

Deep learning
in the brain

Deep learning summer school
Montreal 2017

1. Why deep learning is not just for AI

The recent success of deep learning in artificial intelligence (AI) means
that most people associate it exclusively with AI

But, one of the goals of (some) deep learning research has always
been to understand how our own brains work

In this session, I'm going to
give you a brief overview on
current research into how
deep learning might be
implemented in the real brain

1. Why deep learning is not just for AI

Deep learning models are
a better fit to neocortical
representations than
models developed by
neuroscientists!

This would suggest that
our neocortex is doing
deep learning

A little more
motivation:

Khaligh-Razavi and Kriegeskorte (2014)
PloS Comp. Biol. 10(11): e1003915

2. Foundations: what is required for deep learning?

The key feature of deep learning is the ability to improve learning by
adding hidden layers

To do so, you must be able to assign “credit” (or “blame”) to synapses
in the hidden layers for their contribution to output of the network

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

u=W 0 x ,v=W 1h
h=σ(u) , y=σ(v)

e=(y−t) ,L=1
2
e2

ΔW 0∝
∂L
∂W 0

=
∂L
∂ y

⋅
∂ y
∂h

⋅
∂h
∂u

⋅
∂u
∂W 0

=e⋅W 1
T⋅σ ' (u)⋅x

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

Here's what we need to do backprop
updates in the hidden layer

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need the error (difference
between output generated by a

forward pass and the target)

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need to multiply that error by the
transpose of W1

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need the derivative of the hidden
unit activation function

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly
calculate the partial derivative of your cost function with respect to
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need a forward pass without
backwards flow of activity

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term – no clear implementation in neocortex
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights – neurons don't know this
(3) Derivative of activation function
(4) Separate forward and backward passes

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function – difficult with spikes
(4) Separate forward and backward passes

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes – no evidence for it

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

The last couple of years have seen much progress in addressing all
four of these issues – I'm gonna bring you up-to-date and maybe just

convince you that the brain might do backprop!

5. Issue one: error term

The brain can definitely calculate error terms (e.g. in the cerebellum),
but there's no evidence that the neocortex has access to explicit
error signals that it can use for, say, learning to speak, which it passes
around the network

5. Issue one: error term

The brain can definitely calculate error terms (e.g. in the cerebellum),
but there's no evidence that the neocortex has access to explicit
error signals that it can use for, say, learning to speak, which it passes
around the network

It would be more plausible if we could simply use external signals that
push, or “nudge”, the system towards the right answer (e.g. when you
hear someone else speak correctly it just pushes you a bit towards
the right way of speaking)

5. Issue one: error term

Scellier & Bengio (2017) proposed Equilibrium Propagation, which
uses a “free phase” (with no external feedback) and a “weakly
clamped phase” (where the external environment nudges the
network towards the correct answer)

u={x ,h , y }

β>0

β=0 free phase

weakly clamped phase

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

ΔW ij=
1
β

(σ(u i
β)σ(u j

β)−σ(u i
0)σ(u j

0))

w/o sigmoid

If we assume symmetric weights between
units then in the limit β→0

implements SGD on L = 1/2e2

5. Issue one: error term

This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

5. Issue one: error term

This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

dW ij

dt
=σ(u j)

d u i
dt

We can get the same STDP
result experimentalists see

If this relationship holds:

5. Issue one: error term

This update term is interesting because it predicts a classic experimental
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

dW ij

dt
=σ(u j)

d u i
dt

We can get the same STDP
result experimentalists see

If this relationship holds:

And this relationship does hold
(approx.) for equilibrium propagation

5. Issue one: error term

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

One item down:
We can do backprop without explicit error terms
(and it seems to match experimental data on STDP)

6. Issue two: downstream weights

As noted, the backprop update rule
assumes that the hidden layer
neurons have access to the error
term multiplied by the transpose of
the downstream weights, W1

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

That's not a realistic proposal for the
brain, and it has led many
neuroscientists to dismiss backprop

6. Issue two: downstream weights

As noted, the backprop update rule
assumes that the hidden layer
neurons have access to the error
term multiplied by the transpose of
the downstream weights, W1

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

Timothy Lillicrap had an idea, maybe
we could train the network to
develop symmetric weights?

6. Issue two: downstream weights

As noted, the backprop update rule
assumes that the hidden layer
neurons have access to the error
term multiplied by the transpose of
the downstream weights, W1

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

Timothy Lillicrap had an idea, maybe
we could train the network to
develop symmetric weights?

To test his first attempt at such an
algorithm, he used a control
condition wherein the error was sent
back through a random matrix B

6. Issue two: downstream weights

Weirdly, the control network learned quite well!!!

Lillicrap et al. (2016), Nat. Commi. 7(13276)

Results on MNIST:

6. Issue two: downstream weights

Weirdly, the control network learned quite well!!!

Lillicrap et al. (2016), Nat. Commi. 7(13276)

Results on MNIST:
The reason was that the forward weights
“aligned” themselves with the backwards weights

6. Issue two: downstream weights

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Two items down:
We can do backprop without the transpose of
downstream weights

7. Issue three: derivatives of spikes

Neurons don't communicate with analog signals. They use action
potentials or “spikes” which are all-or-none events.

This usually gets
represented with a
non-differentiable δ
function:

S i (t)=∑
k
δ(t−t k)

δ(x)={
0, if x≠0
1
dt

, o/w

7. Issue three: derivatives of spikes

Neurons don't communicate with analog signals. They use action
potentials or “spikes” which are all-or-none events.

This usually gets
represented with a
non-differentiable δ
function:

S i (t)=∑
k
δ(t−t k)

But, remember, we need to take the
derivative of the activation function, which
is supposed to represent the spiking
activity...

We could treat the activation function as
the spike rate (which is the typical
interpretation), but that's problematic, since
there's good evidence that the specific
timing of spikes can carry a fair bit of
information

δ(x)={
0, if x≠0
1
dt

, o/w

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss
function to minimize the van Rossum distance between a target spike
train and the actual spike train:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)](α∗
∂S i

∂W ij

)(s)

Taking the gradient, we get:

Where Si is the target spike train, and ɑ is a temporal convolution kernel
^

L=1
2
∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)]
2

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss
function to minimize the van Rossum distance between a target spike
train and the actual spike train:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

L=1
2
∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)]
2

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)](α∗
∂S i

∂W ij

)(s)

Taking the gradient, we get:

Where Si is the target spike train, and ɑ is a temporal convolution kernel

Ah, but here's this bugger...

^

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by
replacing the spike train, Si, in the gradient equation with an auxilliary
function of the membrane potential, σ(Ui(t)), where:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

U i (t)≈∑
j

W ij (ϵ∗S j (t))

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)]α(σ ' (U i (s)))(ϵ∗Sj)(s)

Our gradient is now:

Where ε is the shape of the postsynaptic response to a spike.

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by
replacing the spike train, Si, in the gradient equation with an auxilliary
function of the membrane potential, σ(Ui(t)), where:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

U i (t)≈∑
j

W ij (ϵ∗S j (t))

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s)]α(σ ' (U i (s)))(ϵ∗Sj)(s)

Our gradient is now:

Where ε is the shape of the postsynaptic response to a spike.

Error term Eligibility trace

7. Issue three: derivatives of spikes

The network can now be trained to generate specific spike
sequences:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

7. Issue three: derivatives of spikes

Training in networks with hidden layers is a straightforward
extension:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

7. Issue three: derivatives of spikes

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Three items down:
We can do backprop with precise spike trains

8. Issue four: forward/backward passes

Our brains are constantly active (don't listen to the media), and there
are massive backwards projections everywhere you look

At face value that would suggest that there probably isn't a forward
pass followed by a backward pass...

However, real neurons in the neocortex are far more complicated
than the linear-non-linear points we typically use in neural networks

Apical
dendrites

Basal
dendrites

Surface of the brain

The majority of neurons in the neocortex are pyramidal neurons,
which are shaped kind of like a big tree

8. Issue four: forward/backward passes

However, real neurons in the neocortex are far more complicated
than the linear-non-linear points we typically use in neural networks

Apical
dendrites

Basal
dendrites

Surface of the brain

The majority of neurons in the neocortex are pyramidal neurons,
which are shaped kind of like a big tree

Bottom-up sensory connections

Top-down connections from higher-order
regions of the brain

8. Issue four: forward/backward passes

 Larkum et al. (2009) Science, 325(5941)

But the apical
dendrites are very
distant from the
axon hillock (where
spikes are
generated)

Most of the time,
they barely drive
activity in the cell
at all

8. Issue four: forward/backward passes

 Larkum, Zhu and Sakmann. (1999) Nature, 398(6725)

How they do drive
activity is via non-
linear “plateau
potentials” in the
apical shaf

These plateau
potentials induce
bursts of spikes

8. Issue four: forward/backward passes

 Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

8. Issue four: forward/backward passes

 Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

ΔW 0∝α t−α fWe then update the weights using the difference
between the plateau potentials:

8. Issue four: forward/backward passes

 Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

Our model exhibits deep learning (light),
without separate forward/backward passes
because adding hidden layers improves
performance

8. Issue four: forward/backward passes

 Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

We also
see the
feedback
alignment
effect

8. Issue four: forward/backward passes

 Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

Of course, one issue with our model is that the plateau potentials are not generating
bursts, but experiments show that bursts are probably the key driver of plasticity. It
is not immediately clear how a real cell would differentiate between a top-down and
bottom-up signal, since bursts result from coordinated top-down/bottom-up inputs

8. Issue four: forward/backward passes

Naud & Sprekeler (2017) Unpuplished

New result from Richard Naud (uOttawa): if we treat bursts and
spikes as “events” and examine the event rate vs. the probability of an
event being a burst, we can see that pyramidal neurons multiplex
their top-down and bottom-up signals

8. Issue four: forward/backward passes

Naud & Sprekeler (2017) Unpuplished

Hence, there are specialized cells in the neocortex that respond to
just the top-down or just the bottom-up signals

Interestingly, there are sub-types of
neurons in the neocortex that have
synapses which respond to bursts
differently

Some cells have short-term
depressing synapses (STD) which
means they don't really respond to
bursts differently than spikes, while
others have short-term facilitating
synapses (STF) that only respond to
bursts

Interestingly, there are sub-types of
neurons in the neocortex that have
synapses which respond to bursts
differently

8. Issue four: forward/backward passes

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Four items down:
The neocortex is effectively designed to multiplex
forward passes and backward passes
simultaneously!

8. Issue four: forward/backward passes

9. Summary

I began this talk by identifying four major issues with the biological
plausibility of the backpropagation weight update rule for hidden
layers:

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

For decades, neuroscientists have dismissed the possibility of deep
learning in the brain because of these issues, but over the last two
years every one of these problems have been demonstrated as being
very surmountable!!!

10. Major unresolved issue: backprop through time

This is all very exciting, but there's still an elephant in the room:
backprop through time

10. Major unresolved issue: backprop through time

Backprop through time is critical for training recurrent nets, but it is
very hard to see how it could be done in a biologically realistic
manner

As it is, backprop through
time requires time-stamped
records of activity patterns

and inputs – not an easy ask
for a group of real neurons

There might be some ways
to address this, but I'm
gonna leave this as an

unresolved problem for you
youngin's to work out

11. Conclusion

There's a good reason that deep
learning has taken over AI – it works

The reasons it works in AI apply equally
to our own brains – evolution must
have come to use some approximation
of gradient descent because learning in
such high-D space is too hard
otherwise (too many directions!)

Our brains may not do backprop as it is
done on a computer, but we are
getting to the point where the old
objections no longer hold water

11. Conclusion

I'll leave you with the following
cool/scary thought...

If our brains are doing gradient
descent, and we can determine the
signals used to indicate the gradient,
then in the future (with good enough
neural prostheses) we could do
backprop through an AI back into the
brain!

This could give us seamless brain-AI
interfaces, which would open the door
to some pretty crazy tech...

Questions?
Deep learning summer school

Montreal 2017

Special thanks to:
Jordan Guerguiev (U of Toronto)
Timothy Lillicrap (Google DeepMind)
Richard Naud (U of Ottawa)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

