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1. Why deep learning is not just for Al

The recent success of deep learning in artificial intelligence (Al) means
that most people associate it exclusively with Al

But, one of the goals of (some) deep learning research has always
been to understand how our own brains work

In this session, I'm going to
give you a brief overview on
current research into how
deep learning might be
implemented in the real brain
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2. Foundations: what is required for deep learning?

The key feature of deep learning is the ability to improve learning by
adding hidden layers

To do so, you must be able to assign “credit” (or “blame”) to synapses
in the hidden layers for their contribution to output of the network

Output

Hidden
layer
Input
The behavioral effects ...depend on
of changes to these everything that

synaptic connections... happens up here.



3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)
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3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

AW, xce-W:-o'(u)x

Here's what we need to do backprop
updates in the hidden layer



3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

AWOW1T°G'(U)°X
!

We need the error (difference
between output generated by a
forward pass and the target)



3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

AWOme-@-G'(u)-x

We need to multiply that error by the
transpose of W,



3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

AW()oce-W:u)-X
!

We need the derivative of the hidden
unit activation function



3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

AW01T°G'@°X

We need a forward pass without
backwards flow of activity



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term

(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term - no clear implementation in neocortex
(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term

(2) Transpose of downstream weights - neurons don't know this
(3) Derivative of activation function

(4) Separate forward and backward passes



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term

(2) Transpose of downstream weights

(3) Derivative of activation function - difficult with spikes
(4) Separate forward and backward passes



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term

(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes - no evidence for it



4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

AW, xce-W:-o'(u)x

We need:

(1) Error term

(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes

The last couple of years have seen much progress in addressing all
four of these issues - I'm gonna bring you up-to-date and maybe just
convince you that the brain might do backprop!



5. 1ssue one: error term

The brain can definitely calculate error terms (e.g. in the cerebellum),
but there's no evidence that the neocortex has access to explicit

error signals that it can use for, say, learning to speak, which it passes
around the network



5. Issue one: error term _(SR__ONTQ

The brain can definitely calculate error terms (e.g. in the cerebellum),
but there's no evidence that the neocortex has access to explicit

error signals that it can use for, say, learning to speak, which it passes
around the network

't would be more plausible if we could simply use external signals that
push, or “nudge’, the system towards the right answer (e.g. when you

hear someone else speak correctly it just pushes you a bit towards
the right way of speaking)
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Scellier & Bengio (2017) proposed Equilibrium Propagation, which
uses a “free phase” (with no external feedback) and a “weakly
clamped phase” (where the external environment nudges the
network towards the correct answer)

U:{X, h, }/} w/0 sigmoid

0.

B=0 free phase

B>0  weakly clamped phase

b

If we assume symmetric weights between
units then in the limit —0

=

Va

P4

AW, =g (o(ul)o(u))~o(uP)o (u}))

implements SGD on L = 1/2e?

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)
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This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)
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Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)
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This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)
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Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)
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This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)
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Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)



5. 1ssue one: error term

AW, ce-W.-c'(u) x

We need:

e e

(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes

One item down:
We can do backprop without explicit error terms
(and it seems to match experimental data on STDP)
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As noted, the backprop update rule
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Lillicrap et al. (2016), Nat. Commi. 7(13276)
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6. Issue two: downstream weights

As noted, the backprop update rule

assumes that the hidden layer 6 (5 4 _l_
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Weirdly, the control network learned quite well!!!

Results on MNIST:
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0 10
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Lillicrap et al. (2016), Nat. Commi. 7(13276)
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Weirdly, the control network learned quite well!!!

The reason was that the forward weights
Results on MNIST: “aligned” themselves with the backwards weights
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2.4%
2.1%

gDE Do e e e e e s

DE ] ] ]
0 10

No. examples (x10°)

Lillicrap et al. (2016), Nat. Commi. 7(13276)



6. Issue two: downstream weights

AW, ce-W.-c'(u) x

We need:

H-Errorterm
Hranspeseefdownstrearweights

(3) Derivative of activation function

(4) Separate forward and backward passes

Two items down:
We can do backprop without the transpose of
downstream weights
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Neurons don't communicate with analog signals. They use action

potentials or “spikes” which are all-or-none events.
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Neurons don't communicate with analog signals. They use action
potentials or “spikes” which are all-or-none events.

But, remember, we need to take the This usually gets
derivative of the activation function, which represented with a
IS supposed to represent the spiking non-differentiable 6
activity... function:

Si(t)=5a(t-t,

We could treat the activation function as
the spike rate (which is the typical

f ]
interpretation), but that's problematic, since 6( )_ 0,11 x+0
there's good evidence that the specific alliy 1 olw
timing of spikes can carry a fair bit of dt

Information



/. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss
function to minimize the van Rossum distance between a target spike
train and the actual spike train:

LZ% f dS[(“*é,-_OL*Si)(S)]Z

—0Q0

Where S is the target spike train, and a is a temporal convolution kernel

Taking the gradient, we get:

A : 2S,
oW, ___foo ds[(oxS;—axS,)(s)](ax 3 WU.)(S)

Zenke & Ganguli (2017) arXiv: 1705.11146v1



/. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss
function to minimize the van Rossum distance between a target spike
train and the actual spike train:

LZ% f dS[(“*é,-_OL*Si)(S)]Z

Where S is the target spike train, and a is a temporal convolution kernel

Taking the gradient, we get: Ah, but here's this bugger...

Zenke & Ganguli (2017) arXiv: 1705.11146v1



/. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by
replacing the spike train, S, in the gradient equation with an auxilliary

function of the membrane potential, o(U.(t)), where:

Ui(t)NZ W/]'(E*Sj<t)>
Jj
Where € is the shape of the postsynaptic response to a spike.

Our gradient is now:

a1 . . |
W:—_‘L ds[(axS,—ax*S;)(s)]alc’(U;(s)))(exSj)(s)

U]

Zenke & Ganguli (2017) arXiv: 1705.11146v1



/. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by
replacing the spike train, S, in the gradient equation with an auxilliary

function of the membrane potential, o(U.(t)), where:

Uj(t)~2, Wy(exS,(t))

Where € is the shape of the postsynaptic response to a spike.

Our gradient is now:

L= ] oo xS o U555

Error term Eligibility trace

Zenke & Ganguli (2017) arXiv: 1705.11146v1
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The network can now be trained to generate specific spike
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Zenke & Ganguli (2017) arXiv: 1705.11146v1
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Training in networks with hidden layers is a

extension:
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/. Issue three: derivatives of spikes

We need:

HErrorters
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(4) Separate forward and backward passes

Three items down:
We can do backprop with precise spike trains
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Our brains are constantly active (don't listen to the media), and there
are massive backwards projections everywhere you look

At face value that would suggest that there probably isn't a forward
pass followed by a backward pass...
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However, real neurons in the neocortex are far more complicated
than the linear-non-linear points we typically use in neural networks

The majority of neurons in the neocortex are pyramidal neurons,
which are shaped kind of like a big tree

Surface of the brain

Apical N\ it/
dendrites W // )/~
%{/ﬁ;
Basal f
dendrites




8. Issue four: forward/backward passes

However, real neurons in the neocortex are far more complicated
than the linear-non-linear points we typically use in neural networks

The majority of neurons in the neocortex are pyramidal neurons,
which are shaped kind of like a big tree

Surface of the brain

Apical N(/f/ [ S Top-down connections from higher-order
dendrites 4/ V" : :
regions of the brain
Basal
dendrites

<= Bottom-up sensory connections
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But the apical
dendrites are very
distant from the
axon hillock (where
spikes are
generated)

Most of the time,
they barely drive
activity in the cell
at all
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Larkum, Zhu and Sakmann. (1999) Nature, 398(6725)

How they do drive
activity Is via non-
inear “plateau
potentials” in the
apical shaft

These plateau
potentials induce
bursts of spikes
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Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161
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Teaching signal
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We then update the weights using the difference AW xcal—a'
between the plateau potentials:

Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161



UNIVERSITY

8. Issue four: forward/backward passes TORONTO

Teaching signal
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feedback
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100 — Spiking feedback

90 — Continuous feedback 0.8
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Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161



@

UNIVERSITY OF

TO RONTO

8. Issue four: forward/backward passes ;:?‘,
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Of course, one issue with our model is that the plateau potentials are not generating
bursts, but experiments show that bursts are probably the key driver of plasticity. It
Is not immediately clear how a real cell would differentiate between a top-down and
bottom-up signal, since bursts result from coordinated top-down/bottom-up inputs

Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161
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New result from Richard Naud (uOttawa): if we treat bursts and
spikes as “events” and examine the event rate vs. the probability of an
event being a burst, we can see that pyramidal neurons multiplex
their top-down and bottom-up signals

Naud & Sprekeler (2017) Unpuplished
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t, 120 =

Interestingly, there are sub-types of 100 -
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STD

40 4

Firing Rate [Hz]

differently

20 4

0 | | | |
0 300 600 200
Som. Input [pA]

A

Some cells have short-term J

depressing synapses (STD) which

means they don't really respond to

bursts differently than spikes, while

others have short-term facilitating STD STF
+ +

Firing Rate [Hz]

synapses (STF) that only respond to
bursts

0 300 600 900
Dend. Input [pA]

Hence, there are specialized cells in the neocortex that respond to
Just the top-down or just the bottom-up signals

Naud & Sprekeler (2017) Unpuplished



8. Issue four: forward/backward passes

Four items down:
The neocortex is effectively designed to multiplex

forward passes and backward passes
simultaneously!
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| began this talk by identifying four major issues with the biological
plausibility of the backpropagation weight update rule for hidden
layers:

AW, ce-W:-o'(u)x

(1) Error term

(2) Transpose of downstream weights

(3) Derivative of activation function

(4) Separate forward and backward passes

For decades, neuroscientists have dismissed the possibility of deep
learning in the brain because of these issues, but over the last two
years every one of these problems have been demonstrated as being
very surmountable!!!
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This is all very exciting, but there's still an elephant in the room:
backprop through time




10. Major unresolved issue: backprop through time

Backprop through time is critical for training recurrent nets, but it is
very hard to see how it could be done in a biologically realistic
manner

As it is, backprop through
time requires time-stamped
s 12 w,, records of activity patterns

and inputs — not an easy ask
for a group of real neurons

21

There might be some ways
to address this, but I'm
gonna leave this as an

unresolved problem for you
youngin's to work out




11. Conclusion
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There's a good reason that deep
learning has taken over Al - it works

The reasons it works in Al apply equally
to our own brains - evolution must
have come to use some approximation
of gradient descent because learning in
such high-D space is too hard
otherwise (too many directions!)

Our brains may not do backprop as it is
done on a computer, but we are
getting to the point where the old
objections no longer hold water
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'll leave you with the following
cool/scary thought...

[f our brains are doing gradient
descent, and we can determine the
signals used to indicate the gradient,
then in the future (with good enough
neural prostheses) we could do
backprop through an Al back into the
brain!

This could give us seamless brain-Al
interfaces, which would open the door
to some pretty crazy tech...
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