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Some elements of Continual Learning

e Learn new Skills (Options)
* Learn new Knowledge (Option-Conditional Predictions)

* Reuse / Incorporate learned Skills and Knowledge to learn more
complex Skills and Knowledge [scalable, w/o catastrophic forgetting]

* Intrinsic Motivation to drive experience in the absence of (or perhaps
more accurately, too long a delay in) Extrinsic Rewards

* More experienced agents (humans) as a particularly salient target of Intrinsic
Motivation (imitation, demonstration, attention, etc.)

* Increasingly competent agent over time (not just in terms of
Knowledge and Skills it has but also in terms at how well it does at
accumulating Extrinsic Rewards) [Learning to Learn / meta-learning]

RL-centered view of Al



A Child’s Playroom Domain (NIPS 2004)

(An ancient Continual Learning Demonstration)

Agent has: hand, eye, marker
Primitive Actions: 1) move hand to eye, move eye to hand, move eye to marker
move eye N, S, E, W, move eye to random object, move marker to eye,

move marker to hand. If both eye and hand are on object, operate on object
(e.g., push ball to marker, toggle light switch)

Objects: Switch controls room lights; Bell rings and moves one square if ball hits it;
Pressing blue/red block turns music on and off; Lights have to be on to see colors;
Can push blocks; Money cries out if bell and music both sound in dark room

Skills: (example)

To make monkey cry out: Move eye to switch, move hand to eye, turn lights on, move eye to blue block, move

hand to eye, turn music on, move eye to switch, move hand to eye, turn light off, move eye to bell, move marker
to eye, move eye to ball, move hand to ball, kick ball to make bell ring

Uses skills (options): turn lights on, turn music on, turn lights off, ring bell

Singh, Barto & Chentanez



Opﬂons (Precup, Sutton, & Singh, 1997)

A generalization of actions to include temporally-extended
courses of action

An option is a triple o =< 1,7, >

* ] . initiation set : the set of states in which o may be started
* & : is the policy followed during o

* f: termination conditions: gives the probability of

terminating in each state

Example: robot docking
/ : all states in which charger is in sight
n : pre-defined controller
p :terminate when docked or charger not visible



Coverage of Continual Learning elements?

Intrinsic reward proportional to error in prediction of an (salient) event according to

the option model for that event (“surprise”); Motivated in part by the novelty

responses of dopamine neurons; Behavior determined by this intrinsic reward.

* (Cheat) Built in salient stimuli: changes in light intensity, changes in sound
intensity

Incremental Creation of Skills/Options: Upon first occurrence of salient event create an
option for that event and add it to skill-KB; initialize its policy, termination conditions, etc.

Incremental Creation of Predictions/Knowledge: Upon initiating an Option, initialize and
start building an Option-Model

Updating Skills/Knowledge: All options and option-models are updated all the time
using intra-option learning (learning multiple skills and knowledge in parallel)

Reuse of Skills/Knowledge to Learn Increasingly Complex Skills/Knowledge: Use model-based
RL (with previously learned options as actions) to learn new skills/knowledge.



Rewards
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Hierarchy of Reusable Skills

/

Turn Music On

AN

Turn Light On Turn Light Off

AN

Hardwired Primitive Saccade to
Options — random object

Activate Toy

Turn Music Off

Ring Bell

marker to eye © o



Average Number of Actions to Salient Event

Do the Intrinsic Motivations Help?
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Discussion

1. Learned new Skills/Options

2. Learned new knowledge in the form of predictions for the new Skills
(option-models)

3. Reused learned Skills to learn more complex Skills (and associated
Knowledge)

4. Agent got more competent over time at Extrinsic Reward

Caveats:

(Extremely) Contrived domain

Intrinsic Motivations were about hard-wired salient events; very limited form of
intrinsic reward.

All Lookup Tables (and so scaling and catastrophic forgetting/interference not

present) schmidhber
.. . . ] Kaplan & Oudeyer
Next: On Deriving Intrinsic Motivations Thrun & Moller
Ring

Others....



On the Optimal Reward Problem*

(Where do Rewards Come From?)

Satinder Singh
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Autonomous Agent Problem

Environment

* Env. State Space S o —

* Agent Action Space A

 Rewards R: S -> scalars Actions e States
* Policy: S-> A v

Agent 47

Agent’s purpose is to act so as to maximize expected
discounted sum of rewards over a time horizon (the

agent may or may not have a model to begin with).



Preferences-Parameters Confound

* (Most often the) starting point is an agent-designer that has an
objective reward function that specifies preferences over agent
behavior (it is often way too sparse and delayed)

 What should the agent’s reward function be?

* A single reward function confounds two roles (from the designers

point of view) simultaneously in RL agents
1. (Preferences) It expresses the agent-designer’s preferences over behaviors

2. (Parameters) Through the reward hypothesis it expresses the RL agent’s
goals/purposes and becomes parameters of actual agent behavior

These roles seem distinct; should they be confounded?



Revised Autonomous Agent
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Agent reward is internal to the agent
Parameters to be designhed by agent-designer



Approaches to designing reward

* Inverse Reinforcement Learning (Ng et.al.)
* Designer/operator demonstrates optimal behavior

e Clever algorithms for automatically determining set of reward function such
that observed behavior is optimal (e.g., Bayesian IRL; Ramachandran & Amir)

 |deal: Set agent reward = objective reward (i.e., preserve the preferences
parameters confound)

* Reward Shaping

* (Ng et.al.) agent reward = objective reward + potential-based reward (breaks
PP confound)

* Objective: To achieve agent with objective reward’s asymptotic behavior
faster! [Also Bayesian Reward Shaping by Ramachandran et.al.]

* Preference Elicitation (ldeal: preserves PP confound)
* Mechanism Design (in Economics)
e Other Heuristic Approaches



Optimal Reward Problem

* There are two reward functions
1) Agent-designer’s: objective reward R, (given)
2) Agent’s: reward R,
Agent G(R;;0) in Environment Env produces

(random) interaction h ~ <Env,G(R;0)>

Utility of interaction h to agent is U,(h) = %, R,(h,)
Utility to agent designer is U,(h) = %, R,(h,)
Optimal Reward R”, =

ArgMax g gy EXP g EXPh-<ime G(re0> {0 ()3}

Nested Optimizations; Outer reward opt.; Inner Policy opt.



lllustration: Fish-or-Bait

E: Fixed location for fish and bait

A: movement actions, eat, carry A\

A: observes location & food, bait when O

at those locations & hunger-level &

carrying-status

Bait can be carried or eaten

Fish can be eaten only if bait is
carried on agent I ot

Eat fish -> not-hungry for 1 step

Eat bait -> med-hungry for 1 step else hungry

Agent is a lookuptable Q-learner

Objective utility: U,(h) increment of 1.0 for each fish & 0.04 for each bait eaten
(but to reduce sensitivity of precise numbers chosen we will search over additive

constants)



Reward Space

Reward features: hunger-level (3 values)
(thus generalization across location is built in!)
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(PP Confound Matters?) Mitigation

Increasing Agent-Designer
Utility

Unbounded agent
with confounded reward

Bounded agent with
optimal reward

Bounded agent
with confounded reward




Policy Gradient for Reward Design (PGRD)

(Sorg, Singh, Lewis; NIPS 2010)

Insight: In planning agents, the reward function
parameterizes the agent’s policy

Reward Policy Performance

Model-Based Acting in the
Planning World

PGRD optimizes the reward function via a standard
Policy Gradient (PG) approach (OLPOMDP [2])



PGRD...

* Optimizes Reward for Planning Agents for Full depth-D planning as
well as for the much more practical UCT

* Computes D-step action values QP(s,a)

 Selects actions using Boltzmann distribution parameterized by action-
values QP; policy denoted pu

* Agent reward is parameterized by R(:,0)



* PGRD approximates gradient in 2 partsi
VoE|Ry (trajectory)|Agent(R(+;0))| =

V. E[Ro (trajectory)|u]

e Gradient of performance w.r.t. the policy
 Approximated by OLPOMDP

X

Vou(s,a;0)

* Gradient of policy w.r.t. reward parameters
* Accounts for the planning procedure

* The sub-gradient of Q°w.r.t.6 [3]:

Vg QD(S, a)= Vg R(s,a;G)
+ Z T(s'|s,a)m(als)VyQP (s’ a")




Deep Learning for Reward Design to Improve
UCT in ATARI (lJCAI 2016)

000000
SECTOR 01




Forward View: From Rewards to Utility

 Monte Carlo average of root node J‘> e Execution policy of UCT

o

« UCT’s utility:

ifi

g » Reward Bonuses

Extending previous work, Sorg, Jonathan, et al. "Reward design via online gradient ascent." N/PS. 2010.



Backward View: From Utilities to CNN gradients

* Monte Carlo average of root node <_ * Real execution policy of UCT in learning:

i)

« UCT’s utility:

=k =5 » Reward Bonuses

Gradient calculation and variance reduction details can be found in the paper.



Main Results: improving UCT

* 25 ATARI games
e 20 games have ratio larger than 1

* Not an apples-to-apples
comparison

* ignores the computational overhead

for reward bonus

* An apples-to-apples comparison

e comparison with UCT with same
time cost per decision (i.e. deeper
or wider UCT)

* 15 games have ratio larger than 1
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Repeated Inverse Reinforcement
Learning

(for Lifelong Learning agents)

Satinder Singh*

Computer Science and Engineering
University of Michigan

May 2017
*with Kareem Amin & Nan Jiang



Inverse Reinforcement Learning

[Ng&Russell’00] [Abbeel&Ng’04]

e Input

- Environment dynamics
e.g., an MDP without a reward function

- Optimal behavior
e.g., the full policy or trajectories

e Output: the inferred reward function



Unidentifiability of Inverse RL

< |« [« |«
A< || |e
<+ |« |« |«
AlAA A«

AlA[4[4]2

« Bad news: problem fundamentally ill-posed



Unidentifiability of Inverse RL

[Ng&Russell’00] The set of possible reward vectors is:

{v:Va, (P™ —P*)(I—~P" ) lv>0}

-----------------------------------------

use heuristic to
guess a point
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« Bad news: problem fundamentally ill-posed

« Good news (?): may still mimic a good policy for this
task even if reward is not identified

And yet...



Lifelong Learning Agents

An example scenario:
- Intent: background reward function 6« : S — [-1, 1]

- no harm to humans, no breaking of laws, cost considerations, social norms, general
preferences, ...

» Multiple tasks: {(Er, R)} . oo
- Ei=<S, A4, P:, v, ury is the task environment
- R:is the task-specific reward
« Assumption: human is optimal in (S, 4, Pi, Ri+ O«, 7

Can we learn 6 from optimal demonstrations on a few tasks OR generalize to
new ones?




Looking more carefully at unidentifiability

There are two types of unidentifiability in IRL.

(1) Representational Unidentifiability
Should be ignored.

(2) Experimental Unidentifiability

Can be dealt with.



Representational Unidentifiability

Behavioral Equivalence

We say two reward functions R and R’ are behaviorally equivalent if they induce
the same set of optimal policies in any possible environment E.

For any E, the MDP (E, R) has the same set of optimal policies as (E, R’).

e Behavioral equivalence induces equivalence classes [R| over rewards.

e For each [R], fix a canonical element of [R].

Goal of Identification is to find canonical element of [6+]



“Experimenter”’ chooses tasks

Formal protocol
« The experimenter chooses {(E:, R/)}

» Human subject reveals ;" (optimal for R, + 6« in E))

Theorem: If any task may be chosen, there is an algorithm

that outputs 0s.t. ||0 - 04|, < ¢ after O(log(1/¢)) tasks.



“Experimenter” chooses tasks

Theorem: If any task may be chosen, there is an algorithm
that outputs 0 s.t. |0 - 0+||,, < ¢ after O(log(1/¢)) tasks.
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“Experimenter”’ chooses tasks

Theorem: If any task may be chosen, there is an algorithm
that outputs 0 s.t. |0 - 0+||,, < ¢ after O(log(1/¢)) tasks.

Uncertainty
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Issue with the Omnipotent setting

* Motivation was the difficulty for a human to specify the
reward function

* But in the experiment, we ask: “would you want
something if it costs you $X?”

* Can we make weaker assumptions on the tasks?



Nature chooses tasks

Given a sequence of arbitrary tasks {(£:, R:)} ...

1. Agent prop(‘\cgc A nnalicve .
If {(E;, R/)} never change...

2. It near-opti, o o classical inverse RL (0#0:) X
3. If not, a mise agent knows how to behave

(optimal for R + 6« in E})
Algorithm design: how to behave (i.e., choose ;) ?

Analysis: upper bound on the number of mistakes?



Value and loss of a policy

Given task (£, R) where E =4S, A4, P, v, w, the
(normalized) value of a policy  is defined as:

ZVT ' S'T "‘0 ISlNﬂ'laﬂ-P

which is equal to{R + 0«,7, p) where

T ™\ — T
nap=1=7) (u' T—~P")7")
discounted occupancy vector ( an,pﬂh =1

Define
loss = (R+ 0,7, p — 1]} p)



Reformulation of protocol

Every environment E induces a set of occupancy vectors {x(1), x(?, ..., x&
in R?(“arms”). |z®]|; < 1.

1. Agent proposes x. Let x* be the optimal choice.
2. If (O«+R,x) > (O«+R,x") - ¢, great!

3. If not, a mistake is counted, and x" is revealed.

Formally, we use transformation to Linear Bandits



Algorithm outline

Let 6 be some guess of 8« and behave accordingly:

(0,x)=(0,x") (1)
If a mistake is made:

(O, x)<(6:,x") (2) -
@)-(1): "

*
X -X

<9*—@,x*-x>>0 x,'/e\

For simplicity, assume for now that R=10

How to choose 6 ? |




The ellipsoid algorithm

volume shrinks to e 1/2@+D)

optimal; it just has to be

x" does not have to be
better than x

Theorem: the number of total mistakes is O(d? log(d/e)).



Experimenter

chooses tasks choose {(E:, R/} to identify 8.  log(l/¢) demo’s

- gap?—

- Q(d log(1/¢)) lower bound

Nature chooses

tasks choose {7/} to minimize loss  O(d” log(d/c)) demo’s



/ero-Shot Task Generalization by Learning
to Compose Sub-Tasks

Satinder Singh

Junhyuk Oh, Honglak Lee, Pushmeet Kohli



Rapid generalization is key to Continual Learning

 Humans can easily infer the goal of unseen tasks from similar
tasks even without additional learning.

* e.g.,) PickupA, Throw B > Throw A ?

* When the task is composed of a sequence of sub-tasks, humans
can also easily generalize to unseen compositions of sub-tasks.

* e.g.,) Pick up Aand Throw B - Throw B and Pick up A ?

* Imagine a household robot that is required to execute a list of jobs.
It is infeasible to teach the robot to do every possible combination
of jobs.




Problem: Instruction Execution

 Given

 Randomly generated grid-world

 Alist of instructions as natural language o

 Goal: execute instructions

« Some instructions require repetition
of the same sub-task

« e.g.,) Pick up “all” eggs
« Random event

A monster randomly appears.

eelee

O@:=

O ©
=

EO O

Instruction

Visit cow

Pick up diamond
Hit all rocks

Pick up all eggs



Challenges

« Solving unseen sub-tasks itself is a hard problem.
* Deciding when to move on to the next instruction.

* The agent is not given which instruction to execute.

* Should detect when the current instruction is finished.

« Should keep track of which instruction to solve.
» Dealing with long-term instructions and random events.
« Dealing with unbounded number of sub-tasks.
* Delayed reward



Overview

« Multi-task controller: 1) execute primitive actions given a sub-
goal and 2) predict whether the current sub-task is finished or not.

Action
Terminal
Sub-goal
Arg 1 )
Meta L R Multi-task
Controller Controller
Argn

Goal Observation




Overview

« Multi-task controller: 1) execute primitive actions given a sub-
goal and 2) predict whether the current sub-task is finished or not.

* Meta controller: set sub-goals given a description of a goal.

Action
Terminal
Sub-goal
Arg 1 )
Meta L R Multi-task
Controller Controller
Argn

Goal Observation




Goal Decomposition

* A sub-goal is decomposed into several arguments.

Action
Terminal
Sub-goal
Arg 1 )
Meta L R Multi-task
Controller Controller
Argn

Goal Observation




Multi-task Controller Architecture

« Given
* Observation
» Sub-goal arguments
* Do
* Determine a primitive action

* Predict whether the current state is
terminal or not

Xt

Conv

;n
K@

termination



Analogy Making Regularization

* Desirable property

~ o (83) — v (84) ifg, — 8, =85 — 8,
> Tdiff > 0 if g, # g,

/ Pick up A
Pick up B o(gt)
Visit A N
/ unseen () )
gt gt

Visit B



Analogy Making Regularization

 Objective function (contrastive loss)

Laim = E(g, 0,2, 8)~Guim L% (81) — ¢ (82) — (83) + ¥ (84) II7]

2
Laiss = B g)nGaess M5 (0, 7aiss — [0 (81) — @ (22) )]
Lav = Lgim + pLaity

/ Pick up A
Pick up B P(gt)
Visit A N
/ unseen () )
gt gt

Visit B



Multi-task Controller: Training

* Policy Distillation followed by Actor-Critic fine-tuning

 Policy Distillation: Train a separate policy for each sub-task and use them
as teachers to provide actions (labels) for the multi-task controller (student)
In supervised learning setting

* Final objective
* RL objective + Analogy making + Termination prediction objective

Policy Distillation or Actor-Critic Binary classification



Meta Controller

Action
| Terminal [
Sub-goal
Arg 1 )
Meta S R Multi-task
Controller Controller
Argn

_________________________________________________________

Goal Observation




Meta Controller Architecture

» Given

* Observation

« Current sub-goal

« Current instruction

» Current sub-task termination
* Do

 Determine which instruction to
execute

« Set a sub-goal

Visit A
Pick up B

Ct +1 ‘
Update ‘ 0 Q
Ql 4|0

No update

1
2 Pick up D

.
Conv‘ j ggl)
Xt—k:t h,

Parameter Prediction

¢o(g,_1) Tri—1 Sub-task
Current Current termination
sub-goal  Instruction



Meta Controller: Learning Temporal Abstraction

* Motivation
* The meta controller operates at a high-level (sub-goal).

* |t is desirable for the meta controller to operate in larger time-scale.

» Goal: Update the sub-goal and the memory pointer only when it is
needed

 Method

« Decide whether to update the sub-goal or not (binary decision)

* If yes, update the memory pointer and update the sub-goal

* If no, continue the previous sub-goal



Meta Controller: Learning Temporal Abstraction

| Wi 1 Wi M Do forward propagation
c |, 't Visit A only when update == true
Update|@ oQ*._.- Piok upB |
No update|O] | 1|0 w
1 3 ick up

A

WA

(:OI’IVk j ggl)

Xt—k:t ht %
(2)

8t

Current
sub-goal

o(g_1) Ti_q Sub-task

termination



Meta Controller: Learning Temporal Abstraction

Update
No update

@O| &

% (1) (1)
Conv j 8t < 8
h, %
g

Xt—k:t
g
Copy the previous sub-goal
Current
sub-goal

o(g,_1) rp_q Sub-task
termination



Does it Work?




Value Prediction Networks™

Junhyuk Oh, Satinder Singh, Honglak Lee

*Under Review (on arXiv in Late July, 2017)



Motivation

* Observation Prediction (Dynamics) Models are difficult to build in
high-dimensional domains.

* We can make lots of prediction at different temporal scales

* So, how do we plan without predicting observations?

VPNs are heavily inspired by Silver et.al’s Predictron
Predictron was limited to Policy Evaluation
VPNs extend to Learning Optimal Control



VPN: Architecture
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Planning in VPNs
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Learning in VPNs
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Collect Domain: Results 1

Domain DQN Traj. VPN Traj.



Collect Domain: Results 2

VPN Plan (20 steps) VPN Plan (12 steps)



Average reward

Collect Domain: Comparisons
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VPN: Results on ATARI Games

Frostbite

Ms. Pacman
T T T

Seaquest

j j
100 150 200

Amidar

0 i

0 50

j j
100 150 200

400
350
300
250
200
150
100

50

18000
16000
14000

12000} -

10000
8000
6000

4000|f
20001

50

j j
100 150 200

2000

1500

1000

500

60000
50000

40000}

30000
20000

10000

0
0

|

| |
0 50 100 150 200
Crazy Climber
i 1 1
50 100 150 200

16000
14000
12000
10000

8000

60001 -
4000},

2000




Questions?



