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Neural Networks for Object Recognition

e People are very good at recognizing shapes

— Intrinsically difficult, computers are bad at it (but
getting better)

e Why is it hard?



\‘ wewpomt | object pose

|Grauman & Leibe]



Huge within-class variation. Recognition is mainly about
modeling variation.

|Lazebnik]



Tons of classes
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The invariance problem

e Our perceptual systems are very good at dealing
with invariances

- translation, rotation, scaling
— deformation, contrast, lighting, rate

e We are so good at this that its hard to appreciate
how difficult it is

— Its one of the main difficulties in making
computers perceive

- We still don’t have generally accepted solutions

10



Applying neural nets to images

e Straightforward application of neural networks to images is one
option
- inputimages contain mega-pixels.

— Fully-connected neural network prohibitive in terms of number of
parameters to learn

e Build in some structure

- Long-standing issue: tabula rasa vs. build in structure?

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

P —— —

output layer
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Local Receptive Fields

 Each neuron receives input from a subset of neurons in layer
below: receptive field

- Lowest level: Small window in image.

— Arrange units topographically: neighboring units have similar
properties due to overlapping receptive fields

input neurons
Q0888 first hidden laver

input neurons
33333 first hidden layer
00000 ()
00000~

Q0000
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Topographic Maps
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Local Receptive Fields

 Each neuron receives input from a subset of neurons in layer
below: receptive field

- Lowest level: Small window in image.

— Arrange units topographically: neighboring units have similar
properties due to overlapping receptive fields

— Offset in RF between neighboring units: stride

input neurons
22229 first hidden laver
00000 e —0)
00000~

00000

input neurons

Q0000 . : N Ao

888?(;( first hidden layer
& — ————mmy()
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Local Receptive Fields

What is a single unit/neuron responding to?
- Some local feature in the image.
- Weights known as feature detector, kernel, or filter

15



Shared Weights

 Use many different copies of the same feature
detector: replicated feature.

— Copies have slightly different positions.

— Could replicate across scale and orientation. The red connections all

e Tricky and expensive :
y v have the same weight.

— Replication reduces number of free

parameters to be learned. Q

— Stationarity: statistics are similar at Q
different image positions (LeCun 1998) ~—7 tat

e (Convolutional neural network: local RFs, Q
shared weights

e Use several different feature types, each with its
own replicated pool of features.

— Allows each patch of image to be
represented in several ways.

16




Examples of Feature Detectors

Operation Filter Convolved
Image
0 0 0
Identity 0 1 0
0 0 0
1 0 -1
0
-1 0 1
1 0
Edge detection 1 -4 1
1 0
[—1 -1 -—1]
-1 8 -1
-1 -1 -1
0 -1 0]
Sharpen -1 5 -1
| 0 -1 0
Box bl 1 1 1 1
ox blur 1y 1 1
(normalized) 9
1 11
1 2 1
Gaussian blur 1
: S— 16 2 4 2
approximation
P 1 2 1




Local RFs
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Weight sharing: Parameter saving

Share the same parameters across
different locations (assuming input is

] , o, stationary):
1 f | \ Convolutions with learned kernels

\ ~-
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Convolutional Layer

Each input modality forms a / -

different channel ] £
f/>|o 000D

Activation of convolutional

layer: feature map /32

3
Hyper-parameters of a convolutional layer:

— The number of filters (controls the depth of the output
volume)

— The stride : how many units apart do we apply a filter
spatially (controls the spatial size of the output volume)

- The size w x h of the filters "



Pooling

224x224x64 | |
112x112x64 A Single depth slice
pool ) N 5> [ 4
max pool with 2x2 filters
Oaleol 7 | 8 and stride 2 6
3| 2 0 3
I 1 2 [
> e 112 >
224 S downsampling y

112

224
e Each convolutional layer followed by a pooling layer

e Pooling: combine filter responses within a window
- Simplifies information in the output of the conv layer

- Reduces dimensionality

- Gain robustness wrt spatial location

e Standard forms: max, average 21



Finishing it off

55

N\
~

N

of 4

pooling

Strix

i train the weights of filters P cat”
i v e
13 13 13 Y
3\ ] —_. N\- —4> — > >
Q: T =P |13 _Qj | 13 36: -l 13 dense | [dense
- T 3\ ~
384 384 256 100(
Max
256 i pooling 4096 4096
pooling

e Add one or more fully connected layers at end, then

produce output (classification prediction’

e Activation functions (sigmoid, tanh, RELU, ELU)
e Loss function (KL, hinge)

22

e Typically train by back-prop, SGD



Le Net

Main ideas:
e Local - global processing
e Retain coarse posn info

Main technique: weight sharing - units arranged in feature maps
Connections: 1256 units, 64,660 cxns, 9760 free parameters

Results: 0.14% (train), 5.0% (test)

32x32 6x28x28 6x14x14 16x10x10  16x5x5  120x1x1
] 84x1x1
| 10x1x1

I

I | Output layer

[~ —
3§\
—— — Full-connected layer
F6
Convolutional layer Subsampling layer Convolutional layer Subsampling layer Convolutional layer
C1 : 6 kernels(5x5) S2 : 2x2 C3 : 16 kernels (5x5) S4 : (2x2) C5 : 1920 kernels (5x5)
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Modern CNNs: Alexnet (2012)

category
Total nr. params: 60M orediction Total nr. flops: 832M
4M LINEAR 4M
|
16M FULLY CONNECTED 16M
37M FULLY CONNECTED 37M
442K Z74M
1.3M 224M
884K 149M
307K 523M
35K 105M oc

inntit



VGG (2014)

add more layers

55

27
13 13 13

55 384 384 256
Mat 256 M
ax
Stride\| o | POOliNg pooling
of 4
55 7 — —
27
< 13 13 13
1 S 1
N \ o T 3 -
\ 5 _— — wlbe - — — T — —
1 —| X - 3 T = 13 s 13 3 - - 13 dense dense
224 5 - 27 4 3 -~
3 3 .
55 384 384 256 100(
Max
256 ) L__J |
Max Max pooling 4096 4096
Stride\| o | Pooling pooling
224
of 4
3

Figure : K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014
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Residual Networks (2015

Inspired by LSTM gating units

— Combats vanishing gradients

— Simple form of auto-regression

X |

v

weight layer

lrelu

weight layer

F(x)

Hx)=F(x)+x
relu

identity
X

output

size: 224

output

size: 112

output
size: 56

output
size: 28

output
size: 14

output
site: 7

output
sire: 1

VGG-19 34-layer plain 34-layer residual
image image image
3x3 conv, 64
3x3 conv, 64
¥
peal, /2
L 3x3 conv, 128
4 v
33 cony, 128 | | 7x7conv.64./2 | | "7conv.64,/2 |
¥
peal, /2 pool, /2 pool, [2
¥
33 cony, 256 | 33 cony, 64 33 conv, 64
G cory, 256 | a3 cony, 64 33 conv, 64
¥
3G conv, 256 | 3x3 con, 64 3x3 conv, 64
¥ \ 4
3x3 conv, 256 ] 3x3 cony, 64 3x3 conv, 64
v
3x3 cony, 64 3x3 conv, 64
3x3 cony, 64 33 conv, 64
Y N
pool, /2 33 cony, 118, (2 3 com, 128,72 | s,
Y
A cony, 512 | 33 conv, 128 3deonv, 128 | S
| Da3coay, 512 a3 conv, 128 33 cony, 128

A comy, 512 |

3x3 conv, 128

3x3 conv, 128

| | [
| J I
[ ] |
| J [
[ J l
[ ] [
[ J [
| l [
[ | [
[ J |
HAcory, 512 | [ 3xaconv12s | [ 3xaconv, 128
A4 v
| 3aconv 122 | | 3x3cony, 128
| 3acony, 125 | | 3xaconv 128
| 3acony 128 | | 3aconv 128
peal, /2 | »acony 2552 | | 23 com, 258, /;.h]- """"" .
¥ ¥ ¥ M
33 cony, 512 | [ 3xaconv, 256 | [ saconvzse | L
A cony, 512 | | 33conv,25 | | 33cny256 |
13 cony, 512 | | 3xzconv, 256 | | 3aconv 56 |
33 coy, 512 | | 3x3conv, 256 | | 33conv 256 |
[ 3c3conv, 2% | [ 3acny 256 |
A4
| 3x3conv, 26 | | 3a3conv, 256 |
I 3x3 conv, 256 ] I 3x3 conv, 256 I
\4
| 3aconv,256 | | 3aconv256 |
| 3x3conv, 256 | [ 33conv 256 |
4
[ 3x3 conv, 256 ] [ 3x3 conv, 356 ]
A4 4
| 3xaconv,2s6 | | 3aconv, 56 |
Y Ty N
pool, /2 | 3aconv, 512,72 | [ »3coms12/2 | ",
\ Y
[ 3aconvsa | [ saconvsa | 7
| 3aconys12 | | 3xaconv, 512
I 3x3 conv, 512 ] [ 3x3 conv, 512
| 3aconv,s12 | | 33 cony, 512
[ ax3conv,s12 | | 3x3conv, 512
\ 4 i v
fc 4096 avg peol avg pool
| fc 4096 [ 1c 1000 [ 1c 1000 |

\ ]
fe 1000



Highway Networks (2015)

Xj41 = Qr+1(xt, Wg) - 1i+1(x, Wr) + x5 - (1 — 1401 (%1, W)

e Inspired by LSTM gating function
— Combats vanishing gradients

— Dynamically determines when data passed thru vs.
transformed

e In general, shortcut connections allow training of very
deep networks.

28



How Deep?

e 10 times deeper in a few years

GoogLeNet (2014)
VGG-VD-16 (2014)

VGG-M (2013)

AlexNet (2012)

16 convolutional layers

50 convolutional layers

152 convolutional layers

*lVVVV

ResNet 50 (2015)
ResNet 152 (2015)

Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional
neural networks. In Proc. NIPS, 2012.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc.
CVPR, 2016.



Top 5 error

How Deep? Good?

e 3 times better
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speed (images/s on Titan X)

How Deep? Good? Slow?

e 5 times slower

800 5.0
700 4.4
600 3.8
500 _ 3.1
o

400 5 25
300 ? 49
200 1.3
100 0.6
0 0.0
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model size (MBs)

How Deep? Good? Slow? Complex?

e Number of parameters about the same

500
438
375
313
250
188
125

63

S\
St & N\ 2O
R LI & eR O D
OOQ Q@‘ eg(\e 6(\8\' 6(\8\'
> (@7 @

Larger

6.0
5.3
4.5
3.8
3.0
2.3
1.5
0.8
0.0

b\
2 (5 B N0 00
3 -,
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Recent Developments in CNNs

Normalization

1. Batch normalization: standardize response of
each feature channel within a batch

batch of
N tensors

~

pick feature channel k

Szegedy & loffe, 2015

compute
moments

mean Lk

é——/ variance Ok

subtract mean &
divide by variance

33



Normalization

1. Batch Normalization

2. Layer normalization: standardize response of
each feature channel within a layer

“n,j

& 2]

gn,j =7 >
Ve

(2n,j —

L[2])?

p

E 2]

|Ba, Kiros. Hinton, 2016]

1
— : zZn.k
L(j)] 2 Ak

keL(j)

— Good results in RNNs, not as good on CNNs

3. Weights, spatial normalization schemes

4. Divisive normalization: canonical computation in

the brain

34



Divisive Normalization

|Ren, Liao, Sinz, Urtasun, Zemel,
2017]

~ ZZi cA; Wiz
_ | <5 = T
P

(a) Batch-Norm (b) Layer-Norm (c) Div-Norm (0-2 "— sz EBJ wk Z{?)
Model Range Normalizer Bias

BN A, i ={2zm,; - mel[l,N],jell,H] x [1,W]} -

B.;=4{vm,; :mel[l,N],jell, H| x[1,W]}
LN Ani={zni:i€[l,L]} B,,;={v,i:i€ll,L]} oc=20
DN An,j:{zn’i:d(z ])<R.A} an—{vnz. (Z ])<R3} o>0
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3

s RelU

Divisive Normalization

DN+RelLU sigma=4.0
=== DN+RelLU sigma=2.0

DN+RelLU

2 = DN+RelU s§gmai1.o

1

0

-3 -2 -1 1 A

Input

Model CIFAR-10 Acc. CIFAR-100 Acc.
Baseline 0.7565 0.4409
Baseline +WD +Dropout | 0.7795 0.4179
BN 0.7807 0.4814
LN 0.7211 0.4249
BN* 0.8179 0.5156
LN* 0.8091 0.4957
DN* 0.8122 0.5066

|[Ren, Liao, Sinz, Urtasun, Zemel,

2017]

1.2

0.0
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Network Design: Receptive Fields

Receptive field (RF)
— image region influencing neuron (unit) response
— anything outside the RF is invisible to neuron

 Important: large image structures cannot be analyzed by
neurons with small RFs

Analysis: effective RFs smaller than we thought

o Effective Receptive Field (ERF) of output unit: the region
containing any input with non-negligible impact

e non-negligible: region of impact within 2-standard deviation
of center pixel's impact

e For CNNs, we measure the impact as the scale of the partial

derivatives, which can be computed

37
[Luo, Li, Urtasun, Zemel 2016]



Effective Receptive Fields
ERF:

e (Gaussian distribution: Fourier analysis, central limit theorem
e grows O(Vn) over number of layers n in deep CNNs
e occupies O(1/vn) of full theoretical RF

5 layers, theoretical RF size=11 10 layers, theoretical RF size=21
E
Uniform Random  Random + ReLLU | Uniform Random  Random + ReLU
20 layers, theoretical RF size=41 40 layers, theoretical RF size=81

Uniform Random Random + RelLU Uniform Random Random + RelLU

CIFAR 10 CamVid

|[Luo, Li, Urtasun, Zemel 2016]
38
]

Before Training  After Training  Before Training  After Training



Enlarging Effective Receptive Fields

o Better initialization: diffuse power to periphery
e Architectural

— Replace one large filter bank with a sequence of smaller ones (fewer
parameters, gain extra nonlinearity, possibly faster )

— Sparsify connections: randomly, learned, grouped

Num. of operations

e =
Hx Wx C — X H x Hy W x Wre
. X - X Cx K
stride stride a—

1
F 999949
Hix Wix CxX K
Num. of parameters
N N
C = num. input channels He x We x C x K
K= num. output channels Full filters Group-sparse filters
0 0
= Cx K X = 0 0 X
0 0
y F X y Fi X

|Vedaldi]

complexity: C X K complexity: Cx K/ G
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Representations in CNNs

What do we know about the these?

— Relevance to/from biology?
— Visualizations

— Theory & analysis



CNNSs & Biology

* ConvNet inspired by visual neuroscience
— Classical notions of simple and complex cells

— Architecture similar to LGN-V1-V2-V4-|T hierarchy in
visual cortex ventral pathway
« LGN: lateral geniculate nucleus receives input from retina
« 30 different areas of visual cortex, V1 & V2 principal
* |Infero-temporal cortex important in object recognition




Original CNN: Bio-inspired

Uo/

\

N visual area >¢-associatlion areq ——
S e . _, lower-order __ higher-order _, ___grandmother
\retmav LG% simple — complex hypercomplex  hypercomplex — cell
| ——— ———— — — 1 - — == 1 e _ll [FUkUShlma, 1980]



CNNs & Biology

« Some similarities with biology
— Layered architecture
— Local connectivity

« But myriad of differences
* Yet performance is somewhat analogous

(@)
o
|

Cars Fruits

.
1

(€3
o
L

w
o
|

Accuracy (% correct)
N
o

20 -

Chance —»

~ o
14% 4 |

—
—

[Cadieu et al., 2014]




Visualizing the Representations

Can directly plot the filters:
— Hinton diagram

— AlexNet, first layer




Visualizing the Representations
Can directly plot the filters (AlexNet, first layer)

I//Wﬂ __r;:__

M Wl =
- Lo §'] l//
L1 A7

[Zeiler & Fergus, 2013]



Visualizing the Representations
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Visualizing the Representations




Analyzing the Representations

RF study: mask portion of image, examine effects on
responses of unit, such as output

| . -




Parts-Based Representations

* One aim is to find parts in location-invariant way
« (Can form clusters across space to encourage this

Conv-3ﬁ Conv-3 Conv-2 Conv-2 .

[Liao, Schwing, Zemel, Urtasun, 2016]



Analyzing the Representations

« Synthesize input maximally activates the unit, via gradient ascent
« Natural image priors play important role

[Yosinski et al., 2014]

Flaminao Pelican



Theory of CNNs

) O

X1 Xo X2 Xa4 Xe Xg X7 X
xl xz x3 x4_ x5 x6 x7 x8 1 2 3 4 5 46 A7 8

Both S, and D, are universal approximators of f(x,,...xg)

Deep network provides better degree of approximation for
compositional functions F(z1, -+ 38) = ha(hr (h1y (21, T2), haa (33, 24)),

hoo(h13(Ts5, T6), h14(T7, Ts)))
— requires fewer trainable parameters to achieve same dist(f,S,) = O(n~"/9).
accuracy

dist(f, D) = O(n~"/?).

If the target function is scalable (same algorithm applies
when input scale changes) and shift-invariant, then deep

CNNs are natural approximators
[Mhaskar, Liao, Poggio, 2017]



Representations in very deep nets

o Effects of lesioning, shuffling layers in highway, S S
residual networks suggest alternative view of g%
learned representation : ’
 Unrolled iterative estimation of representations, e S
formed in stages E i
o Units in different layers are all estimating common | |  [f— @ =1 ]
B YWy dimensiona lity
latent variable E— | — N — -
: | : —=~ 5
N o ——
of i 1 I — —
o
| O I RERe bbb SRRt (REELEERE R
N | S— T he——
, . ( layer ] [ gate |(transform|
i [ Y e | R s wn |
. ! . { ! ;
L B IR P ! S oo )
/ residual network highway network
0.04 0.15 0.15 0.4
S 002 010 0.2
[ W o000 L - — — | 0.10
% [ak — Az] =0. 57 0.05 ol
v g 002 T 0.05 oo
xeX % ~0.04 000 b - — — - _ _ _ _0'4
Ljé ~0.06 ~0.05 000 F———-—————————————- _0'6
: g 008 010 ~0.05 '
|Greff, Srivastava, Z -010 | -08
-0.12 -0.15 -0.10 -1.0

SChmithber; 2 O 1 7] Stage 1 Stage 2 Stage 3 | Stage 4
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Applications: Semantic Segmentation

. rhino/hippo
e (NN classifier predicts pixel labels: polar bear
- 3-layers, sigmoid units, weight decay Zla::
e Utilize CRF to clean up Zfz:a;on
e (orel dataset: 60 train, 40 test; 80x120 pixels sky

Hand-labeling

Classifier

|He, Zemel, Carreira-Perpinan, 2004]

e MS-COCO: 80 object categories,200k Images, 1.2M instances >



Up-sampling with convolutions

e Standard CNN: local connectivity, pooling >down-sample input
e To predict dense pixel labels, utilize up-sampling

1. Fractional stride

2. Dilated convolutions

D=1 D=2 D=3
....................
......... . - .

..- ..........
..- ..........
.......... - . -
....................

56



De-convolution

3. Deconvolution can be formulated as convolution transpose

Convolution As matrix multiplication

X —)*—>g vecy|:|: [ ]x vec X

i |
@@@@@ Banded matrix equivalentto F
\J
Convolution transpose Transposed
] -

g = x> . P vecy = X U Vec X

— a

Transposed matrix
57



Applying to semantic segmentation

> net l
R,
' A 0

e
A
%

........ 2
— =

skip
outi layers segmentation mask
input image .
S (output image)
224x224 224x224
152x112  Convolution network Deconvolution network 11211
56x56 56x56
28%28 28%28 /
14x14 %7 14x14
1x1 1x1
( D ¢ )
Max Max Unpoolin
X pooling pooling pooiing Unpooling
1 U fax pooling ' _L.ieeeeee- > mmmemmmmmoTEIIEeT - . — Unpooling y /
"~ pooling ....eeeemnt - T LA
)'fax_ _____ - T Unpooling
pooling ..--- T~ N
..... - ~npooling

N
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Jamie Kiros




Captioning via Image/Text Embedding

. 0 .! i ’
A castle an Joint A ship sailing

reflecting water space in the ocean
Minimize: |

LLmaX{O a—s(x,v)+ s(x,vg)} +

Images

LLmaX{O a—s(v,x)+ s(v,xi)}
text [Kiros, Salak., Zemel, 20141}




Ranking experiments: Flickr8K and
Flickr30K

Flickr8K and Flickr30K: evaluation datasets
e Each image comes with 5 descriptions from independent annotators

Two tasks: image annotation and image search
e Hold out 1000 images and 5000 sentences
e For each image, rank all sentences
e For each sentence, rank all images
e Compute Recall @ K: fraction of times which correct truth is in top K
e Also compute median rank of the highest scoring ground truth



Generating via encoder-decoder model

{ Multimodal space | SC-NLM Decoder
Gl [ o

EMN l%//"

:Steam ship at the dock :

CNN - LSTM Encoder

1 structure
1

Encoding =2 learn a joint embedding space of images and text:
» This allows us to condition on anything (images, words, phrases, etc)
e Natural definition of a scoring function (inner products in the joint
space)

Decoding > use a language model that incorporates additional
structure



Decoding: Adding structure

(NN VBN IN DT NN)

DT
A (VBN IN DT NN -)
: NN
A bicycle (IN DT NN - -)
VBN
o A bicycle parked (DT NN - --)
IN
A bicycle parked on (NN ----)
P(wn |w1:n—17 tn:n—l—ka X) OT

A bicycle parkedonthe = (-----
/ \ \ ycle p o

n-th word POS

word context context
|Kiros, Zemel, Salak., 2015]



Encoder-decoder model

i Multimodal space SC-NLM Decoder

content

AT

' Steam ship at the dock

CNN - LSTM Encoder

P(wn |w1:n—17 tn:n—l—ka X)

* Attribute combines image/
/ \ \ sentence embedding with
structure (forward POS soft
n-th word POS template)

word context context



How to generate descriptions

Given an image:

e Embed the image using the conv-net

e Condition the language model on the embedding

e Sample a POS sequence from the training set

e Generate the MAP description

e Score how well it does

e Repeat many times and take the highest scoring
description



Some good results - generation

shelf .

a wooden table and chairs

227

a car is parked in arranged in a room .
the middle of nowhere .

a ferry boat on a marina
with a group of people . o CEeEEE
a little boy with a bunch
of friends on the street .




Some failure types
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the two birds are trying a giraffe is standing next
to be seen in the water . to a fence in a field . driving down the road .

(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
In a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Mad Libs

The (cat) s in the box.

NN
The catis in the (box)
NN

The cat is (sitting) in the box .

VBG
The (cute) catis in the box .

JJ
This is a (bus)
NN
The bus is (parked) .
JJ

There is a (car) behind the bus .

NN
The tree is (on)  the bus.

IN



Generate with style
(#3) Results

8

We were barely able to catch the breeze at the beach , and it felt as if
someone stepped out of my mind . She was in love with him for the first
time in months , so she had no intention of escaping . The sun had risen
from the ocean , making her feel more alive than normal . She 's beautiful ,
but the truth is that | do n't know what to do . The sun was just starting to
fade away , leaving people scattered around the Atlantic Ocean . | d seen
the men in his life , who guided me at the beach once more .



Generate with style
(#3) Results

You re the only person on the beach right now
you know

| do n't think | will ever fall in love with you

and when the sea breeze hits me

| thought

Hey



Generate with style
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Generated story about image

- Model: Romantic Novels

" “He was a shirtless man

in the back of his mind,
and I let out a curse as
he leaned over to kiss
me on the shoulder.

He wanted to strangle
me, considering the be-

atiful boy I'd become
wearing his boxers.”



Visual Question-Answering

What color is the
jacket?

-Red and blue.
-Yellow.

-Black.

-Orange.

How many cars are
parked?

-Four.

-Three.

-Five.

-Six.

When is this scene

What event is this?

taking place?
-A wedding. -Day time.
-Graduation. -Night time.
-A funeral. -Evening.
-A picnic. -Morning.

|Ren, Kiros, Zemel, 2016]



Outline

Quick summary of convolutional networks
Recent developments

What is being learned?

Applications:

« Semantic segmentation

« Image understanding

« Few-shot learning



Modern Deep Learning:
More Data - Better Results

+ AlexNet: “ILSVRC uses a subset of ImageNet with roughly
1000 images in each of 1000 categories. In all, there are
roughly 1.2 million training images”

» Deep Speech: “Large-scale deep learning systems require an
abundance of labeled data ... we have thus collected an
extensive dataset consisting of 5000 hours of read speech
from 9600 speakers.”

* Neural Machine Translation: “On WMT En—Fr, the training
set contains 36M sentence pairs.”

« AlphaGo: “The value network was trained for 50 million mini-
batches of 32 positions, using 50 GPUs, for one week”



Few-Shot Learning

- Humans can easily recognize
new categories from a single
example

- How to adapt deep neural
networks to new classes with
few labeled examples?

« Could retrain on new classes,
but significant risk of over-
fitting

Image reproduced from: Lake, Brenden M., Ruslan
Salakhutdinov, and Joshua B. Tenenbaum. "Human-level
concept learning through probabilistic program induction."
Science 350.6266 (2015): 1332-1338.



What is few-shot learning?

Learning how to represent objects (e.g. images) given
only a few instances of each object

K-shot N-way Classification: Classify a reference image into
one of N candidate classes, given K representatives of each class.
For example, 2-shot 4-way classification:

Reference Candidates

O 00000000

Fundamental question: How to transfer knowledge from
earlier experience to do few-shot learning?




Omniglot Dataset

o) g U=
AR WK T H&

Aurek-Besh Futurama  Greek Hebrew Korean Latin Malay Sanskrit



Probabilistic Programming with Parts

A

i) primitives

i) sub-parts

iii) parts

iv) object
template

attached along

type level

v) exemplars

vi) raw data

relation:

/L)O

attached along

relation: g )
—

attached at start

relation:

procedure GENERATETYPE

Kk < P(k) > Sample number of parts
fori=1..xdo
for;=1..n;do
sij < P(sij]si(j—1)) > Sample sub-part sequence
end for
R; < P(R;|S1, ..., Si-1)
end for
Y« {k,R,S}
return @ GENERATE TOKEN(%)) > Return program

> Sample number of sub-parts

> Sample relation

procedure GENERATETOKEN(v))
fori=1..x do
S « P(S,™]S;)
L™ « PR, T, 1Y)

2

> Sample part’s start location
7™ « (L™ ™)) > Compose a part’s trajectory

end for

A P(A(m™)

I(m) p([('m)|T(m)7A(m))
return (™)

Lake et al, 2014

> Add motor variance

> Sample affine transform
> Sample image



Metric learning

Learning how to represent objects (e.g. images) as points in some
space where relative positions indicate similarity




Siamese Networks
!

Same vs.
difft
Embedding Shared Embedding
network weights » network

® @




Siamese Networks

“cow" “cow"

(speaker #1) (speaker #2) same

“cow" “cat" .
(speaker #1) (speaker #2) different

“can" “can"

(speaker #1) (speaker #2) same

“can” "cab" .
(speaker #1) (speaker #2) different

Verification tasks (training)

“cot” “cob" “cog”
(speaker #4) (speaker #4) (speaker #4)

N

llcobu
(speaker #3)

One-shot tasks (test)

|Koch, Zemel, Salak., 2015]



Siamese Networks

Method Test
Humans 95.5
Hierarchical Bayesian Program Learning 95.2

Affine model 81.8

Hierarchical Deep 65.2

Deep Boltzmann Machine 62.0
Simple Stroke 35.2

1-Nearest Neighbor 21.7
Siamese Neural Net 58.3
Convolutional Siamese Net 92.0

|Koch, Zemel, Salak., 2015]



Few shot learning, SOA

- Core question of one shot learning: can we ask the
model to predict classes that are shown rarely in the
training set?

- Current approaches:

- Similarity: Koch et al. 2015 (Siamese net).

- Embedding: Vinyals et al. 2016 (Train a classifier
such that training resembles testing).

- External memory: Santoro et al. 2016 (Use external
memory to keep a mapping to new seen classes).

- Meta-optimization: Ravi & Larochelle 2017 (Learn a
parameterized optimizer through meta-optimization).



Small Data—>Simple Model

Retraining classifier on new classes would severely overfit
In order to combat overfitting, choose simple model
Nonparametric models scale with amount of data

— k-Nearest Neighbors on support set

Distances in raw input space may not help classification

Learn transformation into a space where distances are
iInformative for classification

Neighborhood Components Analysis (Salakhutdinov & Hinton, 2007):
classify via k-NN in latent space. Performs poorly in few-shot



Prototypical Networks

- Assume points belong to a Q ©
class cluster around a single O—8(Co
prototype representation ‘K P\ 3 o’

d/
X O/c\o

ERDIRE

X3 ESk

Ck —

- Classify unlabeled points by
finding nearest class
prototype

o exp(—d(fe(x), ck))
py(y = k|x) = Y o exp(—d(fe(x),crr))

Kevin Swersky




Mixture Density Estimation View

 Fit mixture density model to support set and infer most likely cluster
assignment for query points

« One cluster per class and take mean as cluster representative

 For Euclidean distance equivalent to isotropic Gaussian densities
« Other distances correspond to different class-conditional distributions



Euclidean Distance < Linear Mode|

—[1f(x) — cxl|*

pe(y = k|x) =

exp(—||fo(x) — cxl|*)

2k exXp(—[|fo(x), c|[?)

—fo(x) " fo(x) + 2¢;; fo(x) — ¢} ck

2ci ' fo(x) — ¢ e = Wy, fo(x) + bx

Py (y = klx) o exp(wy, fg(x) + bx)

Stride\| ¢g

pooling

pooling

eeeeee

pooling

4096

W — 2Ck
bk — —CZCk
Softmax output layer

determined by class
prototypes!



Episodic Training

 Train using “episodes” to mimic n-shot, k-way test procedure
» For each training minibatch:

— Subsample k training classes

— Choose n examples as labeled support set

— Take remaining examples as unlabeled query set
- Maximize probability of true class for query examples

 For better performance, make training batches more difficult
by subsampling > k classes



Experiments

- Datasets
1. Omniglot
« 28 x 28 grayscale images
« 1623 characters from 50 alphabets, each with 20 examples
- 1200 classes for training, 423 for testing (< Lake)

2. minilmagenet
- 84 x 84 color images
» 100 real-world classes, each with 600 examples
* 64 used for training, 16 validation, 20 test

- Embedding architecture
— Four convolutional layers, each with 64 filters
— 64-dimensional embedding for Omniglot
— 1600-dimensional embedding for minilmagenet



Few-Shot Setup: Omniglot

» Disjoint training classes and test classes

» At test time, shown “support set” with n examples
each of k unseen classes (“n-shot k-way

Classification”) shot
s TT T EF
-G 0 .- & 7 e
5_Way B E O f e -
6 O TT E o~ T
[ TT @ E < &

Support Set Query Set



Few-Shot Results

Omniglot
S-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot 5-shot
MATCHING NETWORKS (Vinyals et al., 2016) Cosine N 98.1% 989% 93.8% 98.5%
MATCHING NETWORKS (Vinyals et al., 2016) Cosine Y 979% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN (Edwards & Storkey, 2017) - N 98.1% 99.5% 932% 98.1%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 988% 99.7% 96.0% 98.9%

minilmageNet

S-way Acc.
Model Dist. Fine Tune 1-shot 5-shot
BASELINE NEAREST NEIGHBORS™ Cosine 28.86 £ 0.54%  49.79 &+ 0.79%
MATCHING NETWORKS (Vinyals et al., 2016)" Cosine 4340 +0.78%  51.09 + 0.71%

43.56 = 0.84%  55.31 = 0.73%
43.44 = 0.77%  60.60 = 0.71%
4942 + 0.78%  68.20 = 0.66%

MATCHING NETWORKS FCE (Vinyals et al., 2016)*  Cosine
META-LEARNER LSTM (Ravi & Larochelle, 2017)* -
PROTOTYPICAL NETWORKS (OURS) Euclid.

Z2Z2Z2ZZ










Zero-Shot Learning

- Instead of labeled examples at
test, instead have class metadata

— Text description: e.g. ‘It is
predominantly blue with a white
chest and a blue crest.”

— Attribute vector

Learn metadata embedding to

produce prototype representation
as function of attribute vector

- Both image and metadata
embedding live in same space

Zero-shot



Zero-Shot Results

« CU-Birds dataset

— Color images with
GooglLeNet extracted
features

ki
g 5

‘ *_# P

— 312-dimensional
attribute vectors

— 150 species train, 50
species test

Model Image 50-way Acc.

Features 0-shot

 Linear embedding Into ALE [1] Fisher 26.9%
_Ai ' SJE [2] AlexNet 40.3%

shared 1024 dlmenSIOnaI SAMPLE CLUSTERING [17] AlexNet 44.3%
Space SJE [2] GoogLeNet 50.1%
DS-SJE [22] GoogleNet 50.4%

DA-SJE [22] GoogLeNet 50.9%

PROTO. NETS (OURS) GoogLeNet 54.6 %




Conclusion

« Many other interesting topics in modern CNNs:

« Fast processing

« Reduced precision
« Compressing weights

« Novel optimization techniques

« Lots of other applications
« Object detection, tracking, optic flow, 3D vision, egomotion estimation

« Non-vision ones: text and speech processing, learning to rank



Conclusion

Still not well understood

« Learned representations

« Mini-batch size, design

« Links to parts-based models; causal models

« Hyperparameter optimization, particularly wrt architecture

« Role for non-parametric models, probabilistic models?



