Introduction to Convolutional Networks

Richard Zemel

University of Toronto

June 19, 2017

Vector is an independent non-profit research institution located at the MaRS Discovery District in Toronto, Canada.

Idea developed in discussion with a local startup (CTO, CEO) in September. Funding arranged by January; launched March 30th. Focus on machine learning research and practice.

Vector Institute Faculty

Geoff Hinton
Chief Scientific Advisor

Richard Zemel Research Director

David Duvenaud

Sanja Fidler

Brendan Frey

Roger Grosse

Quaid Morris

Daniel Roy

Graham Taylor

Raquel Urtason

Marzyeh Ghassemi

Murat Erdogdu

Jimmy Ba

We're hiring!

Looking for

- Research Scientists
- Post-doctoral fellows

For more information, visit us at vectorinstitute.ai or email careers@vectorinstitute.ai

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Neural Networks for Object Recognition

- People are very good at recognizing shapes
 - Intrinsically difficult, computers are bad at it (but getting better)

Why is it hard?

[Grauman & Leibe]

Huge within-class variation. Recognition is mainly about modeling variation.

[Lazebnik]

Tons of classes

[Biederman]

The invariance problem

- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - deformation, contrast, lighting, rate
- We are so good at this that its hard to appreciate how difficult it is
 - Its one of the main difficulties in making computers perceive
 - We still don't have generally accepted solutions

Applying neural nets to images

- Straightforward application of neural networks to images is one option
 - input images contain mega-pixels.
 - Fully-connected neural network prohibitive in terms of number of parameters to learn
- Build in some structure
 - Long-standing issue: tabula rasa vs. build in structure?

Local Receptive Fields

- Each neuron receives input from a subset of neurons in layer below: receptive field
 - Lowest level: Small window in image.
 - Arrange units topographically: neighboring units have similar properties due to overlapping receptive fields

Topographic Maps

Local Receptive Fields

- Each neuron receives input from a subset of neurons in layer below: receptive field
 - Lowest level: Small window in image.
 - Arrange units topographically: neighboring units have similar properties due to overlapping receptive fields
 - Offset in RF between neighboring units: stride

Local Receptive Fields

What is a single unit/neuron responding to?

- Some local feature in the image.
- Weights known as feature detector, kernel, or filter

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Shared Weights

- Use many different copies of the same feature detector: replicated feature.
 - Copies have slightly different positions.
 - Could replicate across scale and orientation.
 - Tricky and expensive
 - Replication reduces number of free parameters to be learned.
 - Stationarity: statistics are similar at different image positions (LeCun 1998)
- Convolutional neural network: local RFs, shared weights
- Use several different feature types, each with its own replicated pool of features.
 - Allows each patch of image to be represented in several ways.

The red connections all have the same weight.

Examples of Feature Detectors

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Local RFs

Weight sharing: Parameter saving

Convolutional Layer

Each input modality forms a different channel

Activation of convolutional layer: feature map

Hyper-parameters of a convolutional layer:

- The number of filters (controls the depth of the output volume)
- The stride: how many units apart do we apply a filter spatially (controls the spatial size of the output volume)
- The size w x h of the filters

Pooling

- Each convolutional layer followed by a pooling layer
- Pooling: combine filter responses within a window
 - Simplifies information in the output of the conv layer
 - Reduces dimensionality
 - Gain robustness wrt spatial location
- Standard forms: max, average

Finishing it off

- Add one or more fully connected layers at end, then produce output (classification prediction)
- Activation functions (sigmoid, tanh, RELU, ELU)
- Loss function (KL, hinge)
- Typically train by back-prop, SGD

Le Net

Main ideas:

- Local → global processing
- Retain coarse posn info

Main technique: weight sharing – units arranged in feature maps

Connections: 1256 units, 64,660 cxns, 9760 free parameters

Results: 0.14% (train), 5.0% (test)

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Modern CNNs: Alexnet (2012)

VGG (2014)

add more layers

Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014

Residual Networks (2015)

Inspired by LSTM gating units

- Combats vanishing gradients
- Simple form of auto-regression

Highway Networks (2015)

$$\mathbf{x}_{l+1} = \phi_{l+1}(\mathbf{x}_l, \mathbf{W}_H) \cdot \tau_{l+1}(\mathbf{x}_l, \mathbf{W}_T) + \mathbf{x}_l \cdot (\mathbf{1} - \tau_{l+1}(\mathbf{x}_l, \mathbf{W}_T))$$

- Inspired by LSTM gating function
 - Combats vanishing gradients
 - Dynamically determines when data passed thru vs.
 transformed
- In general, shortcut connections allow training of very deep networks.

How Deep?

10 times deeper in a few years

How Deep? Good?

• 3 times better

How Deep? Good? Slow?

• 5 times slower

How Deep? Good? Slow? Complex?

Number of parameters about the same

Recent Developments in CNNs

Normalization

1. Batch normalization: standardize response of each feature channel within a batch

$$\tilde{z}_{n,j} = \gamma \frac{z_{n,j} - \mathbb{E}[z_j]}{\sqrt{\frac{1}{|B(n)|} (z_{n,j} - \mathbb{E}[z_j])^2}} + \beta \qquad \mathbb{E}[z_j] = \frac{1}{|B(n)|} \sum_{m \in B(n)} z_{m,j}$$
33

Normalization

- 1. Batch Normalization
- 2. Layer normalization: standardize response of each feature channel within a layer

[Ba, Kiros. Hinton, 2016]

$$\tilde{z}_{n,j} = \gamma \frac{z_{n,j} - \mathbb{E}[z_n]}{\sqrt{\frac{1}{|L(j)|}(z_{n,j} - \mathbb{E}[z_n])^2}} + \beta \qquad \mathbb{E}[z_n] = \frac{1}{|L(j)|} \sum_{k \in L(j)} z_{n,k}$$

- Good results in RNNs, not as good on CNNs
- 3. Weights, spatial normalization schemes
- 4. Divisive normalization: canonical computation in the brain

Divisive Normalization

[Ren, Liao, Sinz, Urtasun, Zemel, 2017]

$$\tilde{z}_j = \gamma \frac{\sum_{z_i \in \mathcal{A}_j} u_i z_i}{\left(\sigma^2 + \sum_{z_k \in \mathcal{B}_j} w_k z_k^p\right)^{\frac{1}{p}}}$$

Model	Range	Normalizer Bias
BN	$\mathcal{A}_{n,j} = \{ z_{m,j} : m \in [1, N], j \in [1, H] \times [1, W] \}$ $\mathcal{B}_{n,j} = \{ v_{m,j} : m \in [1, N], j \in [1, H] \times [1, W] \}$	$\sigma = 0$
LN	$\mathcal{A}_{n,j} = \{z_{n,i} : i \in [1,L]\} \mathcal{B}_{n,j} = \{v_{n,i} : i \in [1,L]\}$	$\sigma = 0$
DN	$\mathcal{A}_{n,j} = \{z_{n,i} : d(i,j) \le R_{\mathcal{A}}\} \mathcal{B}_{n,j} = \{v_{n,i} : d(i,j) \le R_{\mathcal{B}}\}$	$\sigma \geq 0$

Divisive Normalization

Model	CIFAR-10 Acc.	CIFAR-100 Acc.
Baseline	0.7565	0.4409
Baseline +WD +Dropout	0.7795	0.4179
BN	0.7807	0.4814
LN	0.7211	0.4249
BN*	0.8179	0.5156
LN*	0.8091	0.4957
DN*	0.8122	0.5066

Network Design: Receptive Fields

Receptive field (RF)

- image region influencing neuron (unit) response
- anything outside the RF is invisible to neuron
- Important: large image structures cannot be analyzed by neurons with small RFs

Analysis: effective RFs smaller than we thought

- Effective Receptive Field (ERF) of output unit: the region containing any input with non-negligible impact
- non-negligible: region of impact within 2-standard deviation of center pixel's impact
- For CNNs, we measure the impact as the scale of the partial derivatives, which can be computed

Effective Receptive Fields

ERF:

- Gaussian distribution: Fourier analysis, central limit theorem
- grows $O(\sqrt{n})$ over number of layers n in deep CNNs
- occupies $O(1/\sqrt{n})$ of full theoretical RF

[Luo, Li, Urtasun, Zemel 2016]

Enlarging Effective Receptive Fields

- Better initialization: diffuse power to periphery
- Architectural
 - Replace one large filter bank with a sequence of smaller ones (fewer parameters, gain extra nonlinearity, possibly faster)
 - Sparsify connections: randomly, learned, grouped

K = num. output channels

Num. of parameters $H_f \times W_f \times C \times K$

 $\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

complexity: $C \times K$

Full filters

Group-sparse filters

[Vedaldi]

complexity: $C \times K / G$

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Representations in CNNs

What do we know about the these?

- Relevance to/from biology?
- Visualizations
- Theory & analysis

CNNs & Biology

- ConvNet inspired by visual neuroscience
 - Classical notions of simple and complex cells
 - Architecture similar to LGN-V1-V2-V4-IT hierarchy in visual cortex ventral pathway
 - LGN: lateral geniculate nucleus receives input from retina
 - 30 different areas of visual cortex, V1 & V2 principal
 - Infero-temporal cortex important in object recognition

Original CNN: Bio-inspired

CNNs & Biology

- Some similarities with biology
 - Layered architecture
 - Local connectivity
- But myriad of differences
- Yet performance is somewhat analogous

Cars

[Cadieu et al., 2014]

Animals

Fruits

Planes

Chairs

Tables

Faces

Can directly plot the filters:

Hinton diagram

AlexNet, first layer

Can directly plot the filters (AlexNet, first layer)

Analyzing the Representations

RF study: mask portion of image, examine effects on responses of unit, such as output

Parts-Based Representations

- One aim is to find parts in location-invariant way
- Can form clusters across space to encourage this

Analyzing the Representations

- Synthesize input maximally activates the unit, via gradient ascent
- Natural image priors play important role

Layer 4

[Yosinski et al., 2014]

Theory of CNNs

- Both S_n and D_n are universal approximators of $f(x_1, ..., x_8)$
- Deep network provides better degree of approximation for compositional functions $f(x_1,\cdots,x_8) = h_3(h_{21}(h_{11}(x_1,x_2),h_{12}(x_3,x_4)), \\ h_{22}(h_{13}(x_5,x_6),h_{14}(x_7,x_8)))$
 - requires fewer trainable parameters to achieve same $\operatorname{dist}(f, S_n) = \mathcal{O}(n^{-r/d})$. accuracy

$$\operatorname{dist}(f, \mathcal{D}_n) = \mathcal{O}(n^{-r/2}).$$

 If the target function is scalable (same algorithm applies when input scale changes) and shift-invariant, then deep CNNs are natural approximators

[Mhaskar, Liao, Poggio, 2017]

Representations in very deep nets

- Effects of lesioning, shuffling layers in highway, residual networks suggest alternative view of learned representation
- Unrolled iterative estimation of representations, formed in stages

Units in different layers are all estimating common

[Greff, Srivastava, Schmidhuber, 2017]

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Applications: Semantic Segmentation

- CNN classifier predicts pixel labels:
 - 3-layers, sigmoid units, weight decay
- Utilize CRF to clean up
- Corel dataset: 60 train, 40 test; 80x120 pixels

[He, Zemel, Carreira-Perpinan, 2004]

• MS-COCO: 80 object categories, 200k Images, 1.2M instances

rhino/hippo

polar bear

vegetation

ground

sky

water

snow

Up-sampling with convolutions

- Standard CNN: local connectivity, pooling → down-sample input
- To predict dense pixel labels, utilize up-sampling
 - 1. Fractional stride
 - 2. Dilated convolutions

De-convolution

3. Deconvolution can be formulated as convolution transpose

Applying to semantic segmentation

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Jamie Kiros

Captioning via Image/Text Embedding

Ranking experiments: Flickr8K and Flickr30K

Flickr8K and Flickr30K: evaluation datasets

• Each image comes with 5 descriptions from independent annotators

Two tasks: image annotation and image search

- Hold out 1000 images and 5000 sentences
- For each image, rank all sentences
- For each sentence, rank all images
- Compute Recall @ K: fraction of times which correct truth is in top K
- Also compute median rank of the highest scoring ground truth

Generating via encoder-decoder model

Encoding \rightarrow learn a joint embedding space of images and text:

- This allows us to condition on anything (images, words, phrases, etc)
- Natural definition of a scoring function (inner products in the joint space)

Decoding → use a language model that incorporates additional structure

Decoding: Adding structure


```
(NN VBN IN DT NN)
A_____ (VBN IN DT NN -)
A bicycle _____ (IN DT NN - -) VBN
A bicycle parked _____ (DT NN - - -)
A bicycle parked on _____ (NN - - - -)
```

 $P(w_n|w_{1:n-1},t_{n:n+k},\mathbf{x})$

A bicycle parked on the _____ (- - - - -)

n-th word word context context

POS

[Kiros, Zemel, Salak., 2015]

Encoder-decoder model

 Attribute combines image/ sentence embedding with structure (forward POS soft template)

How to generate descriptions

Given an image:

- Embed the image using the conv-net
- Condition the language model on the embedding
- Sample a POS sequence from the training set
- Generate the MAP description
- Score how well it does
- Repeat many times and take the highest scoring description

Some good results - generation

a car is parked in the middle of nowhere.

a wooden table and chairs arranged in a room.

there is a cat sitting on a shelf.

a little boy with a bunch of friends on the street.

Some failure types

the two birds are trying to be seen in the water.

(can't count)

a giraffe is standing next to a fence in a field . (hallucination)

a parked car while driving down the road . (contradiction)

the handlebars are trying to ride a bike rack.

(nonsensical)

a woman and a bottle of wine in a garden . (gender)

Mad Libs

The $\frac{\text{(cat)}}{\text{NN}}$ is in the box.

The cat is in the $\frac{\text{(box)}}{\text{NN}}$.

The cat is $\frac{\text{(sitting)}}{\text{VBG}}$ in the box.

The $\frac{\text{(cute)}}{\text{JJ}}$ cat is in the box.

This is a _____(bus) ___.

NN

The bus is _____(parked) __.

JJ

There is a _____(car) __ behind the bus .

NN

The tree is _____(on) ___ the bus.

IN

Generate with style

(#3) Results

We were barely able to catch the breeze at the beach , and it felt as if someone stepped out of my mind . She was in love with him for the first time in months , so she had no intention of escaping . The sun had risen from the ocean , making her feel more alive than normal . She 's beautiful , but the truth is that I do n't know what to do . The sun was just starting to fade away , leaving people scattered around the Atlantic Ocean . I d seen the men in his life , who guided me at the beach once more .

Generate with style

(#3) Results

You re the only person on the beach right now you know I do n't think I will ever fall in love with you and when the sea breeze hits me I thought Hey

Generate with style

Generated story about image Model: Romantic Novels

"He was a shirtless man in the back of his mind, and I let out a curse as he leaned over to kiss me on the shoulder.

He wanted to strangle me, considering the beatiful boy I'd become wearing his boxers."

Visual Question-Answering

What color is the jacket?

- -Red and blue.
- -Yellow.
- -Black.
- -Orange.

How many cars are parked?

- -Four.
- -Three.
- -Five.
- -Six.

What event is this?

- -A wedding.
- -Graduation.
- -A funeral.
- -A picnic.

When is this scene taking place?

- -Day time.
- -Night time.
- -Evening.
- -Morning.

[Ren, Kiros, Zemel, 2016]

Outline

- Quick summary of convolutional networks
- Recent developments
- What is being learned?
- Applications:
 - Semantic segmentation
 - Image understanding
 - Few-shot learning

Modern Deep Learning: More Data → Better Results

- AlexNet: "ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are roughly 1.2 million training images"
- Deep Speech: "Large-scale deep learning systems require an abundance of labeled data ... we have thus collected an extensive dataset consisting of 5000 hours of read speech from 9600 speakers."
- Neural Machine Translation: "On WMT En→Fr, the training set contains 36M sentence pairs."
- AlphaGo: "The value network was trained for 50 million minibatches of 32 positions, using 50 GPUs, for one week"

Few-Shot Learning

- Humans can easily recognize new categories from a single example
- How to adapt deep neural networks to new classes with few labeled examples?
- Could retrain on new classes, but significant risk of overfitting

Image reproduced from: Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level concept learning through probabilistic program induction." *Science* 350.6266 (2015): 1332-1338.

What is few-shot learning?

Learning how to represent objects (e.g. images) given only a few instances of each object

K-shot N-way Classification: Classify a reference image into one of N candidate classes, given K representatives of each class. For example, <u>2-shot 4-way classification</u>:

Fundamental question: How to transfer knowledge from earlier experience to do few-shot learning?

Omniglot Dataset

Probabilistic Programming with Parts

Metric learning

Learning how to represent objects (e.g. images) as points in some space where relative positions indicate similarity

Siamese Networks

Siamese Networks

[Koch, Zemel, Salak., 2015]

Siamese Networks

Method	Test
Humans	95.5
Hierarchical Bayesian Program Learning	95.2
Affine model	81.8
Hierarchical Deep	65.2
Deep Boltzmann Machine	62.0
Simple Stroke	35.2
1-Nearest Neighbor	21.7
Siamese Neural Net	58.3
Convolutional Siamese Net	92.0

Few shot learning, SOA

- Core question of one shot learning: can we ask the model to predict classes that are shown rarely in the training set?
- Current approaches:
 - Similarity: Koch et al. 2015 (Siamese net).
 - Embedding: Vinyals et al. 2016 (Train a classifier such that training resembles testing).
 - External memory: Santoro et al. 2016 (Use external memory to keep a mapping to new seen classes).
 - Meta-optimization: Ravi & Larochelle 2017 (Learn a parameterized optimizer through meta-optimization).

Small Data-Simple Model

- Retraining classifier on new classes would severely overfit
- In order to combat overfitting, choose simple model
- Nonparametric models scale with amount of data
 - k-Nearest Neighbors on support set
- Distances in raw input space may not help classification

- Learn transformation into a space where distances are informative for classification
- Neighborhood Components Analysis (Salakhutdinov & Hinton, 2007): classify via k-NN in latent space. Performs poorly in few-shot

Prototypical Networks

 Assume points belong to a class cluster around a single prototype representation

$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{\mathbf{x}_i \in S_k} f_{\phi}(\mathbf{x}_i)$$

 Classify unlabeled points by finding nearest class prototype

Jake Snell

$$p_{\phi}(y = k | \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$

Kevin Swersky

Mixture Density Estimation View

- Fit mixture density model to support set and infer most likely cluster assignment for query points
- One cluster per class and take mean as cluster representative

- For Euclidean distance equivalent to isotropic Gaussian densities
- Other distances correspond to different class-conditional distributions

$$p_{\phi}(y = k \mid \mathbf{x}) = \frac{\exp(-\|f_{\phi}(\mathbf{x}) - \mathbf{c}_{k}\|^{2})}{\sum_{k'} \exp(-\|f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}\|^{2})}$$

$$-\|f_{\phi}(\mathbf{x}) - \mathbf{c}_{k}\|^{2} = -f_{\phi}(\mathbf{x})^{\top} f_{\phi}(\mathbf{x}) + 2\mathbf{c}_{k}^{\top} f_{\phi}(\mathbf{x}) - \mathbf{c}_{k}^{\top} \mathbf{c}_{k}$$
$$2\mathbf{c}_{\mathbf{k}}^{\top} f_{\phi}(\mathbf{x}) - \mathbf{c}_{k}^{\top} \mathbf{c}_{k} = \mathbf{w}_{k}^{\top} f_{\phi}(\mathbf{x}) + b_{k}$$

$$\mathbf{w}_k = 2\mathbf{c}_k$$
 $b_k = -\mathbf{c}_k^{\mathsf{T}}\mathbf{c}_k$

Softmax output layer determined by class prototypes!

Episodic Training

- Train using "episodes" to mimic n-shot, k-way test procedure
- For each training minibatch:
 - Subsample k training classes
 - Choose n examples as labeled support set
 - Take remaining examples as unlabeled query set
- Maximize probability of true class for query examples
- For better performance, make training batches more difficult by subsampling > k classes

Experiments

Datasets

- 1. Omniglot
 - 28 x 28 grayscale images
 - 1623 characters from 50 alphabets, each with 20 examples
 - 1200 classes for training, 423 for testing (< Lake)

2. minilmagenet

- 84 x 84 color images
- 100 real-world classes, each with 600 examples
- 64 used for training, 16 validation, 20 test

Embedding architecture

- Four convolutional layers, each with 64 filters
- 64-dimensional embedding for Omniglot
- 1600-dimensional embedding for minilmagenet

Few-Shot Setup: Omniglot

- Disjoint training classes and test classes
- At test time, shown "support set" with n examples each of k unseen classes ("n-shot k-way classification")

Few-Shot Results

Omniglot

			5-way Acc.		20-way Acc.	
Model	Dist.	Fine Tune	1-shot	5-shot	1-shot	5-shot
MATCHING NETWORKS (Vinyals et al., 2016)	Cosine	N	98.1%	98.9%	93.8%	98.5%
MATCHING NETWORKS (Vinyals et al., 2016)	Cosine	Y	97.9%	98.7%	93.5%	98.7%
NEURAL STATISTICIAN (Edwards & Storkey, 2017)	-	N	98.1%	99.5%	93.2%	98.1%
PROTOTYPICAL NETWORKS (OURS)	Euclid.	N	98.8%	99.7%	96.0%	98.9%

minilmageNet

			5-way Acc.		
Model	Dist.	Fine Tune	1-shot	5-shot	
BASELINE NEAREST NEIGHBORS*	Cosine	N	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
MATCHING NETWORKS (Vinyals et al., 2016)*	Cosine	N	$43.40 \pm 0.78\%$	$51.09 \pm 0.71\%$	
MATCHING NETWORKS FCE (Vinyals et al., 2016)*	Cosine	N	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
META-LEARNER LSTM (Ravi & Larochelle, 2017)*	-	N	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
PROTOTYPICAL NETWORKS (OURS)	Euclid.	N	$\textbf{49.42} \pm \textbf{0.78\%}$	$\textbf{68.20} \pm \textbf{0.66\%}$	

d ₹ d ત ત ત ત ત વ का क्र श्रम् श्रम् स्वास श्रम् U 쩞 αt 십 ON WE WE Ħ TO HE HOLD TO THE TO TH \Box

Zero-Shot Learning

- Instead of labeled examples at test, instead have class metadata
 - Text description: e.g. "It is predominantly blue with a white chest and a blue crest."
 - Attribute vector
- Learn metadata embedding to produce prototype representation as function of attribute vector
- Both image and metadata embedding live in same space

Few-shot

Zero-Shot Results

- CU-Birds dataset
 - Color images with GoogLeNet extracted features
 - 312-dimensional attribute vectors
 - 150 species train, 50 species test
- Linear embedding into shared 1024-dimensional space

Model	Image Features	
ALE [1]	Fisher	26.9%
SJE [2]	AlexNet	40.3%
SAMPLE CLUSTERING [17]	AlexNet	44.3%
SJE [2]	GoogLeNet	50.1%
DS-SJE [22]	GoogLeNet	50.4%
DA-SJE [22]	GoogLeNet	50.9%
PROTO. NETS (OURS)	GoogLeNet	54.6%

Conclusion

- Many other interesting topics in modern CNNs:
 - Fast processing
 - Reduced precision
 - Compressing weights
 - Novel optimization techniques

- Lots of other applications
 - Object detection, tracking, optic flow, 3D vision, egomotion estimation
 - Non-vision ones: text and speech processing, learning to rank

Conclusion

- Still not well understood
 - Learned representations
 - Mini-batch size, design
 - Links to parts-based models; causal models
 - Hyperparameter optimization, particularly wrt architecture
 - Role for non-parametric models, probabilistic models?