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Challenges for language and Artificial Intelligence

Syntax: We need models that can induce and exploit 
the hierarchical structure of language to learn 
rapidly.

Semantics: Our agents must be able to ground their 
understanding of linguistic symbols to concepts in 
their world.

??????????
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Inductive biases in Recurrent Neural Networks

RNNs struggle to capture non-sequential dependencies:

● gradients shrink across time,
● we often need to employ hacks like reversing sequences in seq2seq learning, 
● or more directly encode structural assumptions with enhancements like 

attention.

LSTMs and other gated architectures reduce, but do not negate these issues.

Generative Linguistics (Chomsky) argues that sequential recency is not the right 
bias for effective (i.e. fast) learning of human language.



Why do we believe that language has syntax?

Syntax exists separate from semantics. We can assign semantics to 
ungrammatical utterances, and syntax to semantically incoherent ones:

Colourless green oranges sleep furiously .

Syntax mediates between the hearing/speech (sensory-motor interface) and 
meaning (conceptual-intentional interface).
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Why do we believe that language has syntax?

Better Rule: to convert a statement into a question move the auxiliary (are) that 
follows the subject (a syntactic concept) to the front. 



Do RNN language models learn recursive structure?

Linzen et al. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. TACL 2016.
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A Recurrent Network for Generating Trees

Given enough data RNNs will learn the 
distribution of language, but then the same 
can be said of simple Maximum Likelihood 
Estimators. 

For AI we are primarily interested in efficient 
learning, i.e. sample complexity. 

Our models must have the right biases in 
order to learn fast.



Recurrent Neural Network Grammars

RNNGs define a top-down, left-to-right generative process for trees such that 
they can be generated sequentially from an RNN.

Latent control symbols are added that rewrite the history (hidden state) 
occasionally:

● Hierarchically compress subsequences into a single hidden state 
(constituents)

● The RNN predicts the next terminal/control symbol based on the history of 
compressed elements (constituents) and non-compressed terminals (words) 

Dyer et al. Recurrent Neural Network Grammars. NAACL 2016



Example Derivation

Dyer et al. Recurrent Neural Network Grammars. NAACL 2016
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Is this a coherent probabilistic model of trees?

● For every (tree, string) pair there is exactly one valid sequence of actions 
(specifically, the depth first, left-to-right traversal of the trees)

● Every stack configuration exactly encodes the complete history of actions.
● Therefore, the probability of a (tree,string) pair decomposes by the chain rule:



Modeling the action conditional probabilities



Syntactic composition



Training

Generative

○ Jointly model sentence x and its tree y
○ Trained using gold standard trees (from a tree bank) to minimize cross-entropy
○ We call this joint distribution p(x,y) 

Discriminative

○ Given a sentence x, predict the sequence of actions y necessary to build its parse tree - the full 
sentence x is observable

○ Instead of GEN, use SHIFT
○ We call this conditional distribution q(y | x)

To parse: simply use beam search to find the best sequence.



English PTB (Parsing)



English Language Modeling



RNNGs Summary

Language has hierarchical structure.

Recurrent Neural Network Grammars allow us to incorporate this bias into 
sequential RNNS and provide a strong generative model for parsing and language 
modelling.

However, introducing discrete latent variables (Control Actions) creates hard 
inference problems.

For an excellent analysis see: Kuncoro et al. What Do Recurrent Neural Network 
Grammars Learn About Syntax? EACL 2017.
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Inducing hierarchical structure from distant reward

We do not observe the syntactic structure of language in raw input data.

● In supervised settings we assume we have a dataset of utterances annotated 
with syntactic structures. 

● In unsupervised settings we treat the structure as latent and search for the 
structure that optimises an objective function. The most common objective is 
likelihood of the utterance (i.e. language modelling).

Here we consider an alternative: using Reinforcement Learning to select the 
structure that maximises a task based reward.



Inducing hierarchical structure from distant reward

Advances in deep learning have led to three predominant approaches for 
constructing representations of sentences

○ Convolutional neural networks

Kim, 2014; Kalchbrenner et al., 2014; Ma et al., 2015

○ Recurrent neural networks

Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014

○ Recursive neural networks

Socher et al., 2011; Socher et al., 2013; Tai et al., 2015; Bowman et al., 2016



Recurrent Neural Network Encoder

A boy drags his sleds through the snow 



Learning language structure from distant rewards

But we know that such models fail to capture hierarchically 
organised relationships among words.

A boy drags his sleds through the snow 



Recursive Neural Network Encoder

A boy drags his sleds through the snow 

Output Embedding

Input (word) Embeddings



Convolutional Encoder

A boy drags his sleds through the snow 

Output Embedding

Input (word) Embeddings
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Shift Reduce Parsing (Aho and Ullman, 1972)

Each unique Shift Reduce sequence maps to a single tree structure



Reinforcement Learning

● How do we learn an optimal sequence of shift reduce in the absence of 
supervised data?

● Given a state, and a set of possible actions, an agent needs to decide what is 
the best possible action to take

● There is no supervisor, only reward which can be not observed until after 
several actions are taken



Reinforcement Learning

● Given a state,  and a set of possible actions, an agent needs to decide what is 
the best possible action to take.

● There is no supervisor, only reward which can be not observed until after 
several actions are taken.

● A Shift-Reduce agent
a. State: embeddings of top two elements of the stack, embedding of head of the queue
b. Actions: shift, reduce
c. Reward: log likelihood on a downstream task given the produced representation

● Here we use the REINFORCE algorithm.



Sentiment Analysis Results

Method Accuracy

Naive Bayes (from Socher et al., 2013) 81.8

SVM (from Socher et al., 2013) 79.4

Average of Word Embeddings (from Socher et al., 2013) 80.1

Bayesian Optimization (Yogatama et al., 2015) 82.4

Weighted Average of Word Embeddings  (Arora et al., 2017) 82.4

Left-to-Right LSTM 84.7

Right-to-Left LSTM 83.9

Bidirectional LSTM 84.7

Supervised Syntax 85.3

Semi-supervised Syntax 86.1

Latent Syntax 86.5

CNN-based methods range from 82.7 to 88.1
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The Paradigm Problem

What is a minimally adequate training paradigm for an 
intelligent agent to learn to comprehend language?

Linguistic symbols must be grounded in an environment in 
order for an agent to interpret the meaning of an utterance.

Traditionally we ground language data with supervised labels 
(e.g. sentiment analysis, document classification), or in terms 
of other language data (e.g. word embeddings, MT, etc.).

??????????



The Paradigm Problem

Question: What is the (data) environment within which humans learn language?

● Children learn language with minimal direct teaching and with incredible 
variations in data,

● they learn amazingly quickly from sparse and ambiguous data,
● children learn language in adverse circumstances, despite blindness, brain 

injury, or the inability to move or speak.

There is no one answer to this question. Here I will discuss a minimal starting 
point of situating an agent in a continuous 3D environment in which it can act and 
perform tasks specified by a teacher.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



DeepMind Lab

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)
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DeepMind Lab

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

http://www.youtube.com/watch?v=M40rN7afngY


Language in DeepMind Lab

We wish to train situated language agents, s.t.:

● the agent perceives its surroundings via a 
constant stream of visual input and a 
textual instruction,

● it perceives the world actively, controlling 
what it sees via movement of its visual
field and exploration of its surroundings. 

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



Language in DeepMind Lab

We specify the general layouts, possible objects and the form of language instructions that 
describe how the agent can obtain rewards. 

The precise world experienced by the agent is chosen at random from billions of 
possibilities, corresponding to different instantiations of objects, their colours, surface 
patterns, relative positions and the overall layout of the 3D world.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



Language in DeepMind Lab: The Lexicon

Shapes (40) tv, ball, balloon, cake, can, cassette, chair, guitar, hairbrush, hat, ice lolly, ladder, 
mug, pencil, suitcase, toothbrush, key, bottle, car, cherries, fork, fridge, hammer, knife, spoon, 
apple, banana, cow, flower, jug, pig, pincer, plant, saxophone, shoe, tennis racket, tomato, 
tree, wine glass, zebra.

Colours (13) red, blue, white, grey, cyan, pink, orange, black, green, magenta, brown, purple, 
yellow.

Patterns (9) plain, chequered, crosses, stripes, discs, hex, pinstripe, spots, swirls.

Shades (3) light, dark, neutral.

Sizes (3) small, large, medium.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



A trained agent following instructions

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

http://www.youtube.com/watch?v=wJjdu1bPJ04


A basic agent based on the A3C algorithm
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Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016
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Unsupervised learning makes word learning possible
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Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



DeepMind Lab

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



And provides insight into agents' 'thoughts'....

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

http://www.youtube.com/watch?v=wJjdu1bPJ04&t=107


DeepMind Lab

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



Curriculum Learning for Complex Tasks 
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Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.
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Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.
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Training 
    
   "ladder"
    "mug"
    "pencil"
    "suitcase"
    "toothbrush"

   "red"
    "green"
    "blue"
    "pink"

"red ladder"
"green mug"
"blue pencil"

Test 
    

"pink ladder"
"yellow mug"
"green pencil"

 x 13

 x 40

 x 400

 x 120

Agents learn to generalise word composition

Performance on training set

Performance on test set

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



Training 
    

"red ladder"
"green mug"
"blue pencil"

Test 
    

"pink ladder"
"yellow mug"
"green pencil"

 x 400  x 120

Decompose before re-compose

Performance on training set

Performance on test set

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



Training

 
 "larger" (ball)
"smaller" (ball)

"larger" (mug)
"smaller" (mug)

Test 
    

"larger" (pencil)
"smaller" (pencil) x 30

 x 10

Apply modifiers and predicates to novel objects

Performance on training set

Performance on test set

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



But sample complexity remains an issue

          A3C agent
          A3C agent +RP + VR
          A3C agent +RP +VR +LP
          A3C agent +RP +VR +tAE
          A3C agent +RP +VR +tAE +LP

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

250k!



          Agent that already knows 20 words outside of training set
          Agent that already knows 2 words outside of training set
          Agent trained from scratch

Knowing some words makes learning more fast

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.



This mirrors the ‘Vocabulary Spurt’ observed in infants

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

          Agent that already knows 20 words outside of 
training set
          Agent that already knows 2 words outside of 
training set
          Agent trained from scratch

vocabulary 'spurt'
conceptual 
'bootstrapping'



Summary

Natural Language Understanding requires models that can 
exploit the syntactic structure of language to produce ground 
representations of meaning.

We have a number of plausible models to achieve this, but we 
still require richer training environments in order to fully utilise 
them.


