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This page lists past and future meetings of the Probabilistic Numerics community.

2017

e June18-23
Dobbiaco Summer School on Probabilistic Numerics at the Hotel Union in Dobbiaco, Italy.
Organized by Alfredo Bellen, Stefano Maset and Marino Zennaro (University of Trieste)
and Alexander Ostermann (University of Innsbruck).
Taught by Philipp Hennig & Mark Girolami

e June5-9
Seminar on Probabilistic Scientific Computing: Statistical inference approaches to
numerical analysis and algorithm design
at ICERM (the Institute for Computational and Experimental Research in Mathematics),
Brown University, Providence, Rhode Island.
Organized by Philipp Hennig, George Em Karniadakis, Michael A Osborne, Houman Owhadi
and Paris Perdikaris

2016

e 18 August
Probabilistic Numerics @ MCQMC 2016
at Stanford University, California
organized by Mark Girolami and Frangois-Xavier Briol
® 7 January
Probabilistic Numerics: Integrating Inference With Integration @ MCMSki
in Lenzerheide, Switzerland
organized by Michael Osborne, Chris Oates and Frangois-Xavier Briol

2015



Probabilistic numerics is the study of
numeric methods as learning algorithms.

PROBABILISTIC-NUMERICS.ORG

LITERATURE

This page collects literature on all areas of probab
not hesitate to contact us. The fastest way to get
file in /_bibliography, then either send us a pull-re:

QUICK-JUMP LINKS:

General and Foundational
Quadrature

Linear Algebra

Optimization

Ordinary Differential Equations
Partial Differential Equations



Global optimisation considers objective functions that

are multi-modal and often expensive to evaluate.
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The Rosenbrock is expressible in closed-form.
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form the core of the optimisation

f(z.y) = (1 —2)* +100(y — 2%)’



We are epistemically uncertain about f(x,y) due to

being unable to afford its computation.
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evaluation 5

We can hence probabilistically model f(x,y), and use
decision theory to make




Probabilistic modelling
of functions



Probability theory represents an extension of traditional

logic, allowing us to reason in the face of uncertainty.
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Deductive Logic  Probability Theory
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A probability is a This might be held by
any agent — a human, a robot, a pigeon, etc.




1" is the totality of an agent’s An agent
is (partially) defined by I.

== «.’: — ;9

We define our agents so that they can perform
difficult inference for us.




The distribution allows us to produce

distributions for variables conditioned on any other
observed variables.

—p(y1 | 1)
—p(y1 | yo=—5.1)

10

0.08

v 0.06 =
0F —_
0.04 =

=~

0.02

-10




The distribution allows us to produce

distributions for variables conditioned on any other
observed variables.
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A Gaussian process is the generalisation of a

multivariate Gaussian distribution to a potentially
infinite number of variables.
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A Gaussian process provides a
defined by mean and covariance

functions.
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Gaussian processes are specified by a

which flexibly allow the expression of e.g.
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have a complexity that grows with
the data; they robust to

overfitting.
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Bayesian optimisation as
decision theory



Bayesian optimisation is the approach of

probabilistically modelling f(x,y), and using decision
theory to make
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By defining the costs of observation and uncertainty,
we can select evaluations optimally by minimising the
expected loss with respect to a probability distribution.




We define a that is the lowest function
value found after our algorithm ends.

Assuming that we have only one evaluation remaining,
the loss of it returning value y, given that the current

lowest value obtained is n, is




This loss function makes computing the expected loss

simple: we'll take a myopic approximation and consider

only the next evaluation.

/My)p(y e To) dy

Iy : All available information.
Z : Next evaluation location.

The expected loss is the expected lowest value of the
function we’ve evaluated after the next evaluation.



We choose a as the probability
distribution for the objective function, giving a tractable

expected loss.
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Function Evaluation 2
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Function Evaluation 3
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Function Evaluation 4
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Function Evaluation 5
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Function Evaluation 6
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Function Evaluation 7
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Function Evaluation 8
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Function Evaluation 9
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Bayesian optimisation for
tuning hyperparameters



Tuning is used to cope with (such as

periods).
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Optimisation (as in

gives a reasonable heuristic for exploring the
likelihood.
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Bayesian optimisation gives a powerful method for such

tuning.
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Snoek, Larochelle and Adams (2012) used Bayesian

optimisation to
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Bayesian optimisation is useful in automating
structured search over # hidden layers, learning rates,

dropout rates, # hidden units per layer & L2 weight

constraints.
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Bayesian stochastic
optimisation



Using only a subset of the data (a mini-batch) gives a

noisy likelihood evaluation.
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If we use Bayesian optimisation on these noisy

evaluations, we can perform stochastic learning.
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evaluations (on smaller subsets) are
let’s also Bayesian optimise over the fidelity

of our evaluations!

B \\c tune the hyperparameters of a
GP fitted to half hourly time series
a1\ data for UK electricity demand for

2015, for which a full evaluation
costs ten minutes.

GP Negative Log-Likelihood

103 104
Total Clock Time (s)

Klein, Falkner, Bartels, Hennig & Hutter (2017);
McLeod, Osborne & Roberts (2017), arxiv.org/abs/1703.04335



which of these sequences is

1.6224441111111114444443333333

2.169399375105820974944592307/8

3.7129042634726105902083360448

4.1000111111011111111001010000



which of these sequences is

Seven d6 rolls with /repeats of the ith roll.
The 41st to 70th digits of .

This sequence was generated by the von
Neumann method with seed 908344.

Digits taken from a CD-ROM published by
George Marsaglia.



A random number:

1. is epistemic (of course, computation is
always conditional on prior knowledge);

2. is useful to foil a malicious adversary (of
which there are few in numerics); and

3. is never the minimiser of an expected
loss.



Integration beats optimisation



The naive fitting of models to data performed by

optimisation can lead to overfitting.
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Bayesian averaging over ensembles of models reduces

overfitting, and provides more honest estimates of
uncertainty.
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With parameters, our model is p(f,, D, 6). Then

(f.D) _ Jp(5,D,0)d0 _ [ p(f [ D.6) p(D | 6)p(0)do

p
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1 p(f. | D) is called the posterior for /,; this is our goal.
(f. | D,0) are the predictions given 6.
(0) is called the prior for 0.
(
(
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D | 0)is called the likelihood of 4.

5 p(D)= [ p(D|0)p(0)dois called the evidence, or
marginal likelihood.
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over the many possible

states of the world consistent with data: this is often
non-analytic.
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Numerical integration (quadrature) is ubiquitous.




Optimisation is an

multi-modal or broad likelihood integrand.
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If optimising, flat optima are often a better

representation of the integral than narrow optima.




Bayesian quadrature makes use of a Gaussian process

surrogate for the integrand (the same as you might use
for Bayesian optimisation).
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Gaussian distributed variables are joint Gaussian with

any of them.
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A function over which we have a Gaussian process is

joint Gaussian with any integral or derivative of it, as
integration and differentiation are linear.
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We can use observations of an integrand € in order to
perform inference for its /Z: this is known as

x samples

GP mean

GP mean + SD
expected Z T
p(Z|samples)

draw from GP
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draw from GP



SEVESERKVELICIE

traditional quadrature.
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what is the convergence rate of Monte Carlo?

1. O( exp(-N) )

2. O(exp(-N"))
3. O(N™)

4. O(N")
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The trapezoid rule (O(N ™)) has

_1/2

O(N 7).
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Probabilistic numerics views the

< Integrand

Sample
number

Osborne, M. A,, Duvenaud, D. K., Garnett, R., Rasmussen, C. E., Roberts, S. |, &
Ghahramani, Z. (2012). Active learning of model evidence using Bayesian
quadrature. In Advances in Neural Information Processing Systems (NIPS) (pp. 46—54).



Our method (Warped Sequential Active Bayesian

Integration) converges quickly in wall-clock time for a
synthetic integrand.
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100:||||| L1l L1l L1l

10—t E

1072 3

1 |[— Monte Carlo
10—3 E —WSABI
3 ||||| 1 1 LI ||||| 1 1 LI ||||| 1 1 LI |||||

102 101 100 10! 102

‘Fest - Ftruel/Ftrue

time [s]
Gunter, T., Osborne, M. A, Garnett, R., Hennig, P., & Roberts, S. ]. (2014). Sampling for Inference in Probabilistic Models with Fast Bayesian
Quadrature. In Advances in Neural Information Processing Systems (NIPS).



WSABI-L converges quickly in integrating out

hyperparameters in a Gaussian process classification
problem (CiteSeer data).

GP classification, graph
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Probabilistic numerics offers the propagation of

uncertainty through numerical pipelines.
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Probabilistic numerics treats computation as a
decision.
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