Composing graphical models with neural networks for structured representations and fast inference

Matthew J Johnson (<u>mattjj@google.com</u>) Deep Learning Summer School Montreal 2017

[1] Lee and Glass. A Nonparametric Bayesian Approach to Acoustic Model Discovery. ACL 2012.[2] Lee. Discovering Linguistic Structures in Speech: Models and Applications. MIT Ph.D. Thesis 2014.

[1] Lee and Glass. A Nonparametric Bayesian Approach to Acoustic Model Discovery. ACL 2012.[2] Lee. Discovering Linguistic Structures in Speech: Models and Applications. MIT Ph.D. Thesis 2014.

Frame 0

Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.

Frame 0

Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.

image manifold

Recurrent neural networks? [1,2,3]

Figure 2. LSTM Autoencoder Model

[1] Srivastava, Mansimov, Salakhutdinov. Unsupervised learning of video representations using LSTMs. ICML 2015.

[2] Ranzato, MarcAurelio, et al. Video (language) modeling: a baseline for generative models of natural videos. Preprint 2015.

[3] Sutskever, Hinton, and Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS 2008.

Recurrent neural networks? [1,2,3]

Figure 2. LSTM Autoencoder Model

Figure 1. LSTM unit

Probabilistic graphical models? [4,5,6]

[1] Srivastava, Mansimov, Salakhutdinov. Unsupervised learning of video representations using LSTMs. ICML 2015.

[2] Ranzato, MarcAurelio, et al. Video (language) modeling: a baseline for generative models of natural videos. Preprint 2015.

[3] Sutskever, Hinton, and Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS 2008.

[4] Fox, Sudderth, Jordan, Willsky. Bayesian nonparametric inference of switching dynamic linear models. IEEE TSP 2011.

[5] Johnson and Willsky. Bayesian nonparametric hidden semi-Markov models. JMLR 2013.

[6] Murphy. Machine learning: a probabilistic perspective. MIT Press 2012.

•

••

Ð

supervised learning

supervised learning

unsupervised learning

Deep learning

Deep learning

+ structured representations

+ structured representations

+ priors and uncertainty

Deep learning

+ structured representations

- + priors and uncertainty
- rigid assumptions may not fit

Deep learning
- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

+ arbitrary inference queries

- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

- + arbitrary inference queries
- + data and computational efficiency within rigid model classes

- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

- + arbitrary inference queries
- + data and computational efficiency within rigid model classes
- more flexible models can require slow top-down inference

- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

- + arbitrary inference queries
- data and computational efficiency within rigid model classes
- more flexible models can require slow top-down inference

- neural net "goo"
- difficult parameterization
- + flexible, high capacity
- + feature learning

- + structured representations
- + priors and uncertainty
- rigid assumptions may not fit
- feature engineering

- + arbitrary inference queries
- data and computational efficiency within rigid model classes
- more flexible models can require slow top-down inference

- neural net "goo"
- difficult parameterization
- + flexible, high capacity
- + feature learning

- limited inference queries
- data- and compute-hungry
- recognition networks learn how to do inference

Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

Application: learn syllable representation of behavior from video

 $p(\theta)$ conjugate prior on global variables $p(x \mid \theta)$ exponential family on local variables

 θ

 x_n

 y_n

 $p(\theta)$ conjugate prior on global variables $p(x \mid \theta)$ exponential family on local variables $p(\gamma)$ any prior on observation parameters $p(y \mid x, \gamma)$ neural network observation model

Gaussian mixture model

Linear dynamical system

Hidden Markov model

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.

[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.

[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.

[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.

Gaussian mixture model

Linear dynamical system

Hidden Markov model

Switching LDS

[4]

Mixture of Experts

[2]

Driven LDS

IO-HMM

Factorial HMM

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.

[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.

[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.

[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.

[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.

[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.

[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.

Gaussian mixture model

Linear dynamical system

Switching LDS

[4]

Mixture of Experts

000

Driven LDS

Hidden Markov model

IO-HMM

Factorial HMM

admixture / LDA / NMF

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.

- [2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
- [3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.

[2]

- [4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
- [5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
- [6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.

Canonical correlations analysis

- [7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
- [8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
- [9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
- [10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

Inference?

$$\frac{q^*(x)}{q(x)} \stackrel{\Delta}{=} \arg \max_{q(x)} \mathcal{L}[q(\theta)q(x)]$$

Natural gradient SVI for nice exp. fam. PGMs

[1] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.[2] Hoffman, Blei, Wang, and Paisley. Stochastic variational inference. JMLR 2013.

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $q(\theta)q(x) \approx p(\theta, x \mid y)$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $q(\theta)q(x) \approx p(\theta, x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $q(\theta)q(x) \approx p(\theta, x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

 $\eta_x^*(\eta_\theta) \stackrel{\Delta}{=} \arg\max_{\eta_x} \mathcal{L}(\eta_\theta, \eta_x) \qquad \mathcal{L}_{SVI}(\eta_\theta) \stackrel{\Delta}{=} \mathcal{L}(\eta_\theta, \eta_x^*(\eta_\theta))$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $q(\theta)q(x) \approx p(\theta, x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

$$\eta_x^*(\eta_\theta) \stackrel{\Delta}{=} \arg\max_{\eta_x} \mathcal{L}(\eta_\theta, \eta_x) \qquad \mathcal{L}_{SVI}(\eta_\theta) \stackrel{\Delta}{=} \mathcal{L}(\eta_\theta, \eta_x^*(\eta_\theta))$$

Proposition (natural gradient SVI of Hoffman et al. 2013)

$$\widetilde{\nabla}\mathcal{L}_{SVI}(\eta_{\theta}) = \eta_{\theta}^{0} + \mathbb{E}_{q^{*}(x)}(t_{xy}(x,y),1) - \eta_{\theta}$$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \theta)$ is a linear-Gaussian observation $p(\theta)$ is a conjugate prior

 $q(\theta)q(x) \approx p(\theta, x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

$$\eta_x^*(\eta_\theta) \stackrel{\Delta}{=} \arg\max_{\eta_x} \mathcal{L}(\eta_\theta, \eta_x) \qquad \mathcal{L}_{SVI}(\eta_\theta) \stackrel{\Delta}{=} \mathcal{L}(\eta_\theta, \eta_x^*(\eta_\theta))$$

Proposition (natural gradient SVI of Hoffman et al. 2013)

$$\widetilde{\nabla}\mathcal{L}_{SVI}(\eta_{\theta}) = \eta_{\theta}^{0} + \sum_{n=1}^{N} \mathbb{E}_{q^{*}(x_{n})}(t_{xy}(x_{n}, y_{n}), 1) - \eta_{\theta}$$

Step 3: compute natural gradient

arbitrary inference queries

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \gamma)$ is a neural network decoder $p(\theta)$ is a conjugate prior, $p(\gamma)$ is generic

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \gamma)$ is a neural network decoder $p(\theta)$ is a conjugate prior, $p(\gamma)$ is generic

 $q(\theta)q(\gamma)q(x) \approx p(\theta,\gamma,x \mid y)$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \gamma)$ is a neural network decoder $p(\theta)$ is a conjugate prior, $p(\gamma)$ is generic

 $q(\theta)q(\gamma)q(x) \approx p(\theta,\gamma,x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\theta)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

 $p(x \mid \theta)$ is a linear dynamical system $p(y \mid x, \gamma)$ is a neural network decoder $p(\theta)$ is a conjugate prior, $p(\gamma)$ is generic

 $q(\theta)q(\gamma)q(x) \approx p(\theta,\gamma,x \mid y)$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\theta)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\eta_{\boldsymbol{x}}^{\star}(\eta_{\theta},\eta_{\gamma}) \triangleq \underset{\eta_{\boldsymbol{x}}}{\arg \max} \mathcal{L}(\eta_{\theta},\eta_{\gamma},\eta_{\boldsymbol{x}})$$

$$\mathcal{L}_{SVI}(\eta_{\theta},\eta_{\gamma}) \triangleq \mathcal{L}(\eta_{\theta},\eta_{\gamma},\boldsymbol{\eta_{x}^{\star}}(\eta_{\theta},\eta_{\gamma}))$$

$\boldsymbol{q^*}(\boldsymbol{x}) \triangleq \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}(\boldsymbol{y}; \boldsymbol{\phi}), \boldsymbol{\Sigma}(\boldsymbol{y}; \boldsymbol{\phi}))$

Variational autoencoders and amortized inference

[1] Kingma and Welling. Auto-encoding variational Bayes. ICLR 2014.

[2] Rezende, Mohamed, and Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014

$q^{\star}(x_n) \triangleq \mathcal{N}(x_n \mid \mu(y_n; \phi), \, \Sigma(y_n; \phi))$

 $\mathcal{L}_{\text{VAE}}(\eta_{\gamma}, \phi) \triangleq \mathcal{L}(\eta_{\gamma}, \eta_{x}^{\star}(\phi))$

$$\begin{array}{c} \mu_{t}(y_{t};\phi_{\mu}) & \mathsf{O} \\ J_{t,t}(y_{t};\phi_{D}) & \mathsf{O} \\ J_{t,t+1}(y_{t},y_{t+1};\phi_{B}) & \mathsf{O} \end{array}$$

[1] Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops.
[2] Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.

$$\begin{array}{c} \mu_{t}(y_{t};\phi_{\mu}) & \mathsf{O} \\ J_{t,t}(y_{t};\phi_{D}) & \mathsf{O} \\ J_{t,t+1}(y_{t},y_{t+1};\phi_{B}) & \mathsf{O} \end{array}$$

Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops.
Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.
Krishnan, Shalit, Sontag. Structured inference networks for nonlinear state space models. AISTATS 2017.

Natural gradient SVI

- expensive for general obs.

Natural gradient SVI

- expensive for general obs.

+ optimal local factor

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure
- + arbitrary inference queries

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients

 $q^{*}(x) \triangleq \underset{q(x)}{\arg \max} \mathcal{L}[q(\theta)q(x)] \qquad q^{*}(x) \triangleq \mathcal{N}(x \mid \mu(y;\phi), \Sigma(y;\phi))$

Natural gradient SVI

Variational autoencoders

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients

q(x)

 $q^{*}(x) \triangleq \arg \max \mathcal{L}[q(\theta)q(x)] \qquad q^{*}(x) \triangleq \mathcal{N}(x \mid \mu(y;\phi), \Sigma(y;\phi))$

Natural gradient SVI

- expensive for general obs.

+ optimal local factor

- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients

Variational autoencoders

- + fast for general obs.
- suboptimal local inference
- $-\phi$ does all local inference
- limited inference queries
- no cheap natural gradients

q(x)

 $q^{*}(x) \triangleq \arg \max \mathcal{L}[q(\theta)q(x)] \qquad q^{*}(x) \triangleq \mathcal{N}(x \mid \mu(y; \phi), \Sigma(y; \phi))$

Natural gradient SVI

Variational autoencoders

Structured VAEs [1]

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients

- suboptimal local inference

+ fast for general obs.

- $-\phi$ does all local inference
- limited inference queries
- no cheap natural gradients

[1] Johnson, Duvenaud, Wiltschko, Datta, and Adams. Composing graphical models and neural networks. NIPS 2016.

 $q^{*}(x) \triangleq \arg \max \mathcal{L}[q(\theta)q(x)] \qquad q^{*}(x) \triangleq \mathcal{N}(x \mid \mu(y; \phi), \Sigma(y; \phi))$

p

q

 $q^*(x) \triangleq ?$

Natural gradient SVI

- expensive for general obs.
- + optimal local factor
- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients

Variational autoencoders

- + fast for general obs.
- suboptimal local inference
- $-\phi$ does all local inference
- limited inference queries
- no cheap natural gradients

Structured VAEs [1]

- + fast for general obs.
- ± optimal given conj. evidence
- + exploits conj. graph structure
- + arbitrary inference queries
- + natural gradients on η_{θ}

[1] Johnson, Duvenaud, Wiltschko, Datta, and Adams. Composing graphical models and neural networks. NIPS 2016.

Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

$$\mathcal{L}[q(\theta)q(\gamma)q(x)] \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)}\left[\log \frac{p(\theta,\gamma,x)p(y \mid x,\gamma)}{q(\theta)q(\gamma)q(x)}\right]$$

$$\mathcal{L}[q(\theta)q(\gamma)q(x)] \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta,\gamma,x)p(y \mid x,\gamma)}{q(\theta)q(\gamma)q(x)} \right]$$
$$q(\theta) \leftrightarrow \eta_{\theta} \qquad q(\gamma) \leftrightarrow \eta_{\gamma} \qquad q(x) \leftrightarrow \eta_{x}$$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\mathbb{E}_{q(\gamma)}\log p(y_t \,|\, x_t, \gamma)$$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\mathbb{E}_{q(\gamma)}\log p(y_t \,|\, x_t, \gamma)$$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\widehat{\mathcal{L}}(\eta_{\theta}, \eta_{x}, \phi) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x) \exp\{\psi(x; y, \phi)\}}{q(\theta)q(\gamma)q(x)} \right]$$

where $\psi(x; y, \phi)$ is a conjugate potential for $p(x \mid \theta)$

$$\mathbb{E}_{q(\gamma)}\log p(y_t \,|\, x_t, \gamma)$$

 $\psi(x_t; y_t, \phi)$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\widehat{\mathcal{L}}(\eta_{\theta}, \eta_{x}, \phi) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x) \exp\{\psi(x; y, \phi)\}}{q(\theta)q(\gamma)q(x)} \right]$$

where $\psi(x; y, \phi)$ is a conjugate potential for $p(x \mid \theta)$

$$\mathbb{E}_{q(\gamma)}\log p(y_t \,|\, x_t, \gamma)$$

$$\eta_x^*(\eta_\theta, \phi) \triangleq \underset{\eta_x}{\operatorname{arg\,max}} \widehat{\mathcal{L}}(\eta_\theta, \eta_x, \phi) \qquad \mathcal{L}_{\mathrm{SVAE}}(\eta_\theta, \eta_\gamma, \phi) \triangleq \mathcal{L}(\eta_\theta, \eta_\gamma, \eta_x^*(\eta_\theta, \phi))$$

$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\widehat{\mathcal{L}}(\eta_{\theta}, \eta_{x}, \phi) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x) \exp\{\psi(x; y, \phi)\}}{q(\theta)q(\gamma)q(x)} \right]$$

where $\psi(x; y, \phi)$ is a conjugate potential for $p(x \mid \theta)$

Step 3: sample, compute flat grads

Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads

Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads

Step 2: run fast PGM algorithms

Step 4: compute natural gradient

Step 3: sample, compute flat grads

Step 2: run fast PGM algorithms

Step 4: compute natural gradient

 $\left(\right)$

latent space

data space

 $\left(\right)$

latent space

data space

arbitrary inference queries*

*see next slide

SVAEs can use any inference network architectures

Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops.
Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.

SVAEs

Application: learn syllable representation of behavior from video

٠	٠	•	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	٠	•
٠	٠	-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	•	•	٠	•

-	•	-	-	•	-	-	-	•	•	•	•	•	٠	•	•	•	-	-	-	-	-	-	-	-
•	-	-	-	•	-	-	-	•	•	٠	•	•	٠	•	٠	-	-	-	-	-	-	-	-	-

•	*	*	*	•	•	•	-	-	-	-	-	-	-	-	-	-	-				-			•
•	-	•	*	-	•		•	•	•	-	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	-

start rear

start rear

fall from rear

fall from rear

grooming

grooming

Modeling idea: graphical models on latent variables, neural network models for observations

Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

Application: learn syllable representation of behavior from video

Thanks!

