverse Reinforcement Learning
[Ng&Russell’00] [Abbeel&Ng’04]

•  Input	
-  Environment	dynamics	
e.g.,	an	MDP	without	a	reward	func0on	

-  Op0mal	behavior	
e.g.,	the	full	policy	or	trajectories	

•  Output:	the	inferred	reward	func0on	

•  Bad	news:	problem	fundamentally	ill-posed	

Unidentifiability of Inverse RL

•  Bad	news:	problem	fundamentally	ill-posed	

•  Good	news	(?):	may	s0ll	mimic	a	good	policy	for	this
task	even	if	reward	is	not	iden0fied	

Unidentifiability of Inverse RL

use	heuris0c	to	
guess	a	point		

[Ng&Russell’00]	The	set	of	possible	reward	vectors	is:	

And	yet…	

An	example	scenario:
•  Intent:	background	reward	func0on	θ* : S → [-1, 1]

-  no	harm	to	humans,	no	breaking	of	laws,	cost	considera0ons,	social	norms,	general	
preferences,	…	

•  Mul0ple	tasks: 	{(Et, Rt)}
-  Et	=	⟨S, A, Pt, γ, µt⟩ is	the	task environment
-  Rt	is	the	task-specific reward

•  Assump0on:	human	is	op0mal	in	⟨S, A, Pt, Rt + θ*, γ⟩

Lifelong Learning Agents

Can	we	learn	θ*	from	op0mal	demonstra0ons	on	a	few	tasks	OR	generalize	to	
new	ones?	

ini0al	distribu0on	

Looking more carefully at unidentifiability

There are two types of unidentifiability in IRL.

(1) Representational Unidentifiability

(2) Experimental Unidentifiability

Should be ignored.

Can be dealt with.

Representational Unidentifiability

Goal	of	Iden0fica0on	is	to	find	canonical	element	of	[θ*]	

“Experimenter” chooses tasks

Formal	protocol	

•  The	experimenter	chooses	{(Et, Rt)}
•  Human	subject	reveals	πt*	(op0mal	for	Rt + θ*	in	Et)	

Theorem:	If	any	task	may	be	chosen,	there	is	an	algorithm	

that	outputs	θ	s.t.	||θ - θ*||∞ ≤ ε aier	O(log(1/ε)) tasks.	

…
R1

+4

+0
+0

-2 +8

+0 +0 +0

Uncertainty
in θ*

[-10, 10] [-10, 10] [-10, 10] [0, 10] [-10, 0] [0, 10]

Theorem:	If	any	task	may	be	chosen,	there	is	an	algorithm	
that	outputs	θ	s.t.	||θ - θ*||∞ ≤ ε aier	O(log(1/ε)) tasks.	

fixed	environment	E

θ*

(unknown)

“Experimenter” chooses tasks

Uncertainty
in θ*+R2

…

+0
+0

θ*

(unknown)

-5 +5 -5

[0, 10] [-10, 0] [0, 10]

R2

[0, 5] [-5, 0] [5, 10]

fixed	environment	E

+4 -2 +8

Uncertainty
in θ*

Theorem:	If	any	task	may	be	chosen,	there	is	an	algorithm	
that	outputs	θ	s.t.	||θ - θ*||∞ ≤ ε aier	O(log(1/ε)) tasks.	

[-5, 5] [-5, 5] [-5, 5] Uncertainty
in θ*

“Experimenter” chooses tasks

Issue with the Omnipotent setting

• Mo0va0on	was	the	difficulty	for	a	human	to	specify	the	
reward	func0on	

• But	in	the	experiment,	we	ask:	“would	you	want	
something	if	it	costs	you	$X?”	

• Can	we	make	weaker	assump0ons	on	the	tasks?	

3
7	

Given	a	sequence	of	arbitrary	tasks	{(Et, Rt)} …
1.  Agent	proposes	a	policy	πt

2.  If	near-op0mal,	great!	

3.  If	not,	a	mistake	is	counted,	and	human	demonstrates	πt*

(op0mal	for	Rt + θ*	in	Et)	

Algorithm	design:	how	to	behave	(i.e.,	choose	πt)	?	

Analysis:	upper	bound	on	the	number	of	mistakes?	

If	{(Et, Rt)}	never	change…	
•  back	to	classical	inverse	RL	(θ ≠ θ*)	X		
•  agent	knows	how	to	behave	✓	

Nature chooses tasks

3
8	

Value and loss of a policy

Given	task	(E, R) where	E	=	⟨S, A, P, γ, µ⟩,	the	
(normalized)	value	of	a	policy	π is	defined	as:	

which	is	equal	to																							,	where	

discounted	occupancy	vector	()	

Define		

3
9	

Reformula+on of protocol

Every	environment	E induces	a	set	of	occupancy	vectors	{x(1), x(2), …, x(K)}
in (“arms”).	

1.  Agent	proposes	x.	Let	x*	be	the	op0mal	choice.		

2.  If	〈 θ* + R, x 〉 ≥ 〈 θ* + R, x* 〉 - ε,	great!	

3.  If	not,	a	mistake	is	counted,	and	x*	is	revealed.	

Formally,	we	use	transforma0on	to	Linear	Bandits	

Let	θ	be	some	guess	of	θ*	and	behave	accordingly:	

〈 θ , x 〉 ≥ 〈 θ , x* 〉

If	a	mistake	is	made:	

〈 θ* , x 〉 < 〈 θ* , x* 〉

(2) - (1)	:	

〈 θ* - θ, x* - x 〉 > 0

Algorithm outline

θ	

x* - x

How	to	choose	θ ?	

(1)

(2)

For	simplicity,	assume	for	now	that	R	= 0

4
1	

The ellipsoid algorithm

θ	

x* - x

Theorem:	the	number	of	total	mistakes	is	O(d2 log(d/ε)).

volume	shrinks	to	e-1/2(d+1)

x* does	not	have	to	be	
op0mal;	it	just	has	to	be	
beLer	than	x

gap?	

Ω(d log(1/ε))	lower	bound	

Experimenter
chooses tasks

Nature	chooses	
tasks	

log(1/ε) demo’s	

O(d2 log(d/ε))	demo’s	

choose	{(Et, Rt)}	to	iden0fy	θ*

choose	{πt}	to	minimize	loss	

Zero-Shot Task Generaliza+on by Learning
to Compose Sub-Tasks

Sa0nder	Singh	
	

Junhyuk	Oh,	Honglak	Lee,	Pushmeet	Kohli	

Rapid generaliza+on is key to Con+nual Learning

• Humans can easily infer the goal of unseen tasks from similar
tasks even without additional learning.

•  e.g.,) Pick up A, Throw B à Throw A ?

• When the task is composed of a sequence of sub-tasks, humans
can also easily generalize to unseen compositions of sub-tasks.

•  e.g.,) Pick up A and Throw B à Throw B and Pick up A ?

•  Imagine a household robot that is required to execute a list of jobs.
It is infeasible to teach the robot to do every possible combination
of jobs.

Problem: Instruc+on Execu+on

• Given
•  Randomly generated grid-world

•  A list of instructions as natural language

• Goal: execute instructions
• Some instructions require repetition

of the same sub-task
•  e.g.,) Pick up “all” eggs

• Random event
•  A monster randomly appears.

Visit	cow		
Pick	up	diamond	
Hit	all	rocks	
Pick	up	all	eggs	

Instruc7on	

Challenges

• Solving unseen sub-tasks itself is a hard problem.
• Deciding when to move on to the next instruction.

•  The agent is not given which instruction to execute.

•  Should detect when the current instruction is finished.

•  Should keep track of which instruction to solve.

• Dealing with long-term instructions and random events.
• Dealing with unbounded number of sub-tasks.
• Delayed reward

Overview

• Multi-task controller: 1) execute primitive actions given a sub-
goal and 2) predict whether the current sub-task is finished or not.

Meta
Controller

Multi-task
Controller

Observation Goal

Arg 1

Arg n

Sub-goal

Action

Terminal

Overview

• Multi-task controller: 1) execute primitive actions given a sub-
goal and 2) predict whether the current sub-task is finished or not.

• Meta controller: set sub-goals given a description of a goal.

Meta
Controller

Multi-task
Controller

Observation Goal

Arg 1

Arg n

Sub-goal

Action

Terminal

Meta
Controller

Multi-task
Controller

Observation Goal

Arg 1

Arg n

Sub-goal

Action

Terminal

Goal Decomposi+on

• A sub-goal is decomposed into several arguments.

Mul+-task Controller Architecture

• Given
•  Observation

•  Sub-goal arguments

• Do
•  Determine a primitive action

•  Predict whether the current state is
terminal or not

Conv

action

termination

Pick	up	 A	

Analogy Making Regulariza+on

• Desirable property

Visit	A	

Pick	up	A	

Visit	B	

Pick	up	B	
à	unseen	

Analogy Making Regulariza+on

• Objective function (contrastive loss)

Visit	A	

Pick	up	A	

Visit	B	

Pick	up	B	
à	unseen	

Mul+-task Controller: Training

• Policy Distillation followed by Actor-Critic fine-tuning
•  Policy Distillation: Train a separate policy for each sub-task and use them

as teachers to provide actions (labels) for the multi-task controller (student)
in supervised learning setting

• Final objective
•  RL objective + Analogy making + Termination prediction objective

Policy	Dis0lla0on	or	Actor-Cri0c	 Binary	classifica0on	

Meta Controller

Meta
Controller

Multi-task
Controller

Observation Goal

Arg 1

Arg n

Sub-goal

Action

Terminal

Meta Controller Architecture

• Given
•  Observation

•  Current sub-goal

•  Current instruction

•  Current sub-task termination

• Do
•  Determine which instruction to

execute

•  Set a sub-goal

Visit A
Pick up B
Hit C
Pick up D

Conv

Update	

No	update	

+1	

0	

-1	

Current		
sub-goal	

Sub-task	
termina0on	Current		

Instruc0on	

Parameter	Predic0on		

Analogy	making	

Meta Controller: Learning Temporal Abstrac+on

• Motivation
•  The meta controller operates at a high-level (sub-goal).

•  It is desirable for the meta controller to operate in larger time-scale.

• Goal: Update the sub-goal and the memory pointer only when it is
needed

• Method
•  Decide whether to update the sub-goal or not (binary decision)

•  If yes, update the memory pointer and update the sub-goal

•  If no, continue the previous sub-goal

Meta Controller: Learning Temporal Abstrac+on

Visit A
Pick up B
Hit C
Pick up D

Conv

Update	
No	update	

+1	

0	

-1	

Current		
sub-goal	

Sub-task	
termina0on	

Do	forward	propaga0on		
only	when	update	==	true	

Meta Controller: Learning Temporal Abstrac+on

Conv

Current		
sub-goal	

Sub-task	
termina0on	

Update	
No	update	

Copy	the	previous	sub-goal	

Does it Work?

Value Predic+on Networks*

	
	
Junhyuk	Oh,	Sa0nder	Singh,	Honglak	Lee	
	
*Under	Review	(on	arXiv	in	Late	July,	2017)	

Mo+va+on

• Observa0on	Predic0on	(Dynamics)	Models	are	difficult	to	build	in	
high-dimensional	domains.		

• We	can	make	lots	of	predic0on	at	different	temporal	scales	

•  So,	how	do	we	plan	without	predic0ng	observa0ons?	

VPNs	are	heavily	inspired	by	Silver	et.al’s	Predictron	
Predictron	was	limited	to	Policy	Evalua0on	
VPNs	extend	to	Learning	Op0mal	Control		

VPN: Architecture

One	Step	Rollout	 	Mul0	Step	Rollout	

Planning in VPNs

Learning in VPNs

Collect Domain: Results 1

Domain	 DQN	Traj.	 VPN	Traj.	

Collect Domain: Results 2

VPN	Plan	(20	steps)	 VPN	Plan	(12	steps)	

Collect Domain: Comparisons

0 10 20 30 40 50 60
Epoch

6.0

6.5

7.0

7.5

8.0

8.5

A
v
e
ra

g
e
 r

e
w

a
rd

GreeGy
ShorteVt
DQ1
231(1)
231(2)
231(3)
231(5)
V31(1)
V31(2)
V31(3)
V31(5)

VPN: Results on ATARI Games

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000
FroVtEite

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000
6eDqueVt

0 50 100 150 200
0

50

100

150

200

250

300

350

400
EQduro

0 50 100 150 200
0

500

1000

1500

2000
AlieQ

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000
4Bert

0 50 100 150 200
0

500

1000

1500

2000

2500

3000
0V. 3DFPDQ

0 50 100 150 200
0

100

200

300

400

500

600

700
APidDr

0 50 100 150 200
0

2000
4000
6000
8000

10000
12000
14000
16000
18000

.rull

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000
CrDzy CliPEer

D41
V31

Ques+ons?

