Structure and Grounding in
Natural Language

Phil Blunsom

In collaboration with Chris Dyer, Dani Yogotama, Felix Hill, Karl Moritz Hermann and the
DeepMind Natural Language Group

G DeepMind

Challenges for language and Artificial Intelligence

Syntax: We need models that can induce and exploit
the hierarchical structure of language to learn
rapidly.

Semantics: Our agents must be able to ground their
understanding of linguistic symbols to concepts in
their world.

This Lecture

1. Modelling hierarchical structure in language with recurrent networks
2. Inducing hierarchical structure from distant reward

3. Learning compositional language in simulated 3D environment

This Lecture

1. Modelling hierarchical structure in language with recurrent networks

Inductive biases in Recurrent Neural Networks

RNNs struggle to capture non-sequential dependencies:

e gradients shrink across time,

e we often need to employ hacks like reversing sequences in seq2seq learning,

e or more directly encode structural assumptions with enhancements like
attention.

LSTMs and other gated architectures reduce, but do not negate these issues.

Generative Linguistics (Chomsky) argues that sequential recency is not the right
bias for effective (i.e. fast) learning of human language.

Why do we believe that language has syntax?

Syntax exists separate from semantics. We can assign semantics to
ungrammatical utterances, and syntax to semantically incoherent ones:

Colourless green oranges sleep furiously .

Syntax mediates between the hearing/speech (sensory-motor interface) and
meaning (conceptual-intentional interface).

Why do we believe that language has syntax?

The students are enjoying the lecture

Are the students enjoying the lecture

\/

Simple Rule: to convert a statement into a question move the first auxiliary (are) to
the front (Auxiliary Fronting)

Why do we believe that language has syntax?

The students who are sleeping are enjoying the lecture

Are the students who sleeping are enjoying the lecture

\/

Are the students who are sleeping enjoying the lecture

\/

Why do we believe that language has syntax?

X X
X X X X X
The students are enjoying the lecture AAre the students enjoying the lecture
X X
X X X X X
The students X are enjoying the lecture AAre the students X _enjoying the lecture
T PN
who are sleeping who are sleeping

Better Rule: to convert a statement into a question move the auxiliary (are) that
follows the subject (a syntactic concept) to the front.

Do RNN language models learn recursive structure?

root
nsubj
pobj pobj
det prep prep
v N\Y—~/ ¥ v~ ¥

The keys to the cabinet are on the table

Training objective =~ Sample input Training signal ~ Prediction task Correct answer
Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL

Verb inflection The keys to the cabinet [is/are] = PLURAL SINGULAR/PLURAL? PLURAL
Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL
Language model The keys to the cabinet are P(are) > P(is)? True

Linzen et al. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. TACL 2016.

Do RNN language models learn recursive structure?

100% -
50% —
0 —
40% - Lo
Q Language modeling
Q
T 30% o T 60% -
g 20% — g 40% -
L R i g Majority class
o 7] _— Grammaticality
0 = K
0% -| e-o-o-o-o-0-0-0-0-0-0-8-0-9 Number prediction
I T I I I , 1 % 4§ Verb inflection
] T T T |
2 4 1 12 14
. 2 . 8 _O 0 1 2 3 4
Distance (no intervening nouns) Count of attractors
Training objective =~ Sample input Training signal ~ Prediction task Correct answer
Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL
Verb inflection The keys to the cabinet [is/are] = PLURAL SINGULAR/PLURAL? PLURAL
Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL
Language model The keys to the cabinet are P(are) > P(is)? True

Linzen et al. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. TACL 2016.

A Recurrent Network for Generating Trees

Given enough data RNNs will learn the
distribution of language, but then the same
can be said of simple Maximum Likelihood
Estimators.

For Al we are primarily interested in efficient
learning, i.e. sample complexity.

Our models must have the right biases in
order to learn fast.

Recurrent Neural Network Grammars

RNNGs define a top-down, left-to-right generative process for trees such that
they can be generated sequentially from an RNN.

Latent control symbols are added that rewrite the history (hidden state)
occasionally:

e Hierarchically compress subsequences into a single hidden state

(constituents)
e The RNN predicts the next terminal/control symbol based on the history of

compressed elements (constituents) and non-compressed terminals (words)

Dyer et al. Recurrent Neural Network Grammars. NAACL 2016

Example Derivation

S

/\

NP VP

T~ N

The happy students applaud

Dyer et al. Recurrent Neural Network Grammars. NAACL 2016

Example Derivation

Stack

Action

Probability

NT(S)

P(NT(S) | TOP)

Example Derivation

Stack

Action

Probability

NT(S)

P(NT(S) | TOP)

Example Derivation

Stack

Action

Probability

NT(S)
NT(NP)

P(NT(S) | TOP)
P(NT(NP) | (S)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
NT(NP) P(NT(NP) | (S)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(s NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(s NT(NP) P(NT(NP) | (S)
(NP GEN(The) P(GEN(The) | (S (NP)

—
)]

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

(8 (NP The happy

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)
(S (NP The happy GEN(students) p(GEN(students) | ...)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)
(S (NP The happy GEN(students) p(GEN(students) | ...)

(S (NP The happy students

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
S NT(NP) P(NT(NP) | (S)
(S (NP GEN(The) P(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)
(S (NP The happy GEN(students) p(GEN(students) | ...)
(S (NP The happy students REDUCE p(REDUCE | ...)

Example Derivation

Stack Action Probability

NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)

(S (NP GEN(The) P(GEN(The) | (S (NP)

(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

(S (NP The happy GEN(students) p(GEN(students) | ...)

.. (NP The happy students REDUCE p(REDUCE | ...)
(NP The happy students)

Example Derivation

Stack Action Probability

NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)

(S (NP GEN(The) P(GEN(The) | (S (NP)

(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

(S (NP The happy GEN(students) p(GEN(students) | ...)
(S (NP The happy students REDUCE p(REDUCE | ...)

(S (NP The happy students) NT(VP) P(NT(VP) | (S(NP..))

Example Derivation

Stack Action Probability

NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)

(S (NP GEN(The) P(GEN(The) | (S (NP)

(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

(S (NP The happy GEN(students) p(GEN(students) | ...)
(S (NP The happy students REDUCE p(REDUCE | ...)

(S NT(VP) P(NT(VP) | (S(NP..))

Example Derivation

Stack Action Probability

NT(S) P(NT(S) | TOP)
(S NT(NP) P(NT(NP) | (S)

(S (NP GEN(The) P(GEN(The) | (S (NP)

(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)

(S (NP The happy GEN(students) p(GEN(students) | ...)
(S (NP The happy students REDUCE p(REDUCE | ...)

(S (NP The happy students) NT(VP) P(NT(VP) | (S(NP..))

(S (NP The happy students) (VP GEN(applaud)

Example Derivation

Stack Action Probability
NT(S) P(NT(S) | TOP)
(s NT(NP) P(NT(NP) | (S)
(S(NP GEN(The) p(GEN(The) | (S (NP)
(S (NP The GEN(happy) p(GEN(happy) | (S (NP The)
(S (NP The happy GEN(students) p(GEN(students) | ...)
(S (NP The happy students REDUCE p(REDUCE | ...)
NT(VP) P(NT(VP) | (S(NP..))
GEN(applaud)
REDUCE
GEN(.)

REDUCE

|s this a coherent probabilistic model of trees?

e For every (tree, string) pair there is exactly one valid sequence of actions
(specifically, the depth first, left-to-right traversal of the trees)

e Every stack configuration exactly encodes the complete history of actions.

e Therefore, the probability of a (tree,string) pair decomposes by the chain rule:

p(z,y) = p(actions(z, y))

1_' (as]la<r)
_1" (a;|stack(a<r))

p(actions(z, y))

Modeling the action conditional probabilities

() () () ()
hl =h2 =h3 =h4
T
(2) (23)

pla;| (§ (NPThehappystudents) (VR applaud)

Model the history with an RNN

Syntactic composition

() () () ()
hl =h2 =h3 =h4
A4

T 1
(22D (=)

(VP applaud)

Training

Generative

o Jointly model sentence x and its tree y
o Trained using gold standard trees (from a tree bank) to minimize cross-entropy
o We call this joint distribution p(x,y)

Discriminative

o Given a sentence x, predict the sequence of actions y necessary to build its parse tree - the full
sentence x is observable

o Instead of GEN, use SHIFT

o We call this conditional distribution q(y | x)

To parse: simply use beam search to find the best sequence.

English PTB (Parsing)

Petrov and Klein (2007)

Shindo et al (2012)
Single model

Vinyals et al (2015)
PTB only

Shindo et al (2012)
Ensemble

Vinyals et al (2015)
Semisupervised

Discriminative
PTB only

Generative
PTB onl

Gen

Gen

Disc

Gen

Disc+SemiS
up

Disc

Gen

2.1

90.5

92.4

92.8

SEF

93.6

English Language Modeling

Perplexity

5-gram IKN

LSTM + Dropout

Generative (approx.)

p(x) =) p(=,y)

’yEym

RNNGs Summary

Language has hierarchical structure.

Recurrent Neural Network Grammars allow us to incorporate this bias into
sequential RNNS and provide a strong generative model for parsing and language
modelling.

However, introducing discrete latent variables (Control Actions) creates hard
inference problems.

For an excellent analysis see: Kuncoro et al. What Do Recurrent Neural Network
Grammars Learn About Syntax? EACL 2017.

This Lecture

2. Inducing hierarchical structure from distant reward

Inducing hierarchical structure from distant reward

We do not observe the syntactic structure of language in raw input data.

e In supervised settings we assume we have a dataset of utterances annotated
with syntactic structures.

e Inunsupervised settings we treat the structure as latent and search for the
structure that optimises an objective function. The most common objective is
likelihood of the utterance (i.e. language modelling).

Here we consider an alternative: using Reinforcement Learning to select the
structure that maximises a task based reward.

Inducing hierarchical structure from distant reward

Advances in deep learning have led to three predominant approaches for
constructing representations of sentences

o Convolutional neural networks

Kim, 2014; Kalchbrenner et al., 2014; Ma et al., 2015
o Recurrent neural networks

Cho et al., 2014, Sutskever et al., 2014; Bahdanau et al., 2014
o Recursive neural networks

Socher et al., 2011; Socher et al., 2013; Tai et al., 2015; Bowman et al., 2016

Recurrent Neural Network Encoder

O
T
O
T

T

T

T

|
H HEEEES

~O—C-
L

r
:

A boy drags his sleds through the snow

Learning language structure from distant rewards

But we know that such models fail to capture hierarchically .
organised relationships among words.

T
O-0—-0-0-0H0-0H0

I R 0 A O N
HE8 BEEEEE

A boy drags his sleds through the snow

Recursive Neural Network Encoder

- Output Embedding
/\
. l l l Input (word) Embeddings

A boy drags his sleds through the snow

Convolutional Encoder

. Output Embedding

N
/\/\/\

. l Input (word) Embeddings

A boy drags his sleds through the snow

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

A boy drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

SHIFT A boy drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

SHIFT A boy drags his sled
A boy drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

SHIFT A boy drags his sled
A SHIFT boy drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action

Buffer

SHIFT
A SHIFT

A boy

A boy drags his sled
boy drags his sled
drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action

Buffer

SHIFT
A SHIFT
Aboy| REDUCE

A boy drags his sled
boy drags his sled
drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action

Buffer

SHIFT
A SHIFT
Aboy| REDUCE

A boy drags his sled
boy drags his sled
drags his sled
drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action

Buffer

SHIFT
A SHIFT
Aboy| REDUCE

TreeLSTM(Aboy) | SHIFT

A boy drags his sled
boy drags his sled
drags his sled
drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
SHIFT boy drags his sled
REDUCE drags his sled
SHIFT drags his sled
his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
SHIFT boy drags his sled
REDUCE drags his sled
SHIFT drags his sled
SHIFT his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
A boy REDUCE drags his sled
TreeLSTM(A boy) SHIFT drags his sled
TreeLSTM(A boy) drags SHIFT his sled
TreeLSTM(A,boy) drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
A boy REDUCE drags his sled
TreeLSTM(A boy) SHIFT drags his sled
TreeLSTM(A boy) drags SHIFT his sled
TreeLSTM(A,boy) drags his SHIFT sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
A boy REDUCE drags his sled
TreeLSTM(A boy) SHIFT drags his sled
TreeLSTM(A,boy) drags SHIFT his sled
TreeLSTM(A boy) drags his SHIFT sled

TreeLSTM(A boy) drags his sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled

A boy REDUCE drags his sled

TreeLSTM(A boy) SHIFT drags his sled
TreeLSTM(A,boy) drags SHIFT his sled

TreeLSTM(A boy) drags his SHIFT sled
TreeLSTM(A boy) drags his sled | REDUCE

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
A boy REDUCE drags his sled

SHIFT

TreeLSTM(A,boy)
TreeLSTM(Aboy) drags | SHIFT
TreeLSTM(A boy) drags his SHIFT
TreeLSTM(A,boy) drags his sled | REDUCE
TreeLSTM(A,boy) drags TreeLSTM((his,sled)

drags his sled
his sled
sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
A boy REDUCE drags his sled

SHIFT

TreeLSTM(A,boy)
TreeLSTM(Aboy) drags | SHIFT
TreeLSTM(A boy) drags his SHIFT
TreeLSTM(A,boy) drags his sled | REDUCE
TreeLSTM(A boy) drags TreeLSTM(his,sled) | REDUCE

drags his sled
his sled
sled

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

SHIFT A boy drags his sled
A SHIFT boy drags his sled

A boy REDUCE drags his sled
SHIFT drags his sled

TreeLSTM(Aboy)
TreeLSTM(A boy) drags SHIFT his sled
TreeLSTM(A boy) drags his SHIFT sled

TreeLSTM(A,boy) drags his sled | REDUCE
TreeLSTM(A boy) drags TreeLSTM(his,sled) | REDUCE
TreeLSTM(A,boy) TreeLSTM(drags, TreeLSTM(his,sled))

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer

SHIFT A boy drags his sled
A SHIFT boy drags his sled

A boy REDUCE drags his sled

SHIFT drags his sled

TreeLSTM(Aboy)
TreeLSTM(A boy) drags SHIFT his sled
TreeLSTM(A boy) drags his SHIFT sled

TreeLSTM(A,boy) drags his sled | REDUCE
TreeLSTM(A boy) drags TreeLSTM(his,sled) | REDUCE
TreeLSTM(A,boy) TreeLSTM(drags, TreeLSTM(his,sled)) | REDUCE

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift-Reduce TreeLSTM: Example Derivation

Stack Action Buffer
SHIFT A boy drags his sled
A SHIFT boy drags his sled
REDUCE drags his sled
SHIFT drags his sled
SHIFT his sled
SHIFT sled
TreeLSTM(A,boy) drags his sled | REDUCE
TreeLSTM(A,boy) drags TreeLSTM(his,sled) | ~ REDUCE
TreeLSTM(A boy) TreeLSTM(drags,TreeLSTM(his,sled)) |~ REDUCE

Yogotama et al. Learning to compose words into sentences with reinforcement learning. ICLR 2017

Shift Reduce Parsing (Aho and Ullman, 1972)

e 2 —
(7] 7 9. (7)
y . A W =
& iz y / i
s S M T 4, 5 { L i
FA N f))
OSERO o3 e
P4 e f il { \ 3
o b i | | 3) | K f
r g —

Re R e

[ke
%]
I
iz, ///
|(_'n:/
%]
| B

) \,) |) ! ! " | \ | . !
I‘\ o b e "-H_ i Lo ____) b '-\._. _./r N

SﬁsﬁR}S}SﬁRﬁR Sﬁs}S}R}R‘JS?R S}SaRaS}R}S}R S*S’S’S?R

Each unique Shift Reduce sequence maps to a single tree structure

R, R

) @@ © @O & G)

Reinforcement Learning

« How do we learn an optimal sequence of shift reduce in the absence of

supervised data?
« Given a state, and a set of possible actions, an agent needs to decide what is

the best possible action to take
« Thereis no supervisor, only reward which can be not observed until after

several actions are taken

Reinforcement Learning

« Given a state, and a set of possible actions, an agent needs to decide what is

the best possible action to take.
« Thereis no supervisor, only reward which can be not observed until after

several actions are taken.
« A Shift-Reduce agent

a. State: embeddings of top two elements of the stack, embedding of head of the queue
b. Actions: shift, reduce
c. Reward: log likelihood on a downstream task given the produced representation

« Here we use the REINFORCE algorithm.

Sentiment Analysis Results

Method Accuracy
Naive Bayes (from Socher et al., 2013) 81.8

SVM (from Socher et al., 2013) 79.4

Average of Word Embeddings (from Socher et al., 2013) 80.1

Bayesian Optimization (Yogatama et al., 2015) 82.4

Weighted Average of Word Embeddings (Arora et al., 2017) 82.4

Left-to-Right LSTM 84.7

Right-to-Left LSTM 83.9

Bidirectional LSTM 84.7

Supervised Syntax 85.3

Semi-supervised Syntax 86.1

Latent Syntax 86.5

CNN-based methods range from 82.7 to 88.1

Learned Example

Learned Example

This Lecture

3. Learning compositional language in simulated 3D environment

The Paradigm Problem

What is a minimally adequate training paradigm for an
intelligent agent to learn to comprehend language?

Linguistic symbols must be grounded in an environment in
order for an agent to interpret the meaning of an utterance.

Traditionally we ground language data with supervised labels
(e.g. sentiment analysis, document classification), or in terms
of other language data (e.g. word embeddings, MT, etc.).

The Paradigm Problem

Question: What is the (data) environment within which humans learn language?

e Children learn language with minimal direct teaching and with incredible
variations in data,

e they learn amazingly quickly from sparse and ambiguous data,

e children learn language in adverse circumstances, despite blindness, brain
injury, or the inability to move or speak.

There is no one answer to this question. Here | will discuss a minimal starting
point of situating an agent in a continuous 3D environment in which it can act and
perform tasks specified by a teacher.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

DeepMind Lab

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

DeepMind Lab

Observations

Pixels Agent

Actions

jump
f rotate
up/down

rotate
left/right

i 2 e
" -

forward/back ’ strafe left/right

crouch

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

DeepMind Lab

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

http://www.youtube.com/watch?v=M40rN7afngY

Language in DeepMind Lab

. S Agent view
We wish to train situated language agents, s.t.:

red obJect next to the green obJect:

red chisct next to the areen ohisct |

e the agent perceives its surroundings via a
constant stream of visual input and a
textual instruction, :

e it perceives the world actively, controlling .
what it sees via movement of its visual gl |
field and exploration of its surroundings.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Language in DeepMind Lab

We specify the general layouts, possible objects and the form of language instructions that
describe how the agent can obtain rewards.

The precise world experienced by the agent is chosen at random from billions of
possibilities, corresponding to different instantiations of objects, their colours, surface
patterns, relative positions and the overall layout of the 3D world.

Agent view

red cbiect next to the areen object;

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Language in DeepMind Lab: The Lexicon

Shapes (40) tv, ball, balloon, cake, can, cassette, chair, guitar, hairbrush, hat, ice lolly, ladder,
mug, pencil, suitcase, toothbrush, key, bottle, car, cherries, fork, fridge, hammer, knife, spoon,
apple, banana, cow, flower, jug, pig, pincer, plant, saxophone, shoe, tennis racket, tomato,
tree, wine glass, zebra.

Colours (13) red, blue, white, grey, cyan, pink, orange, black, green, magenta, brown, purple,
yellow.

Patterns (9) plain, chequered, crosses, stripes, discs, hex, pinstripe, spots, swirls.
Shades (3) light, dark, neutral.
Sizes (3) small, large, medium.

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

A trained agent following instructions

A

pick the cheguered hair_brush

‘-
100= 1239

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

http://www.youtube.com/watch?v=wJjdu1bPJ04

A basic agent based on the A3C algorithm

A
2-layer LSTM

L
1-layer LSTM
F “ladder”
& L
N 1

t t

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Additional (similar to UNREAL) auxiliary objectives

Jaderberg et al. Reinforcement Learning with Unsupervised Auxiliary Tasks. ICLR 2017

Additional (similar to UNREAL) auxiliary objectives

a Val

Jaderberg et al. Reinforcement Learning with Unsupervised Auxiliary Tasks. ICLR 2017

Unsupervised learning makes word learning possible

A a, Val B A3C agent

A3C agent +RP + VR

A3C agent +RP +VR +LP

A3C agent +RP +VR +AE
A3C agent +RP +VR +AE +LP

;

2-layer LSTM

[m]

L

Average Reward per Episode
o

1-layer LSTM
2
“ladder” /
0 .| b/ . \M;’--"\‘A.J_'\,r"’_\a‘fﬁ_ﬂﬁ_mjfn"‘--_fﬂ' J{\I',v_,— f""--__,r'- “".-"r\"\‘.f"-._h"'_,-'"
i lt 500000 1000000 1500000 2000000

Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

DeepMind Lab

ct ext o the blus chisct

an ochiect next to the blue coject cozn obdect pest 4o the blue ohiset

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

And provides insight into agents' 'thoughts'....

A

pick the cheguered hair_brush

Y58
100= 1239

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

http://www.youtube.com/watch?v=wJjdu1bPJ04&t=107

DeepMind Lab

i 15 il B P, x e
I

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Curriculum Learning for Complex Tasks

Top-down view of the level 10

w

Average Reward per Episode (10}

=— Multimodal A3C Agent +RP Train

0000 BO000 80000 100000
Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Average Reward per Episode (/10)

Curriculum Learning for Complex Tasks

@

ES

1000000

single-room layout two room layout
two object two object
< <>| words and < < words and
S <> | room ‘9 <> room
X X descriptors 2 X —X descriptors
X X X X
<> <> < <
< < S <S>

@

Average Reward per Episode (/10)

Agent trained from scratch

Agent previously trained on level 1

2000000

3000000 4000000
Training Episodes

0 Agent trained from scratch
5000000 6000000

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Average Reward per Episode (/10)

Curriculum Learning for Complex Tasks

single-room layout two room layout two room layout
two object two object medium
< <>| words and <> <> words and <> <> object
<S> <> | room ‘9 <> room ‘9 <> word/
1 X X descriptors 2 X —X descriptors 3 X —X room
X X X X X X descriptor
< S S S S < vocabulary
10 1 //_P,_ 1
8 S 8 S8
t t
3 é 3 uﬂ% 3
B B
4 [[
& &
))
2 g 2 2 5
Agent trained from scratch Agent previously trained on level 1 Agent previously trained on level 2
0 0 Agent trained from scratch 0 Agent previously trained on level 1
1000000 2000000 000000 4000000 5000000 6000000 Agent trained from scratch
Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Average Reward per Episode (/10)

Curriculum Learning for Complex Tasks

1000000

single-room layout two room layout
two object two object
< <>| words and <> <> words and
S <> | room ‘9 <> room
X X descriptors 2 X —X descriptors
X X X X
< < < S
< < S <S>

Average Reward per Episode (/10)

Agent trained from scratch

Agent previously trained on level 1

2000000

3000000 4000000
Training Episodes

Agent trained from scratch

5000000 6000000

Average Reward per Episode (/10)

two room layout

medium
<> <> object
‘9 <> word/
3 X —X room
X X descriptor
< <
<> <

vocabulary

Agent previously trained on level 2
0 Agent previously trained on level 1
Agent trained from scratch

Average Reward per Episode (/10)

two room layout

full
<> <> object
‘9 <> word/
4 X —X room
X X descriptor
< <>
<> <

vocabulary

Agent previously trained on level 3
0 Agent previously trained on level 2
Agent previously trained on level 1
Agent trained from scratch

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Average Reward per Episode (/10)

Agents learn to generalise word composition

10

Color-Shape Composition

Performance on training set

Performance on test set

200000 400000 ROOO00 BOOODOD 1000000 1200000 1400000
Training Episodes

Training

"ladder"
"mug"
"pencil"
"suitcase"

"toothbrush"

nredn
ngreenn
vvbluen
"pink”

"red ladder"
"green mug"
"blue pencil”

Test

"pink ladder"
x40 ‘'yellow mug"
"green pencil"

x 13

x 400

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

x 120

Average Reward per Episode (/10)

Decompose before re-compose

o - Training Test
10 Color-Shape Decomposition / Recomposition
B "red ladder" "pink ladder"
"green mug' x400 vellow mug" x 120
. "blue pencil” "green pencil"
4
2 Performance on training set

Performance on test set

200000 400000 BO0000 BOOOOOD 1000000 1200000 1400000
Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Average Reward per Episode (/10)

Apply modifiers and predicates to novel objects

10 Training Test
8 Larger / Smaller "larger” (ball) Narger” (pencil
" " x 10
. smaller” (ball x 30 "smaller” (pencil)
"larger" (mug)
. "smaller” (mug)
. Performance on training set
Performance on test set
H

200000 400000 BO0000 BOOO0O0 1000000 1200000 1400000
Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

But sample complexity remains an issue

A3C agent

A3C agent +RP + VR

A3C agent +RP +VR +LP

A3C agent +RP +VR +AE
A3C agent +RP +VR +AE +LP

-

250k!

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Knowing some words makes learning more fast

10

Il Agent that already knows 20 words outside of training set
I Agent that already knows 2 words outside of training set
I Agent trained from scratch

Performance on 20-word training set (/10)

0 100000 200000 300000 400000 500000 6OOOOOD 7OQO0C BOOOOO
Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

This mirrors the ‘Vocabulary Spurt’ observed in infants

296 K. Plunken et al.

- Anne’s Jens'
e Vocabulary * Vocabulary
Development Development
g 150 - 150 -
] /vocabulary 'spurt' 120 120
T T
g y 90+ y 90—
s ? ol
£ ﬁ-ﬂ"': ¢ 60 7
0 30 - 30+
= Agent that already knows 20 words outside of 1 - 1
':_. ﬁnlngset 0 L L L L L L | 0 Lt bl i G I e o i |
o 12 14 16 18 20 22 24 26 12 14 16 18 20 22 24 26
Hm Agent that already knows 2 words outside of Axe in Month Aee in Month
=) ge in Months ge in Months
T H¥8ning set : Figure 1. Vocabulary development in two Danish children: the plateau period is
i 100000 200000 3000dPCNtARINEA TOMRRACN cooooo 700000 soooo followed by a period of accelerated growth referred to as the vocabulary spurt.

Training Episodes

Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Summary

Natural Language Understanding requires models that can
exploit the syntactic structure of language to produce ground
representations of meaning.

We have a number of plausible models to achieve this, but we
still require richer training environments in order to fully utilise
them.

