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Figure 1. LSTM unit
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t

. The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The first source is the current frame x

t

. The second source
is the previous hidden states of all LSTM units in the same
layer h

t�1. Additionally, each gate has an internal source,
the cell state c

t�1 of its cell block. The links between a
cell and its own gates are called peephole connections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gate’s activation f

t

. The
final output from the LSTM unit h

t

is computed by multi-
plying the output gate’s activation o

t

with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows
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Note that all W
c• matrices are diagonal, whereas the rest

are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sums activities over time. Since derivatives dis-
tribute over sums, the error derivatives don’t vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-
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Figure 2. LSTM Autoencoder Model

vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can
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vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can
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vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can
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vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can

[1,2,3]

Probabilistic graphical models? [4,5,6]

[4] Fox, Sudderth, Jordan, Willsky. Bayesian nonparametric inference of switching dynamic linear models. IEEE TSP 2011. 
[5] Johnson and Willsky. Bayesian nonparametric hidden semi-Markov models. JMLR 2013. 
[6] Murphy. Machine learning: a probabilistic perspective. MIT Press 2012.
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    within rigid model classes

 – more flexible models can require  
    slow top-down inference

 – limited inference queries 

 – data- and compute-hungry  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    how to do inference
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Application: learn syllable representation of behavior from video

Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference
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Step 1: compute evidence potentials

Step 3: compute natural gradient

Step 2: run fast message passing

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.
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Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference
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Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads



data space latent space



data space latent space



da
ta

frame index

pr
ed

ic
tio

ns
la

te
nt

 s
ta

te
s



da
ta

frame index

pr
ed

ic
tio

ns
la

te
nt

 s
ta

te
s



natural 
gradient

flat 
gradient



arbitrary inference queries*

*see next slide



SVAEs can use any inference network architectures

[1] Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops. 
[2] Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.
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Application: learn syllable representation of behavior from video
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Modeling idea: graphical models on latent variables,

neural network models for observations
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Application: learn syllable representation of behavior from video

Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference



Thanks!

brain


