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Probabilistic numerics is the study of 
numeric methods as learning algorithms.



Global optimisation considers objective functions that 
are multi-modal and often expensive to evaluate. 



The Rosenbrock is expressible in closed-form.

18 Bayesian Optimization

The e�cient global optimization (EGO) algorithm is the combination of
DACE model with the sequential expected improvement acquisition criterion.
It was published in a paper by Jones et al. [91] as a refinement of the SPACE
algorithm (stochastic process analysis of computer experiments) [153]. Since
EGO’s publication, there has evolved a body of work devoted to extending
the algorithm, particularly in adding constraints to the optimization problem
[6, 150, 26], and in modelling noisy functions [17, 83, 84].

In the bandits setting, Lai and Robbins [100] introduced upper confidence
bounds (UCB) as approximate alternatives to Gittins indices in 1985. Auer
studied these bounds using frequentist techniques, and in adversarial multi-
armed bandit settings [9, 8].

The literature on multi-armed bandits is vast. The book of Cesa-
Bianchi [40] is a good reference on the topic of online learning with ex-
perts and bandits in adversarial settings. There are many results on explo-
ration [33, 55, 54] and contextual bandits [105, 124, 2]. These contextual ban-
dits, may also be seen as myopic approximations to Markov decision processes.

1.7 Probabilistic numerics: another view of Bayesian op-
timization

Bayesian optimization can be seen as a reinterpretation of a problem from nu-
merics, global optimization, within the framework of probabilistic inference.
Above, we’ve motivated Bayesian optimization as being useful where one does
not have a closed-form expression for the objective function. However, con-
sider a classic two-dimensional, deterministic, optimization test problem: the
Rosenbrock function,

f(x, y) = (1� x)2 + 100(y � x2)2,

for (x, y) 2 R2. Many works in Bayesian optimization [180, 11, 136] use the
Rosenbrock as a test problem, as convergence to the global minimum3 is often
slow due to its being located in a long, narrow, valley. In performing Bayesian
optimization, a Gaussian process prior is assigned to the Rosenbrock function,
thereby treating it as uncertain. That is, we take a Gaussian distribution over
its value at any (x, y) pair, despite f(x, y) being expressible in closed-form in
fewer than twenty characters. It might be thought that performing Bayesian
optimization for this function is pathological, or unrepresentative. However,
many objective functions (such as the likelihood functions of models whose
hyperparameters are to be optimized) are not only deterministic4, but are fully

3The Rosenbrock’s true global minimum is f(1, 1) = 0.
4For stochastic objectives, the use of probabilistic methods requires, perhaps, even weaker

motivation.



Computational limits form the core of the optimisation
problem.
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We are epistemically uncertain about f(x,y) due to 
being unable to afford its computation.

�.�. Optimization Using Gaussian Processes
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Figure �.�: Continued.
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We can hence probabilistically model f(x,y), and use 
decision theory to make optimal use of computation. 



Probabilistic modelling 
of functions



Probability theory represents an extension of traditional 
logic, allowing us to reason in the face of uncertainty.

Probability TheoryDeductive Logic



A probability is a degree of belief. This might be held by 
any agent – a human, a robot, a pigeon, etc.

P( R | C, I )



We define our agents so that they can perform 
difficult inference for us.

‘I’ is the totality of an agent’s prior information. An agent 
is (partially) defined by I.



The Gaussian distribution allows us to produce 
distributions for variables conditioned on any other 
observed variables.



The Gaussian distribution allows us to produce 
distributions for variables conditioned on any other 
observed variables.



yx

x

A Gaussian process is the generalisation of a 
multivariate Gaussian distribution to a potentially 
infinite number of variables.



y

x

A Gaussian process provides a non-parametric model 
for functions, defined by mean and covariance 
functions. 



periodicity

long-term drifts

correlated sensors

delays between 
sensors

Gaussian processes are specified by a covariance 
function, which flexibly allow the expression of e.g.



Gaussian processes have a complexity that grows with 
the data; they provide flexible models, robust to 
overfitting. 











Bayesian optimisation as 
decision theory



Bayesian optimisation is the approach of 
probabilistically modelling f(x,y), and using decision 
theory to make optimal use of computation. 

�.�. Optimization Using Gaussian Processes
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By defining the costs of observation and uncertainty, 
we can select evaluations optimally by minimising the 
expected loss with respect to a probability distribution. 

input
x

objective 
function y(x)

output
y



We define a loss function that is the lowest function 
value found after our algorithm ends.

Assuming that we have only one evaluation remaining,
the loss of it returning value y, given that the current 
lowest value obtained is η, is



This loss function makes computing the expected loss 
simple: we’ll take a myopic approximation and consider 
only the next evaluation.

The expected loss is the expected lowest value of the 
function we’ve evaluated after the next evaluation. 

: All available information.

: Next evaluation location.



We choose a Gaussian process as the probability 
distribution for the objective function, giving a tractable 
expected loss.



















Bayesian optimisation for 
tuning hyperparameters



Tuning is used to cope with model parameters (such as 
periods).
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Optimisation (as in maximum likelihood or least 
squares), gives a reasonable heuristic for exploring the 
likelihood.



hyperparameter
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Bayesian optimisation gives a powerful method for such 
tuning.



Snoek, Larochelle and Adams (2012) used Bayesian 
optimisation to tune convolutional neural networks. 
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Figure 6: Validation error on the CIFAR-10 data for different optimization strategies.

vergence tolerance early on while exploring the other parameters. Indeed, 3x GP EI per second, is
the least efficient in terms of function evaluations but finds better parameters faster than all the other
algorithms. Figure 5c compares the use of various covariance functions in GP EI MCMC optimiza-
tion on this problem5, again repeating the optimization 100 times. It is clear that the selection of an
appropriate covariance significantly affects performance and the estimation of length scale param-
eters is critical. The assumption of the infinite differentiability as imposed by the commonly used
squared exponential is too restrictive for this problem.

4.4 Convolutional Networks on CIFAR-10
Neural networks and deep learning methods notoriously require careful tuning of numerous hyper-
parameters. Multi-layer convolutional neural networks are an example of such a model for which a
thorough exploration of architechtures and hyperparameters is beneficial, as demonstrated in Saxe
et al. [21], but often computationally prohibitive. While Saxe et al. [21] demonstrate a methodology
for efficiently exploring model architechtures, numerous hyperparameters, such as regularisation
parameters, remain. In this empirical analysis, we tune nine hyperparameters of a three-layer con-
volutional network [22] on the CIFAR-10 benchmark dataset using the code provided 6. This model
has been carefully tuned by a human expert [22] to achieve a highly competitive result of 18% test
error on the unaugmented data, which matches the published state of the art result [23] on CIFAR-
10. The parameters we explore include the number of epochs to run the model, the learning rate,
four weight costs (one for each layer and the softmax output weights), and the width, scale and
power of the response normalization on the pooling layers of the network.

We optimize over the nine parameters for each strategy on a withheld validation set and report the
mean validation error and standard error over five separate randomly initialized runs. Results are
presented in Figure 6 and contrasted with the average results achieved using the best parameters
found by the expert. The best hyperparameters found by the GP EI MCMC approach achieve an
error on the test set of 14.98%, which is over 3% better than the expert and the state of the art on
CIFAR-10. The same procedure was repeated on the CIFAR-10 data augmented with horizontal
reflections and translations, similarly improving on the expert from 11% to 9.5% test error and
achieving to our knowledge the lowest error reported on the competitive CIFAR-10 benchmark.

5 Conclusion
We presented methods for performing Bayesian optimization for hyperparameter selection of gen-
eral machine learning algorithms. We introduced a fully Bayesian treatment for EI, and algorithms
for dealing with variable time regimes and running experiments in parallel. The effectiveness of our
approaches were demonstrated on three challenging recently published problems spanning different
areas of machine learning. The resulting Bayesian optimization finds better hyperparameters sig-
nificantly faster than the approaches used by the authors and surpasses a human expert at selecting
hyperparameters on the competitive CIFAR-10 dataset, beating the state of the art by over 3%.

Acknowledgements
The authors thank Alex Krizhevsky for making his neural network code available, and George Dahl
for valuable feedback. This work was funded by DARPA Young Faculty Award N66001-12-1-4219,
NSERC and an Amazon AWS in Research grant.

5See also the supplementary material for comparisons on other problems.
6Available at: http://code.google.com/p/cuda-convnet/
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Figure 2: Bayesian optimization results using the arc kernel.

Results. Table 1 shows that a GP using the arc kernel performs favourably to a GP that ignores the
relevance information of each point. The “separate” categories apply a different model to each layer
and therefore do not take advantage of dependencies between layers. Interestingly, the separate Arc
GP, which is effectively just a standard GP with additional embedding, performs comparably to a
standard GP, suggesting that the embedding doesn’t limit the expressiveness of the model.

3.2 Bayesian Optimization Experiments
In this experiment, we test the ability of Bayesian optimization to tune the hyperparameters of each
layer of a deep neural network. We allow the neural networks for these problems to use up to 5
hidden layers (or no hidden layer). We optimize over learning rates, L2 weight constraints, dropout
rates [19], and the number of hidden units per layer leading to a total of up to 23 hyperparameters
and 6 architectures. On MNIST, most effort is spent improving the error by a fraction of a per-
cent, therefore we optimize this dataset using the log-classification error. For CIFAR-10, we use
classification error as the objective. We use the Deepnet2 package, and each function evaluation
took approximately 1000 to 2000 seconds to run on NVIDIA GTX Titan GPUs. Note that when a
network of depth n is tested, all hyperparameters from layers n+ 1 onward are deemed irrelevant.

Experimental Setup. For Bayesian optimization, we follow the methodology of [10], using slice
sampling and the expected improvement heuristic. In this methodology, the acquisition function
is optimized by first selecting from a pre-determined grid of points lying in [0, 1]23, distributed
according to a Sobol sequence. Our baseline is a standard Gaussian process over this space that is
agnostic to whether particular dimensions are irrelevant for a given point.

Results. Figure 2 shows that on these datasets, using the arc kernel consistently reaches good
solutions faster than the naive baseline, or it finds a better solution. In the case of MNIST, the best
discovered model achieved 1.19% test error using 50000 training examples. By comparison, [20]
achieved 1.28% test error using a similar model and 60000 training examples. Similarly, our best
model for CIFAR-10 achieved 21.1% test error using 45000 training examples and 400 features. For
comparison, a support vector machine using 1600 features with the same feature pipeline and 50000
training examples achieves 22.1% error. Figure 2c shows the proportion of function evaluations
spent on each architecture size for the CIFAR-10 experiments. Interestingly, the baseline tends
to favour smaller models while a GP using the arc kernel distributes it’s efforts amongst deeper
architectures that tend to yield better results.

4 Conclusion
We introduced the arc kernel for conditional parameter spaces that facilitates modelling the perfor-
mance of deep neural network architectures by enabling the sharing of information across architec-
tures where useful. Empirical results show that this kernel improves GP model quality and GP-based
Bayesian optimization results over several simpler baseline kernels. Allowing information to be
shared across architectures improves the efficiency of Bayesian optimization and removes the need
to manually search for good architectures. The resulting models perform favourably compared to
established benchmarks by domain experts.

5 Acknowledgements
The authors would like to thank Ryan P. Adams for helpful discussions.

2https://github.com/nitishsrivastava/deepnet
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Bayesian optimisation is useful in automating 
structured search over # hidden layers, learning rates, 
dropout rates, # hidden units per layer & L2 weight 
constraints.

Source: Swersky et al (2013)



Bayesian stochastic 
optimisation



Using only a subset of the data (a mini-batch) gives a 
noisy likelihood evaluation.



If we use Bayesian optimisation on these noisy 
evaluations, we can perform stochastic learning.



Lower-variance evaluations (on smaller subsets) are 
higher cost: let’s also Bayesian optimise over the fidelity 
of our evaluations!

Klein, Falkner, Bartels, Hennig & Hutter (2017);
McLeod, Osborne & Roberts (2017), arxiv.org/abs/1703.04335

Figure 5: Performance of EnvPES
(green), PES (red) and Expected
Improvement (blue) and FABOLAS
(purple) finding the best hyperpa-
rameters for a support vector ma-
chine classifying the MNIST dataset.
The median and interquartile range
(shaded) of seven runs are shown.
Here we have used the original form
of FABOLAS.

Figure 6: Performance of EnvPES
(green), PES (red) and Expected Im-
provement (blue) minimizing the neg-
ative log-likelihood of kernel hyper-
parameters for a Gaussian Process on
UK power data. The median and in-
terquartile range (shaded) of ten runs
are shown.

5/2 kernel on freely available half hourly time series data for UK electricity demand for 20153.214

Evaluation of this objective with the full dataset again typically incurs a cost of around ten minutes.215

EnvPES is able to evaluate the log-likelihood of random subsets down to nsub = 0.02N of the full216

dataset. We adjust the log-likelihood by g(y, nsub) = �y nsub
N if y < �1, 1 + log(�y nsub

N ) else, which217

is monotonic smooth and continuous with respect to the true log-likelihood but reduces the absolute218

value of large negative likelihoods and normalizes subsets to the value at the full dataset. EI and PES219

are only able to use the full dataset. As shown in Figure 6 we are able to achieve performance similar220

to the methods that do not make use of the environmental variable.221

pending fabolas result fig6
222

6 Conclusion223

We have proposed a novel acquisition function based on Predictive Entropy Search for use in variable224

cost Bayesian Optimization. We further introduce a novel sampling strategy applicable to both ES225

and PES which makes our implementation more computationally efficient. We have also proposed an226

alternative method for evaluating the performance of Bayesian Optimization methods. Bringing these227

together we demonstrate a practical Bayesian Optimization algorithm for variable cost methods and228

have shown that we are able to match or exceed the performance of existing methods on a selection229

of synthetic and real world applications.230

3www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-
explorer
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We tune the hyperparameters of a 
GP fitted to half hourly time series 
data for UK electricity demand for 
2015, for which a full evaluation 
costs ten minutes. 



Quiz: which of these sequences is random?

1.6224441111111114444443333333

2.1693993751058209749445923078 

3.7129042634726105902083360448

4.1000111111011111111001010000



Quiz: which of these sequences is random?

1.6224441111111114444443333333
Seven d6 rolls with i repeats of the ith roll.
2.1693993751058209749445923078

The 41st to 70th digits of π.
3.7129042634726105902083360448 

This sequence was generated by the von 
Neumann method with seed 908344.
4.1000111111011111111001010000

Digits taken from a CD-ROM published by 
George Marsaglia.



A random number:

1. is epistemic (of course, computation is
always conditional on prior knowledge);

2. is useful to foil a malicious adversary (of
which there are few in numerics); and

3. is never the minimiser of an expected
loss.



Integration beats optimisation



The naïve fitting of models to data performed by 
optimisation can lead to overfitting.



Bayesian averaging over ensembles of models reduces 
overfitting, and provides more honest estimates of 
uncertainty.



( ⋆,D, θ)

( ⋆ | D) =
( ⋆,D)

(D)
=

∫
( ⋆,D, θ) θ

(D)
=

∫
( ⋆ | D, θ) (D | θ) (θ) θ

(D)

( ⋆ | D) ⋆

( ⋆ | D, θ) θ

(θ) θ

(D | θ) θ

(D) =
∫

(D | θ) (θ) θ



Averaging requires integrating over the many possible 
states of the world consistent with data: this is often 
non-analytic.

parameter
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Numerical integration (quadrature) is ubiquitous. 
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parameter

Optimisation is an unreasonable way of estimating a 
multi-modal or broad likelihood integrand.



If optimising, flat optima are often a better 
representation of the integral than narrow optima. 



Bayesian quadrature makes use of a Gaussian process
surrogate for the integrand (the same as you might use 
for Bayesian optimisation).

parameter

lo
g-
lik
el
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d



Gaussian distributed variables are joint Gaussian with 
any affine transform of them. 



A function over which we have a Gaussian process is 
joint Gaussian with any integral or derivative of it, as 
integration and differentiation are linear.



We can use observations of an integrand ℓ in order to 
perform inference for its integral, Z: this is known as 
Bayesian Quadrature.



Bayesian quadrature generalises and improves upon 
traditional quadrature.

O(N-1)

O(N-2)



Quiz: what is the convergence rate of Monte Carlo?

1. O( exp(-N) )

2. O( exp(-N-½) )

3. O( N-1 )

4. O( N-½ )



Quiz: what is the convergence rate of Monte Carlo?

1. O( exp(-N) )

2. O( exp(-N-½) )

3. O( N-1 )

4. O( N-½ )



The trapezoid rule (O(N
-2

)) has empirically better 
scaling than Monte Carlo (O(N

-½
)).

64 ����������� �� ���������

N = 32 evaluations of f , the absolute error between the true
integral F and the estimate ˆF of the trapezoidal rule is roughly
1.3 · 10

�6. To reach the same fidelity with the Monte Carlo esti-
mator, the expected number of required function evaluations is
N ⇠ 8.8 · 10

10, or 2.75 Billion times more evaluations. So using
the trapezoidal rule allows a very big cost saving indeed in this
situation.
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Figure 3.5: Convergence for Monte
Carlo and trapezoidal rule quadra-
ture estimates, along with different
error estimates. The shown instance
of Monte Carlo integration converges
with N�1/2, as suggested by Lemma 1
(theoretical standard-deviation from
Eq. (3.7) shown in solid gray). The
trapezoidal rule overtakes the quality
of the MC estimate after 8 evaluations,
and begins to approach its theoretical
convergence rate for differentiable inte-
grands, O(N2) (gray dashed, each line
corresponding to a different multiplica-
tive constant). The probabilistic error
estimates arising from Eqs. (3.35) and
(3.39) are under-confident, reflecting
the overly conservative assumption of
continuity but non-differentiability in
the Wiener process prior.

What is the reason for this tremendous increase in perfor-
mance? The probabilistic interpretation for the trapezoidal
rule, Eq. (3.21), offers an explanation, in form of the prior in
Eq. (3.3). It defines a hypothesis space which assigns non-zero
probability measure to only continuous functions f . This is a
significantly more restrictive assumption than that of Monte
Carlo—which only requires the integrand to be integrable. But
of course it is a correct assumption, because the integrand of
Eq. (3.1) is indeed continuous (even smooth).

After about N = 64 evaluations, the trapezoidal rule settles
into a relatively homogeneous convergence at a rate of approx-
imately O(N�2) (dashed lines in Figure 3.5). This behaviour
is predicted by classic analyses��, p. 53 of this quadrature rule��.

33 Davis, P.J., and Rabinowitz, P. 1984.
Methods of Numerical Integration. 2nd
edn. Academic Press

34 The intuition for the corresponding
proof is that, if the integrand is con-
tinuously differentiable then, by the
midpoint rule, the infimum and supre-
mum of f 0 give an upper and lower
bound on the deviation of the true
integral in a segment [xi , xi + 1] from the
integral over the linear posterior mean
in that segment, and that deviation
drops quadratically with the width of
the segments.

An intriguing observation is that the probabilistically con-
structed error estimate of the trapezoidal rule Eq. (3.27), which
does not take collected function values into accounts, pre-
dicts a more conservative, slower, convergence rate O(N�1)

(gray dot-dashed lines in Figure 3.5). This, too, is a direct
consequence of the Wiener process prior assumption: Draws
from Wiener processes are almost surely continuous but non-
differentiable. For such non-differentiable functions, the classic
analysis agrees with the posterior error estimate and predicts a

O(N-1)

O(N-2)

O(N-1/2)

Z =

Z
f(x)p(x)dx

Z ' 1

N

NX

i=1

f(xi)

1
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Probabilistic numerics views the selection of samples as a 
decision problem.
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Our method (Warped Sequential Active Bayesian 
Integration) converges quickly in wall-clock time for a 
synthetic integrand.
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WSABI-L converges quickly in integrating out 
hyperparameters in a Gaussian process classification 
problem (CiteSeer
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Probabilistic numerics offers the propagation of 
uncertainty through numerical pipelines.



Probabilistic numerics treats computation as a 
decision.


