

Bringing Genetherapy based SOD1 silencing towards clinical trials

A highly efficacious, off-target free and biomarker supported strategy for familial ALS

Joseph Scarrott

Study aims

1. Evaluate the *in vivo* efficacy of SOD1 silencing in the SOD1-G93A mouse model by a clinic ready vector.

Study aims

1. Evaluate the *in vivo* efficacy of SOD1 silencing in the SOD1-G93A mouse model by a clinic ready vector.

2. Measure CSF SOD1 protein levels as a biomarker of effective dosing and efficacy of SOD1 knockdown.

Study aims

1. Evaluate the *in vivo* efficacy of SOD1 silencing in the SOD1-G93A mouse model by a clinic ready vector.

2. Measure CSF SOD1 protein levels as a biomarker of effective dosing and efficacy of SOD1 knockdown.

3. Investigate miRNA-like sequence specific off-target effects.

RNA interference as a strategy for SOD1-fALS gene therapy.

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59. Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700 Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

RNA interference as a strategy for SOD1-fALS gene therapy.

Extended survival has been demonstrated by:

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59.
Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700
Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

RNA interference as a strategy for SOD1-fALS gene therapy.

Extended survival has been demonstrated by:

Lentivirus delivery of shRNA

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59.
Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700
Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

RNA interference as a strategy for SOD1-fALS gene therapy.

Extended survival has been demonstrated by:

- Lentivirus delivery of shRNA
- AAV delivery of shRNA

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59.
Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700
Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

RNA interference as a strategy for SOD1-fALS gene therapy.

Extended survival has been demonstrated by:

- Lentivirus delivery of shRNA
- AAV delivery of shRNA
- AAV delivery of artificial miRNA

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59.
Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700
Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

RNA interference as a strategy for SOD1-fALS gene therapy.

Extended survival has been demonstrated by:

- Lentivirus delivery of shRNA
- AAV delivery of shRNA
- AAV delivery of artificial miRNA
- Antisense oligonucleotide therapy

Foust, K.D. et al., 2013. *Molecular Therapy*, 21(12), pp.2148–59.
Stoica, Lorelei et al. *Annals of neurology* 79.4 (2016): 687–700
Miller, T.M. et al., 2013. *The Lancet. Neurology*, 12(5), pp.435–42.

Ralph, G.S. et al., 2005. Nature Medicine, 11(4), pp.429-33.

Clinic-ready vector design

Clinic-ready vector design

09/08/2017 © The University of Sheffield

In VivoEfficacy

09/08/2017 © The University of Sheffield

Route of injection

Route of injection

<u>Neuroscori</u> Assessme	ng nt
Onset	0.5
Abnormal gait	1
Severe "waddle"	1.5
Dragging one hind limb	2
Paralysis of one hind limb	3
Moribund	4 TAD 10

UNIVERSITY

<u>Neuroscori</u> <u>Assessme</u>	ng nt		
Onset	0.5		
Abnormal gait	1		
Severe "waddle"	1.5		
Dragging one hind limb	2		
Paralysis of one hind limb	3		
Moribund	4		
	TOP 10 UNIVERSITY		

scAAV9-hSOD1si 1.5-Neuroscoring * * * * 1.0-0.5-0.0-60 80 100 120

scAAV9-hSOD1ssi

Time (days)

09/08/2017 © The University of Sheffield

P1-rotarod and survival

P1 – rotarod and survival

P1 – rotarod and survival

TOP 100

P1 – rotarod and survival

42% increase

A WORLD

P1 mice – 144 days old

shRNA

Treatment rescues motor

neurons

Treatment reduces reactive 11 gliosis

<u>shRNA</u>

Purple=GFAP Orange=Ibal

P40 – neuroscoring and rotarod

09/08/2017 © The University of Sheffield

P40 – neuroscoring and rotarod

09/08/2017 © The University of Sheffield

P40 – neuroscoring and rotarod

P40 – survival

Measurement of SOD1 depletion in the CSF

09/08/2017 © The University of Sheffield

Cerebrospinal Fluid

ng hSOD1/µg total protein

TOP 100

In vitroinvestigation of offtarget effects.

09/08/2017 © The University of Sheffield

The

University Of Sheffield.

On-target mRNA

No knockdown due to sequence mismatch

1

UNIVERSITY

Construct validation

19

DRLD

UNIVERSITY

	<u>Construct</u>	<u>SOD1</u> <u>Targeting?</u>	Seed Region	Thera Unrel Mism	apeutic vector lated shSOD1 atch control
	Therapeutic construct	YES	CATGAAC	1.5 -	
	Unrelated shSOD1	YES	CAGTCAG		
	Mismatch control	NO	CATGAAC	0.0	
	Negative control	NO	None		

Summary

- The clinic ready vector is effective at prolonging lifespan and ameliorating disease in a mouse model of ALS
- The therapeutic shRNA appears to be specific to SOD1 mRNA with no noticeable sequence-specific off-target effects
- Measurement of SOD1 depletion in the CSF of treated patients can be a simple and effective biomarker of treatment efficacy

Acknowledgements

Prof. Mimoun Azzouz
Prof. Dame Pam Shaw
Tommaso lannitti
Ian Coldicott
Azzouz Lab Group
Kaspar Lab Group

Thank you for your attention!

