
Composing graphical models with neural networks 
for structured representations and fast inference

brain

Matthew J Johnson (mattjj@google.com) 
Deep Learning Summer School 

Montreal 2017

mailto:mattjj@google.com








pause rear

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

dart



pause rear

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

dart



pause rear

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

dart

[1] Lee and Glass. A Nonparametric Bayesian Approach to Acoustic Model Discovery. ACL 2012. 
[2] Lee. Discovering Linguistic Structures in Speech: Models and Applications. MIT Ph.D. Thesis 2014.

[1,2]

/b/ /ax/ /n/ /ae/ /n/ /ax/



pause rear

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

dart

[1] Lee and Glass. A Nonparametric Bayesian Approach to Acoustic Model Discovery. ACL 2012. 
[2] Lee. Discovering Linguistic Structures in Speech: Models and Applications. MIT Ph.D. Thesis 2014.

[1,2]

/b/ /ax/ /n/ /ae/ /n/ /ax/

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150







Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.



Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.



image

manifold



image

manifold

depth

video



image

manifold

depth

video



image

manifold

depth

video



image

manifold

depth

video



image

manifold

depth

video



image

manifold

depth

video



reardart

manifold

coordinates

image

manifold

depth

video





[1] Srivastava, Mansimov, Salakhutdinov. Unsupervised learning of video representations using LSTMs. ICML 2015.  
[2] Ranzato, MarcAurelio, et al. Video (language) modeling: a baseline for generative models of natural videos. Preprint 2015. 
[3] Sutskever, Hinton, and Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS 2008.

Recurrent neural networks?Unsupervised Learning with LSTMs

Figure 1. LSTM unit

output gate o

t

. The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The first source is the current frame x

t

. The second source
is the previous hidden states of all LSTM units in the same
layer h

t�1. Additionally, each gate has an internal source,
the cell state c

t�1 of its cell block. The links between a
cell and its own gates are called peephole connections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gate’s activation f

t

. The
final output from the LSTM unit h

t

is computed by multi-
plying the output gate’s activation o

t

with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows

i
t

= � (W
xi

x
t

+W

hi

h
t�1 +W

ci

c
t�1 + b

i

) ,

f
t

= � (W
xf

x
t

+W

hf

h
t�1 +W

cf

c
t�1 + b

f

) ,

c
t

= f
t

c
t�1 + i

t

tanh (W
xc

x
t

+W

hc

h
t�1 + b

c

) ,

o
t

= � (W
xo

x
t

+W

ho

h
t�1 +W

co

c
t

+ b
o

) ,

h
t

= o
t

tanh(c
t

).

Note that all W
c• matrices are diagonal, whereas the rest

are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sums activities over time. Since derivatives dis-
tribute over sums, the error derivatives don’t vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-

v1 v2 v3 v3 v2v3 v2

v̂3 v̂2 v̂1Learned
Representation

W1 W1 copy
W2 W2

Figure 2. LSTM Autoencoder Model

vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can

Unsupervised Learning with LSTMs

Figure 1. LSTM unit

output gate o

t

. The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The first source is the current frame x

t

. The second source
is the previous hidden states of all LSTM units in the same
layer h

t�1. Additionally, each gate has an internal source,
the cell state c

t�1 of its cell block. The links between a
cell and its own gates are called peephole connections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gate’s activation f

t

. The
final output from the LSTM unit h

t

is computed by multi-
plying the output gate’s activation o

t

with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows

i
t

= � (W
xi

x
t

+W

hi

h
t�1 +W

ci

c
t�1 + b

i

) ,

f
t

= � (W
xf

x
t

+W

hf

h
t�1 +W

cf

c
t�1 + b

f

) ,

c
t

= f
t

c
t�1 + i

t

tanh (W
xc

x
t

+W

hc

h
t�1 + b

c

) ,

o
t

= � (W
xo

x
t

+W

ho

h
t�1 +W

co

c
t

+ b
o

) ,

h
t

= o
t

tanh(c
t

).

Note that all W
c• matrices are diagonal, whereas the rest

are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sums activities over time. Since derivatives dis-
tribute over sums, the error derivatives don’t vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-

v1 v2 v3 v3 v2v3 v2

v̂3 v̂2 v̂1Learned
Representation

W1 W1 copy
W2 W2

Figure 2. LSTM Autoencoder Model

vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can

[1,2,3]



[1] Srivastava, Mansimov, Salakhutdinov. Unsupervised learning of video representations using LSTMs. ICML 2015.  
[2] Ranzato, MarcAurelio, et al. Video (language) modeling: a baseline for generative models of natural videos. Preprint 2015. 
[3] Sutskever, Hinton, and Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS 2008.

Recurrent neural networks?Unsupervised Learning with LSTMs

Figure 1. LSTM unit

output gate o

t

. The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The first source is the current frame x

t

. The second source
is the previous hidden states of all LSTM units in the same
layer h

t�1. Additionally, each gate has an internal source,
the cell state c

t�1 of its cell block. The links between a
cell and its own gates are called peephole connections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gate’s activation f

t

. The
final output from the LSTM unit h

t

is computed by multi-
plying the output gate’s activation o

t

with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows

i
t

= � (W
xi

x
t

+W

hi

h
t�1 +W

ci

c
t�1 + b

i

) ,

f
t

= � (W
xf

x
t

+W

hf

h
t�1 +W

cf

c
t�1 + b

f

) ,

c
t

= f
t

c
t�1 + i

t

tanh (W
xc

x
t

+W

hc

h
t�1 + b

c

) ,

o
t

= � (W
xo

x
t

+W

ho

h
t�1 +W

co

c
t

+ b
o

) ,

h
t

= o
t

tanh(c
t

).

Note that all W
c• matrices are diagonal, whereas the rest

are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sums activities over time. Since derivatives dis-
tribute over sums, the error derivatives don’t vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-

v1 v2 v3 v3 v2v3 v2

v̂3 v̂2 v̂1Learned
Representation

W1 W1 copy
W2 W2

Figure 2. LSTM Autoencoder Model

vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can

Unsupervised Learning with LSTMs

Figure 1. LSTM unit

output gate o

t

. The LSTM unit operates as follows. At
each time step it receives inputs from two external sources
at each of the four terminals (the three gates and the input).
The first source is the current frame x

t

. The second source
is the previous hidden states of all LSTM units in the same
layer h

t�1. Additionally, each gate has an internal source,
the cell state c

t�1 of its cell block. The links between a
cell and its own gates are called peephole connections. The
inputs coming from different sources get added up, along
with a bias. The gates are activated by passing their to-
tal input through the logistic function. The total input at
the input terminal is passed through the tanh non-linearity.
The resulting activation is multiplied by the activation of
the input gate. This is then added to the cell state after mul-
tiplying the cell state by the forget gate’s activation f

t

. The
final output from the LSTM unit h

t

is computed by multi-
plying the output gate’s activation o

t

with the updated cell
state passed through a tanh non-linearity. These updates
are summarized for a layer of LSTM units as follows

i
t

= � (W
xi

x
t

+W

hi

h
t�1 +W

ci

c
t�1 + b

i

) ,

f
t

= � (W
xf

x
t

+W

hf

h
t�1 +W

cf

c
t�1 + b

f

) ,

c
t

= f
t

c
t�1 + i

t

tanh (W
xc

x
t

+W

hc

h
t�1 + b

c

) ,

o
t

= � (W
xo

x
t

+W

ho

h
t�1 +W

co

c
t

+ b
o

) ,

h
t

= o
t

tanh(c
t

).

Note that all W
c• matrices are diagonal, whereas the rest

are dense. The key advantage of using an LSTM unit over
a traditional neuron in an RNN is that the cell state in an
LSTM unit sums activities over time. Since derivatives dis-
tribute over sums, the error derivatives don’t vanish quickly
as they get sent back into time. This makes it easy to do
credit assignment over long sequences and discover long-
range features.

2.2. LSTM Autoencoder Model

In this section, we describe a model that uses Recurrent
Neural Nets (RNNs) made of LSTM units to do unsuper-

v1 v2 v3 v3 v2v3 v2

v̂3 v̂2 v̂1Learned
Representation

W1 W1 copy
W2 W2

Figure 2. LSTM Autoencoder Model

vised learning. The model consists of two RNNs – the en-
coder LSTM and the decoder LSTM as shown in Fig. 2.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the decoder
LSTM takes over and outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by how lists are represented in LISP. The encoder
can be seen as creating a list by applying the cons func-
tion on the previously constructed list and the new input.
The decoder essentially unrolls this list, with the hidden to
output weights extracting the element at the top of the list
(car function) and the hidden to hidden weights extract-
ing the rest of the list (cdr function). Therefore, the first
element out is the last element in.

The decoder can be of two kinds – conditional or uncondi-
tioned. A conditional decoder receives the last generated
output frame as input, i.e., the dotted input in Fig. 2 is
present. An unconditioned decoder does not receive that
input. This is discussed in more detail in Sec. 2.4. Fig. 2
shows a single layer LSTM Autoencoder. The architecture
can be extend to multiple layers by stacking LSTMs on top
of each other.

Why should this learn good features?
The state of the encoder LSTM after the last input has been
read is the representation of the input video. The decoder
LSTM is being asked to reconstruct back the input se-
quence from this representation. In order to do so, the rep-
resentation must retain information about the appearance
of the objects and the background as well as the motion
contained in the video. However, an important question for
any autoencoder-style model is what prevents it from learn-
ing an identity mapping and effectively copying the input
to the output. In that case all the information about the in-
put would still be present but the representation will be no
better than the input. There are two factors that control this
behaviour. First, the fact that there are only a fixed num-
ber of hidden units makes it unlikely that the model can

[1,2,3]

Probabilistic graphical models? [4,5,6]

[4] Fox, Sudderth, Jordan, Willsky. Bayesian nonparametric inference of switching dynamic linear models. IEEE TSP 2011. 
[5] Johnson and Willsky. Bayesian nonparametric hidden semi-Markov models. JMLR 2013. 
[6] Murphy. Machine learning: a probabilistic perspective. MIT Press 2012.

















supervised  
learning



unsupervised 
learning

supervised  
learning



Probabilistic graphical models Deep learning



 + structured representations

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

 + arbitrary inference queries

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

 + arbitrary inference queries

 + data and computational efficiency  
    within rigid model classes

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

 + arbitrary inference queries

 + data and computational efficiency  
    within rigid model classes

 – more flexible models can require  
    slow top-down inference

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

 – neural net “goo” 

 – difficult parameterization 

 + flexible, high capacity 

 + feature learning

 + arbitrary inference queries

 + data and computational efficiency  
    within rigid model classes

 – more flexible models can require  
    slow top-down inference

Probabilistic graphical models Deep learning



 + structured representations

 + priors and uncertainty

 – rigid assumptions may not fit

 – feature engineering

 – neural net “goo” 

 – difficult parameterization 

 + flexible, high capacity 

 + feature learning

 + arbitrary inference queries

 + data and computational efficiency  
    within rigid model classes

 – more flexible models can require  
    slow top-down inference

 – limited inference queries 

 – data- and compute-hungry  

 + recognition networks learn  
    how to do inference

Probabilistic graphical models Deep learning





Modeling idea: graphical models on latent variables,

neural network models for observations



Modeling idea: graphical models on latent variables,

neural network models for observations

Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference



Modeling idea: graphical models on latent variables,

neural network models for observations

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

Application: learn syllable representation of behavior from video

Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference



Modeling idea: graphical models on latent variables,

neural network models for observations



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

⇡ =

2

4
⇡(1)

⇡(2)

⇡(3)

3

5 zt+1 ⇠ ⇡(zt)

z1 z2 z3 z4 z5 z6 z7



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

A(1) A(3)A(2)

B(1) B(2) B(3)

⇡ =

2

4
⇡(1)

⇡(2)

⇡(3)

3

5 zt+1 ⇠ ⇡(zt)

z1 z2 z3 z4 z5 z6 z7

xt+1 = A

(zt)
xt +B

(zt)
ut ut

iid⇠ N (0, I)



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

⇡ =

2

4
⇡(1)

⇡(2)

⇡(3)

3

5

A(1) A(3)A(2)

B(1) B(2) B(3)

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

✓



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓



z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓



z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓

�



yt |xt, � ⇠ N (µ(xt; �), ⌃(xt; �))

diag(⌃(xt; �))

xt

µ(xt; �)

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓

�



z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓

�

yt |xt, � ⇠ N (µ(xt; �), ⌃(xt; �))

diag(⌃(xt; �))

xt

µ(xt; �)



z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�



xn

yn

zn

✓

�

z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�



xn

yn

zn

✓

� yn

✓

�
xn

z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�



xn

yn

zn

✓

� yn

✓

�
xn

yn

�
xn

✓

z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�



xn

yn

zn

✓

� yn

✓

�
xn

yn

�
xn

✓

z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�

p(✓) conjugate prior on global variables

p(x | ✓) exponential family on local variables



xn

yn

zn

✓

� yn

✓

�
xn

yn

�
xn

✓

z1 z2 z3 z4

x1 x2 x3 x4

y1 y2 y3 y4

✓

�

p(✓) conjugate prior on global variables

p(x | ✓) exponential family on local variables

p(�) any prior on observation parameters

p(y |x, �) neural network observation model





[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS



[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]



[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]



yn

�
xn

✓

Inference?



p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]

Natural gradient SVI 
for nice exp. fam. PGMs

[1] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010. 
[2] Hoffman, Blei, Wang, and Paisley. Stochastic variational inference. JMLR 2013.

[1,2]



p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

✓
x1 x2 x3 x4

y1 y2 y3 y4



q(✓)q(x) ⇡ p(✓, x | y)
p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

✓
x1 x2 x3 x4

y1 y2 y3 y4

✓
x1 x2 x3 x4



q(✓)q(x) ⇡ p(✓, x | y)

L(⌘
✓

, ⌘
x

) , E
q(✓)q(x)

h
log

p(✓,x,y)
q(✓)q(x)

i

p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

✓
x1 x2 x3 x4

y1 y2 y3 y4

✓
x1 x2 x3 x4



q(✓)q(x) ⇡ p(✓, x | y)

L(⌘
✓

, ⌘
x

) , E
q(✓)q(x)

h
log

p(✓,x,y)
q(✓)q(x)

i

⌘⇤
x

(⌘
✓

) , argmax

⌘

x

L(⌘
✓

, ⌘
x

) LSVI(⌘✓) , L(⌘
✓

, ⌘⇤
x

(⌘
✓

))

p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

✓
x1 x2 x3 x4

y1 y2 y3 y4

✓
x1 x2 x3 x4



q(✓)q(x) ⇡ p(✓, x | y)

L(⌘
✓

, ⌘
x

) , E
q(✓)q(x)

h
log

p(✓,x,y)
q(✓)q(x)

i

Proposition (natural gradient SVI of Ho↵man et al. 2013)

erLSVI(⌘✓) = ⌘

0
✓

+ E
q

⇤(x)(txy(x, y), 1)� ⌘

✓

⌘⇤
x

(⌘
✓

) , argmax

⌘

x

L(⌘
✓

, ⌘
x

) LSVI(⌘✓) , L(⌘
✓

, ⌘⇤
x

(⌘
✓

))

p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

✓
x1 x2 x3 x4

y1 y2 y3 y4

✓
x1 x2 x3 x4



q(✓)q(x) ⇡ p(✓, x | y)

L(⌘
✓

, ⌘
x

) , E
q(✓)q(x)

h
log

p(✓,x,y)
q(✓)q(x)

i

Proposition (natural gradient SVI of Ho↵man et al. 2013)

erLSVI(⌘✓) = ⌘

0
✓

+

NX

n=1

E
q

⇤(xn)(txy(xn

, y

n

), 1)� ⌘

✓

⌘⇤
x

(⌘
✓

) , argmax

⌘

x

L(⌘
✓

, ⌘
x

) LSVI(⌘✓) , L(⌘
✓

, ⌘⇤
x

(⌘
✓

))

p(x | ✓) is a linear dynamical system

p(y |x, ✓) is a linear-Gaussian observation

p(✓) is a conjugate prior

N

✓
x1 x2 x3 x4

y1 y2 y3 y4
N

✓
x1 x2 x3 x4



Step 1: compute evidence potentials

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials Step 2: run fast message passing

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials Step 2: run fast message passing

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



Step 1: compute evidence potentials

Step 3: compute natural gradient

Step 2: run fast message passing

[1] Johnson and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014. 
[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.



arbitrary inference queries



p(x | ✓) is a linear dynamical system

p(y |x, �) is a neural network decoder

p(✓) is a conjugate prior, p(�) is generic

✓
x1 x2 x3 x4

y1 y2 y3 y4

�



p(x | ✓) is a linear dynamical system

p(y |x, �) is a neural network decoder

p(✓) is a conjugate prior, p(�) is generic

✓
x1 x2 x3 x4

y1 y2 y3 y4

�

x1 x2 x3 x4

✓

�

q(✓)q(�)q(x) ⇡ p(✓, �, x | y)



p(x | ✓) is a linear dynamical system

p(y |x, �) is a neural network decoder

p(✓) is a conjugate prior, p(�) is generic

✓
x1 x2 x3 x4

y1 y2 y3 y4

�

x1 x2 x3 x4

✓

�

q(✓)q(�)q(x) ⇡ p(✓, �, x | y)

L(⌘
✓

, ⌘

�

, ⌘

x

) , E
q(✓)q(✓)q(x)


log

p(✓, �, x)p(y |x, �)
q(✓)q(�)q(x)

�



p(x | ✓) is a linear dynamical system

p(y |x, �) is a neural network decoder

p(✓) is a conjugate prior, p(�) is generic

✓
x1 x2 x3 x4

y1 y2 y3 y4

�

x1 x2 x3 x4

✓

�

q(✓)q(�)q(x) ⇡ p(✓, �, x | y)

L(⌘
✓

, ⌘

�

, ⌘

x

) , E
q(✓)q(✓)q(x)


log

p(✓, �, x)p(y |x, �)
q(✓)q(�)q(x)

�

⌘?
x

(⌘
✓

, ⌘
�

) , argmax

⌘

x

L(⌘
✓

, ⌘
�

, ⌘
x

)

LSVI(⌘✓, ⌘�) , L(⌘
✓

, ⌘
�

, ⌘?
x

(⌘
✓

, ⌘
�

))



Variational autoencoders 
and amortized inference

p q

q

⇤(x) , N (x |µ(y;�),⌃(y;�))

[1] Kingma and Welling. Auto-encoding variational Bayes. ICLR 2014. 
[2] Rezende, Mohamed, and Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014

[1,2]



yn

�
xn



yn

�
xn xn

yn

�

q

?(xn) , N (xn |µ(yn;�), ⌃(yn;�))



yn

�
xn xn

yn

�

q

?(xn) , N (xn |µ(yn;�), ⌃(yn;�))

µ(yn;�) diag⌃(yn;�)

yn



yn

�
xn xn

yn

�

q

?(xn) , N (xn |µ(yn;�), ⌃(yn;�))

LVAE(⌘� ,�) , L(⌘
�

, ⌘?
x

(�))

µ(yn;�) diag⌃(yn;�)

yn





[1] Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops.
[2] Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.

µt(yt;�µ)

Jt,t(yt;�D)

Jt,t+1(yt, yt+1;�B)

[1,2]



[1] Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops.
[2] Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.
[3] Krishnan, Shalit, Sontag. Structured inference networks for nonlinear state space models. AISTATS 2017.

[3]

⌃t(y1:T , x̂t�1;�)

µt(y1:T , x̂t�1;�)

µt(yt;�µ)

Jt,t(yt;�D)

Jt,t+1(yt, yt+1;�B)

[1,2]



Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

+ natural gradients

Natural gradient SVI

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

+ natural gradients

Natural gradient SVI Variational autoencoders

p q

q

⇤(x) , N (x |µ(y;�),⌃(y;�))

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

+ natural gradients

+ fast for general obs. 

– suboptimal local inference 

–     does all local inference 

– limited inference queries 

– no cheap natural gradients

�

Natural gradient SVI Variational autoencoders

p q

q

⇤(x) , N (x |µ(y;�),⌃(y;�))

p q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

+ natural gradients

+ fast for general obs. 

– suboptimal local inference 

–     does all local inference 

– limited inference queries 

– no cheap natural gradients

�

Natural gradient SVI Variational autoencoders Structured VAEs

p q

q

⇤(x) , N (x |µ(y;�),⌃(y;�))

p qp q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]

q

⇤(x) , ?

[1] Johnson, Duvenaud, Wiltschko, Datta, and Adams. Composing graphical models and neural networks. NIPS 2016.

[1]



– expensive for general obs. 

+ optimal local factor

+ exploits conj. graph structure

+ arbitrary inference queries

+ natural gradients

+ fast for general obs. 

– suboptimal local inference 

–     does all local inference 

– limited inference queries 

– no cheap natural gradients

+ fast for general obs. 

± optimal given conj. evidence 

+ exploits conj. graph structure 

+ arbitrary inference queries 

+ natural gradients on 

�

Natural gradient SVI Variational autoencoders Structured VAEs

p q

⌘✓

q

⇤(x) , N (x |µ(y;�),⌃(y;�))

p qp q

q

⇤
(x) , argmax

q(x)
L[ q(✓)q(x) ]

q

⇤(x) , ?

[1] Johnson, Duvenaud, Wiltschko, Datta, and Adams. Composing graphical models and neural networks. NIPS 2016.

[1]





Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference



yn

✓

�
xn

✓

�
xn

yn



L[ q(✓)q(�)q(x) ] , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

yn

✓

�
xn

✓

�
xn

yn



q(✓) $ ⌘

✓

q(�) $ ⌘

�

q(x) $ ⌘

x

L[ q(✓)q(�)q(x) ] , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

yn

✓

�
xn

✓

�
xn

yn



L(⌘
✓

, ⌘
�

, ⌘
x

) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

yn

✓

�
xn

✓

�
xn

yn



L(⌘
✓

, ⌘
�

, ⌘
x

) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i Eq(�) log p(yt |xt, �)

xt

yn

✓

�
xn

✓

�
xn

yn



L(⌘
✓

, ⌘
�

, ⌘
x

) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

where  (x; y,�) is a conjugate potential for p(x | ✓)

Eq(�) log p(yt |xt, �)

xt

yn

✓

�
xn

✓

�
xn

yn

bL(⌘
✓

, ⌘
x

,�) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x) exp{ (x;y,�)}
q(✓)q(�)q(x)

i



L(⌘
✓

, ⌘
�

, ⌘
x

) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

where  (x; y,�) is a conjugate potential for p(x | ✓)

Eq(�) log p(yt |xt, �)

xt

yn

✓

�
xn

✓

�
xn

yn

bL(⌘
✓

, ⌘
x

,�) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x) exp{ (x;y,�)}
q(✓)q(�)q(x)

i

 (xt; yt,�)



L(⌘
✓

, ⌘
�

, ⌘
x

) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x)p(y | x,�)
q(✓)q(�)q(x)

i

⌘⇤
x

(⌘
✓

,�) , argmax

⌘

x

bL(⌘
✓

, ⌘
x

,�) LSVAE(⌘✓, ⌘� ,�) , L(⌘
✓

, ⌘
�

, ⌘⇤
x

(⌘
✓

,�))

where  (x; y,�) is a conjugate potential for p(x | ✓)

Eq(�) log p(yt |xt, �)

xt

yn

✓

�
xn

✓

�
xn

yn

bL(⌘
✓

, ⌘
x

,�) , E
q(✓)q(�)q(x)

h
log

p(✓,�,x) exp{ (x;y,�)}
q(✓)q(�)q(x)

i

 (xt; yt,�)



Step 1: apply recognition network



Step 1: apply recognition network



Step 1: apply recognition network



Step 1: apply recognition network



Step 1: apply recognition network Step 2: run fast PGM algorithms



Step 1: apply recognition network Step 2: run fast PGM algorithms



Step 1: apply recognition network Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads



Step 1: apply recognition network Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads



Step 1: apply recognition network

Step 4: compute natural gradient

Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads



Step 1: apply recognition network

Step 4: compute natural gradient

Step 2: run fast PGM algorithms

Step 3: sample, compute flat grads



data space latent space



data space latent space



da
ta

frame index

pr
ed

ic
tio

ns
la

te
nt

 s
ta

te
s



da
ta

frame index

pr
ed

ic
tio

ns
la

te
nt

 s
ta

te
s



natural 
gradient

flat 
gradient



arbitrary inference queries*

*see next slide



SVAEs can use any inference network architectures

[1] Archer, Park, Buesing, Cunningham, Paninski. Black box variational inference for state space models. ICLR 2016 Workshops. 
[2] Gao*, Archer*, Paninski, Cunningham. Linear dynamical neural population models through nonlinear embeddings. NIPS 2016.



SVAEs



0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

Application: learn syllable representation of behavior from video











start rear



start rear



fall from rear



fall from rear



grooming



grooming



Modeling idea: graphical models on latent variables,

neural network models for observations

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

Application: learn syllable representation of behavior from video

Inference: recognition networks output conjugate potentials,

then apply fast graphical model inference



Thanks!

brain


