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1. Why deep learning is not just for AI

The recent success of deep learning in artificial intelligence (AI) means 
that most people associate it exclusively with AI

But, one of the goals of (some) deep learning research has always 
been to understand how our own brains work

In this session, I'm going to 
give you a brief overview on 
current research into how 
deep learning might be 
implemented in the real brain



  

1. Why deep learning is not just for AI

Deep learning models are 
a better fit to neocortical 
representations than 
models developed by 
neuroscientists!

This would suggest that 
our neocortex is doing 
deep learning

A little more 
motivation:

Khaligh-Razavi and Kriegeskorte (2014)
PloS Comp. Biol. 10(11): e1003915



  

2. Foundations: what is required for deep learning?

The key feature of deep learning is the ability to improve learning by 
adding hidden layers

To do so, you must be able to assign “credit” (or “blame”) to synapses 
in the hidden layers for their contribution to output of the network



  

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)
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3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)

Here's what we need to do backprop 
updates in the hidden layer

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x



  

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need the error (difference 
between output generated by a 

forward pass and the target)



  

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need to multiply that error by the 
transpose of W1



  

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need the derivative of the hidden 
unit activation function



  

3. The obvious solution: backpropagation

The most obvious solution to credit assignment is to explicitly 
calculate the partial derivative of your cost function with respect to 
your synaptic weights in the hidden layers (AKA backpropagation)

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need a forward pass without 
backwards flow of activity



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term – no clear implementation in neocortex
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights – neurons don't know this
(3) Derivative of activation function
(4) Separate forward and backward passes



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function – difficult with spikes
(4) Separate forward and backward passes



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes – no evidence for it



  

4. Biological problems with vanilla backprop

Unfortunately, all four of those things we need are biologically 
problematic...

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

The last couple of years have seen much progress in addressing all 
four of these issues – I'm gonna bring you up-to-date and maybe just 

convince you that the brain might do backprop!



  

5. Issue one: error term

The brain can definitely calculate error terms (e.g. in the cerebellum), 
but there's no evidence that the neocortex has access to explicit 
error signals that it can use for, say, learning to speak, which it passes 
around the network 



  

5. Issue one: error term

The brain can definitely calculate error terms (e.g. in the cerebellum), 
but there's no evidence that the neocortex has access to explicit 
error signals that it can use for, say, learning to speak, which it passes 
around the network 

It would be more plausible if we could simply use external signals that 
push, or “nudge”, the system towards the right answer (e.g. when you 
hear someone else speak correctly it just pushes you a bit towards 
the right way of speaking)



  

5. Issue one: error term

Scellier & Bengio (2017) proposed Equilibrium Propagation, which 
uses a “free phase” (with no external feedback) and a “weakly 
clamped phase” (where the external environment nudges the 
network towards the correct answer)

u={x ,h , y }

β>0

β=0 free phase

weakly clamped phase

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

ΔW ij=
1
β

(σ(u i
β)σ(u j

β)−σ(u i
0)σ(u j

0))

w/o sigmoid

If we assume symmetric weights between 
units then in the limit β→0

implements SGD on L = 1/2e2



  

5. Issue one: error term

This update term is interesting because it predicts a classic experimental 
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)



  

5. Issue one: error term

This update term is interesting because it predicts a classic experimental 
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

dW ij

dt
=σ(u j)

d u i
dt

We can get the same STDP 
result experimentalists see

If this relationship holds:



  

5. Issue one: error term

This update term is interesting because it predicts a classic experimental 
result known as spike-timing-dependent plasticity (STDP)

Scellier & Bengio (2017), Front. Comp. Neurosci. 11(24)

dW ij

dt
=σ(u j)

d u i
dt

We can get the same STDP 
result experimentalists see

If this relationship holds:

And this relationship does hold 
(approx.) for equilibrium propagation



  

5. Issue one: error term

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

One item down:
We can do backprop without explicit error terms 
(and it seems to match experimental data on STDP)



  

6. Issue two: downstream weights

As noted, the backprop update rule 
assumes that the hidden layer 
neurons have access to the error 
term multiplied by the transpose of 
the downstream weights, W1 

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

That's not a realistic proposal for the 
brain, and it has led many 
neuroscientists to dismiss backprop



  

6. Issue two: downstream weights

As noted, the backprop update rule 
assumes that the hidden layer 
neurons have access to the error 
term multiplied by the transpose of 
the downstream weights, W1 

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

Timothy Lillicrap had an idea, maybe 
we could train the network to 
develop symmetric weights?



  

6. Issue two: downstream weights

As noted, the backprop update rule 
assumes that the hidden layer 
neurons have access to the error 
term multiplied by the transpose of 
the downstream weights, W1 

Lillicrap et al. (2016), Nat. Commi. 7(13276)

1

1

1

Timothy Lillicrap had an idea, maybe 
we could train the network to 
develop symmetric weights?

To test his first attempt at such an 
algorithm, he used a control 
condition wherein the error was sent 
back through a random matrix B



  

6. Issue two: downstream weights

Weirdly, the control network learned quite well!!!

Lillicrap et al. (2016), Nat. Commi. 7(13276)

Results on MNIST:



  

6. Issue two: downstream weights

Weirdly, the control network learned quite well!!!

Lillicrap et al. (2016), Nat. Commi. 7(13276)

Results on MNIST:
The reason was that the forward weights 
“aligned” themselves with the backwards weights



  

6. Issue two: downstream weights

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Two items down:
We can do backprop without the transpose of 
downstream weights



  

7. Issue three: derivatives of spikes

Neurons don't communicate with analog signals. They use action 
potentials or “spikes” which are all-or-none events.

This usually gets 
represented with a 
non-differentiable δ 
function:

S i (t)=∑
k
δ(t−t k)

δ(x )={
0, if x≠0
1
dt

, o/w



  

7. Issue three: derivatives of spikes

Neurons don't communicate with analog signals. They use action 
potentials or “spikes” which are all-or-none events.

This usually gets 
represented with a 
non-differentiable δ 
function:

S i (t)=∑
k
δ(t−t k)

But, remember, we need to take the 
derivative of the activation function, which 
is supposed to represent the spiking 
activity...

We could treat the activation function as 
the spike rate (which is the typical 
interpretation), but that's problematic, since 
there's good evidence that the specific 
timing of spikes can carry a fair bit of 
information

δ(x )={
0, if x≠0
1
dt

, o/w



  

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss 
function to minimize the van Rossum distance between a target spike 
train and the actual spike train:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )](α∗
∂S i

∂W ij

)(s)

Taking the gradient, we get:

Where Si is the target spike train, and  ɑ is a temporal convolution kernel
^

L=1
2
∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )]
2



  

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) approach this by first modifying the loss 
function to minimize the van Rossum distance between a target spike 
train and the actual spike train:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

L=1
2
∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )]
2

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )](α∗
∂S i

∂W ij

)(s)

Taking the gradient, we get:

Where Si is the target spike train, and  ɑ is a temporal convolution kernel

Ah, but here's this bugger...

^



  

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by 
replacing the spike train, Si, in the gradient equation with an auxilliary 
function of the membrane potential, σ(Ui(t)), where:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

U i (t )≈∑
j

W ij (ϵ∗S j (t ))

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )]α(σ ' (U i (s)))(ϵ∗Sj )(s)

Our gradient is now:

Where ε is the shape of the postsynaptic response to a spike. 



  

7. Issue three: derivatives of spikes

Zenke & Ganguli (2017) deal with the spike train derivative by 
replacing the spike train, Si, in the gradient equation with an auxilliary 
function of the membrane potential, σ(Ui(t)), where:

Zenke & Ganguli (2017) arXiv: 1705.11146v1

U i (t )≈∑
j

W ij (ϵ∗S j (t ))

∂L
∂W ij

=−∫
−∞

t

ds [(α∗Ŝ i−α∗S i)(s )]α(σ ' (U i (s)))(ϵ∗Sj )(s)

Our gradient is now:

Where ε is the shape of the postsynaptic response to a spike. 

Error term Eligibility trace



  

7. Issue three: derivatives of spikes

The network can now be trained to generate specific spike 
sequences:

Zenke & Ganguli (2017) arXiv: 1705.11146v1



  

7. Issue three: derivatives of spikes

Training in networks with hidden layers is a straightforward 
extension:

Zenke & Ganguli (2017) arXiv: 1705.11146v1



  

7. Issue three: derivatives of spikes

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Three items down:
We can do backprop with precise spike trains



  

8. Issue four: forward/backward passes

Our brains are constantly active (don't listen to the media), and there 
are massive backwards projections everywhere you look

At face value that would suggest that there probably isn't a forward 
pass followed by a backward pass... 



  

However, real neurons in the neocortex are far more complicated 
than the linear-non-linear points we typically use in neural networks

Apical
dendrites

Basal
dendrites

Surface of the brain

The majority of neurons in the neocortex are pyramidal neurons, 
which are shaped kind of like a big tree

8. Issue four: forward/backward passes



  

However, real neurons in the neocortex are far more complicated 
than the linear-non-linear points we typically use in neural networks

Apical
dendrites

Basal
dendrites

Surface of the brain

The majority of neurons in the neocortex are pyramidal neurons, 
which are shaped kind of like a big tree

Bottom-up sensory connections

Top-down connections from higher-order 
regions of the brain

8. Issue four: forward/backward passes



  Larkum et al. (2009) Science, 325(5941)

But the apical 
dendrites are very 
distant from the 
axon hillock (where 
spikes are 
generated)

Most of the time, 
they barely drive 
activity in the cell 
at all

8. Issue four: forward/backward passes



  Larkum, Zhu and Sakmann. (1999) Nature, 398(6725)

How they do drive 
activity is via non-
linear “plateau 
potentials” in the 
apical shaf

These plateau 
potentials induce 
bursts of spikes

8. Issue four: forward/backward passes



  Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

8. Issue four: forward/backward passes



  Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

ΔW 0∝α t−α fWe then update the weights using the difference
between the plateau potentials:

8. Issue four: forward/backward passes



  Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

Our model exhibits deep learning (light), 
without separate forward/backward passes 
because adding hidden layers improves 
performance

8. Issue four: forward/backward passes



  Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

We also 
see the 
feedback 
alignment 
effect

8. Issue four: forward/backward passes



  Guerguiev, Lillicrap and Richards (2017), arXiv: 1610.00161

Of course, one issue with our model is that the plateau potentials are not generating 
bursts, but experiments show that bursts are probably the key driver of plasticity. It 
is not immediately clear how a real cell would differentiate between a top-down and 
bottom-up signal, since bursts result from coordinated top-down/bottom-up inputs

8. Issue four: forward/backward passes



  

Naud & Sprekeler (2017) Unpuplished

New result from Richard Naud (uOttawa): if we treat bursts and 
spikes as “events” and examine the event rate vs. the probability of an 
event being a burst, we can see that pyramidal neurons multiplex 
their top-down and bottom-up signals 

8. Issue four: forward/backward passes



  

Naud & Sprekeler (2017) Unpuplished

Hence, there are specialized cells in the neocortex that respond to 
just the top-down or just the bottom-up signals

Interestingly, there are sub-types of 
neurons in the neocortex that have 
synapses which respond to bursts 
differently 

Some cells have short-term 
depressing synapses (STD) which 
means they don't really respond to 
bursts differently than spikes, while 
others have short-term facilitating 
synapses (STF) that only respond to 
bursts

Interestingly, there are sub-types of 
neurons in the neocortex that have 
synapses which respond to bursts 
differently 

8. Issue four: forward/backward passes



  

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

We need:
(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

Four items down:
The neocortex is effectively designed to multiplex 
forward passes and backward passes 
simultaneously!

8. Issue four: forward/backward passes



  

9. Summary

I began this talk by identifying four major issues with the biological 
plausibility of the backpropagation weight update rule for hidden 
layers:

ΔW 0∝e⋅W 1
T
⋅σ ' (u)⋅x

(1) Error term
(2) Transpose of downstream weights
(3) Derivative of activation function
(4) Separate forward and backward passes

For decades, neuroscientists have dismissed the possibility of deep 
learning in the brain because of these issues, but over the last two 
years every one of these problems have been demonstrated as being 
very surmountable!!!



  

10. Major unresolved issue: backprop through time

This is all very exciting, but there's still an elephant in the room:
backprop through time



  

10. Major unresolved issue: backprop through time

Backprop through time is critical for training recurrent nets, but it is 
very hard to see how it could be done in a biologically realistic 
manner

As it is, backprop through 
time requires time-stamped 
records of activity patterns 

and inputs – not an easy ask 
for a group of real neurons

There might be some ways 
to address this, but I'm 
gonna leave this as an 

unresolved problem for you 
youngin's to work out



  

11. Conclusion

There's a good reason that deep 
learning has taken over AI – it works

The reasons it works in AI apply equally 
to our own brains – evolution must 
have come to use some approximation 
of gradient descent because learning in 
such high-D space is too hard 
otherwise (too many directions!)

Our brains may not do backprop as it is 
done on a computer, but we are 
getting to the point where the old 
objections no longer hold water



  

11. Conclusion

I'll leave you with the following 
cool/scary thought...

If our brains are doing gradient 
descent, and we can determine the 
signals used to indicate the gradient, 
then in the future (with good enough 
neural prostheses) we could do 
backprop through an AI back into the 
brain!

This could give us seamless brain-AI 
interfaces, which would open the door 
to some pretty crazy tech...



  

Questions?
Deep learning summer school

Montreal 2017

Special thanks to:
Jordan Guerguiev (U of Toronto)
Timothy Lillicrap (Google DeepMind)
Richard Naud (U of Ottawa)
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