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The Dream!

“Continually Learning Mobile Health Intervention”

• Help you achieve and maintain your desired long 

term healthy behaviors

– Provide sufficient short term reinforcement to 

enhance your ability to achieve long term benefit

• The ideal mHealth intervention 

– will engage you when you need it and will not intrude 

when you don’t need it.

– will adjust to unanticipated life challenges



mHealth

HeartSteps Activity Coach

o Wearable band measures activity, phone 

sensors measure busyness of calendar, 

location, weather, ..…

o In which contexts should smartphone ping 

and deliver activity recommendations?
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mHealth

MD2K Smoking Cessation Coach

o Wearable bands measure activity, stress, 

cigarette smoking; smartphone sensors 

provide location,…….

o In which contexts should the wrist band 

provide supportive stress-reduction “cue” 

and smartphone activate to highlight 

associated stress reduction support?
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Data from wearable devices that sense 

and provide treatments 

Observations at tth decision time (high dimensional)

Action at tth decision time  (treatment)

Yt+1 : Proximal Response  (aka: Reward, Utility, Cost) 

On each individual: 
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Examples

1) Decision Times   (Times at which a treatment 

can be provided.)

1) Regular intervals in time (e.g. every 10 

minutes)   

2) At user demand

HeartSteps: Approximately every 2-2.5 hours

Smoking Cessation: Every 1 minute during 10 

hour day.  
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Examples

2) Observations  

1) Passively collected (via sensors)

2) Actively collected (via self-report)

HeartSteps: activity recognition, location, step 

count, busyness of calendar, usefulness ratings, 

adherence…….

Smoking Cessation: stress, smoking detection, 

mood, driving,….

Ot
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Examples

3) Actions, At

1) Treatments that can be provided at decision 

time

2) Whether to provide a treatment

HeartSteps: Activity Recommendation on phone

Smoking Cessation: Cue on wrist band   
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Tailored Activity 

Recommendation

No Message    or
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Examples

4) Proximal Response  (reward)

HeartSteps:  Activity (step count) over next 30 

minutes.

Smoking Cessation:  Stress over next x minutes

Yt+1
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Continually Learning Mobile Health 

Intervention

1) Trial Designs: Do the actions affect the proximal 

response?  experimental design & causal inference

2) Data Analysis Methods for use with trial data: Are there  

delayed effects of the actions? Do effects vary by context?   

causal inference

3) Learning algorithms for use with trial data: Construct a 

“warm-start” treatment policy.  batch RL

4) Online training algorithms that will result in a 

Continually Learning, Personalized mHealth Intervention. 

online RL
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Micro-Randomized Trial

Randomize between actions at decision times �

Multiple individuals, each randomized 100’s or 

1000’s of times.  

• These are sequential, “full factorial,” 

designs.

• Design trial to detect main effects.

Extension of A/B testing & Single Case Designs



Micro-Randomized Trial Elements 

1. Record outcomes 

– Distal (scientific/clinical goal) & Proximal 

Response 

2.  Record context (sensor & self-report data)

3.  Randomize among treatment actions at

decision points 

4. Use data after study ends to assess treatment 

effects, learn warm-start treatment policy
13
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Micro-Randomized Trial

How to justify the trial costs?

• Address a question that can be stated clearly 

across disciplinary boundaries and be able to 

provide guarantees.

• Design trial so that a variety of further interesting 

questions can be addressed.

First Question to Address: Do the treatment 

actions impact the proximal response? (aka, is there a 

signal?)
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Micro-Randomized Trial for 

HeartSteps

• 42 day trial

• Whether to provide an Activity 

Recommendation? 

• Randomization in HeartSteps

At ∈ {0, 1}

P [At = 1] = .4 t = 1, . . . , T
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Micro-Randomized Trial

Time varying potentially intensive/intrusive 

treatment actions  � potential for 

accumulating habituation and burden

→

Allow main effect of the treatment actions on 

proximal response to vary with time
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Availability & the Treatment Effect

• Treatment actions can not be delivered at a 

decision time if an individual is unavailable.

• The effect of treatment at a decision time is the 

difference in proximal response between 

available individuals assigned an activity 

recommendation and available individuals who 

are not assigned an activity recommendation.
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Availability

• Treatment actions can only be delivered at a 

decision time if an individual is available

• Set It=1 if the individual is available at decision 

time t, otherwise, It=0

• Availability is not the same as adherence.



• The Main Effect at time j is 

• What does

this main effect 

mean?
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Treatment Effect

Main Effect

β(t)

β(t) = E
�
Yt+1|It = 1, At = 1

�
− E

�
Yt+1|It = 1, At = 0

�
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Sample Size for Trial

• We calculate the number of subjects to test 

H0 : no effect of the action, i.e.,

• Size to detect a low dimensional, smooth 

alternate H1.  

– Example:  H1: β(t) quadratic with intercept, β0, 

linear term, β1, and quadratic term β2 and test  

H0 : β(t) = 0, t = 1, 2, ....T
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Sample Size Calculation

• Our test statistic uses estimators from a 

“generalization” of linear regression.

• The test statistic is quadratic in the estimators of 

the β terms.

• Given a specified power to detect the smooth 

alternative, H1, a false-positive error prob., and 

the desired detectable signal to noise ratio, we 

use standard statistics to derive the sample size. 
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Sample Size Calculation

Alternative hypothesis is low dimensional 

→ assessment of the effect of the activity 

recommendation uses contrasts of between 

subject responses + contrasts of within 

subject responses.   

--The required number of subjects will be small.
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Standardized Average 
Main Effect over 

42 Days

#Subjects 
for

70% availability or 
50% availability

0.06 standard deviations 81 or 112

0.08 standard deviations 48 or 65

0.10 standard deviations 33 or 43

HeartSteps Sample Sizes

Power=.80, False-positive error=.05 
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A Micro-Randomized Trial

The micro-randomized trial is a sequential 

factorial trial with multiple factors, e.g.

Factor 1: Activity recommendation is 

randomized 5 times per day

Factor 2: Daily activity planning is 

randomized each evening

42 day study



Micro-randomized trials are a new type of 

factorial design

i. Time varying factors� time varying main 

effects, time-varying two-way interactions, 

different delayed effects

ii. Randomization that depends on an outcome of 

past actions

iii. Design studies specifically to detect 

interactions between factors.
25

Experimental Design Challenges
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Continually Learning Mobile Health 

Intervention

1) Trial Designs: Do the actions affect the proximal 

response?  experimental design & causal inference

2) Data Analysis Methods for use with trial data: Are there  

delayed effects of the actions? Do effects vary by context?   

causal inference

3) Learning algorithms for use with trial data: Construct a 

“warm-start” treatment policy.  batch RL

4) Online training algorithms that will result in a 

Continually Learning & Personalized mHealth Intervention. 

online RL
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Treatment policies

• Most current treatment policies are 

constructed using behavioral theory, clinical 

experience, observational data analyses and 

expert opinion.  

• We aim to develop algorithms that use trial 

data in constructing treatment policies.   

-- treatment policy should be interpretable.

-- treatment policy can act as a “warm-start” in 

future implementation of an online algorithm.
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Stochastic Treatment Policy

Construct a parameterized policy,            a

• Ensure               probabilities bounded away 

from 0 and 1: variation in actions can help 

retard habituation and maintain engagement.

• Parameterized                can be 

interpreted/vetted by domain experts

πθ(a|s)

πθ(a|s)

πθ(a|s)
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Setup

1) On each of n individuals, data set contains:

-- is a summary of                                     that 

permits the Markovian property; this is a modeling 

assumption.

-- known randomization

2) Optimality criterion to maximize: Average 

Reward resulting from use of policy 

P [At = a|St = s] = µ(a|s)

πθ
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Markov Decision Process 

Markovian Assumptions

Stationarity Assumptions

P [Sj+1 = s′|S1, A1, . . . , Sj , Aj ] =
P [Sj+1 = s′|Sj , Aj ]
and

P [Yj+1 = r|S1, A1, . . . , Sj , Aj ] =
P [Yj+1 = r|Sj , Aj ]

P [Sj+1 = s′|Sj = s, Aj = a] = p(s′|s, a)
and

E[Yj+1|Sj = s, Aj = a] = r(s, a)
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Optimality Criterion (to maximize)

Average Reward, ηθ, for policy πθ :

Eθ denotes expectation under the stationary 

distribution, dθ, associated with πθ.

ηθ = lim
T→∞

1

T
Eθ

�
T−1�

t=0

Yt+1

���S0 = s0

�

=
�

s

dθ(s)
�

a

πθ(a|s)r(s, a)
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Background: Differential Value

Vθ is the Differential Value

Vθ(s) - Vθ(s ́) reflects the difference in sum of 

centered responses accrued when starting in state s

as opposed to state s ́ .

(ηθ is the average reward)

Vθ(s) = lim
T→∞

Eθ

�
T�

t=0

�
Yt+1 − ηθ

����S0 = s

�

.
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Background: Bellman Equation

Oracle Temporal Difference:

Bellman Equation:

Eθ

	
δt

���St


= 0

δt = Yt+1 − ηθ + Vθ(St+1)− Vθ(St)
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Background: Bellman Equation

Bellman’s equation implies that 

will be, for all t, for any vector, f(.), of 

appropriately integrable functions, and 

expectation over data generating 

distribution, E, equal to 0 if                       

E

�
πθ(At|St)

µ(At|St)

�
Yt+1 − η + V (St+1)− V (St)

�� 1
f(St)


�

η = ηθ, V = Vθ
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Estimating Function

• Construct a flexible model for,         , say           

,            for f(s) a p by 1 vector of basis 

functions evaluated at s (p is large)

• Solve 

=0  for  

Vθ(s)

Pn

�
T�

t=1

πθ(At|St)

µ(At|St)

�
Yt+1 − η + f(St+1)

T v − f(St)
T v
�� 1

f(St)


�

f(s)T vθ

η̂θ, v̂θ
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Overview of Algorithm

• The resulting η and v are functions of θ, 

denote by               .

• B          are the output of the Critic

• The Actor maximizes over θ to obtain    .

• this will require repeated calls to the 

Critic 

• is the output of the Actor

η̂θ, v̂θ

η̂θ, v̂θ

η̂θ

θ̂

θ̂
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Actor

• The objective function for the actor is given by 

• We want to construct a policy, πθ that is 

bounded away from 0, 1. 

Binary action: 

η̂θ = Pn

�
T�

t=1

πθ(At|St)

µ(At|St)

�
Yt+1 + f(St+1)

T v̂θ − f(St)
T v̂θ

��

πθ(a|s) =
eθ

T g(s)a

1 + eθ
T g(s)
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Actor

Chance constraint on θ :

given α, p0 and P* ,  a reference distribution 

over states, S.

This constraint is nonconvex;  we relax via 

Markov inequality.

min
a

P ∗ [p0 ≤ πθ(a|S) ≤ 1− p0] ≥ 1− α
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CRITIC

Write

The critic minimizes

to obtain 

Pn

�
T�

t=1

πθ(At|St)

µ(At|St)

�
Yt+1 − η + f(St+1)

T v − f(St)
T v
�� 1

f(St)


�

= Âθ

�
η

v



− b̂θ

||Âθ

�
η

v



− b̂θ||

2 + λc||v||
2

η̂θ, v̂θ
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ACTOR

• The actor obtains     by maximizing

subject to the constraint, θTΣgθ ≤ kmax

η̂θ = Pn

�
T�

t=1

πθ(At|St)

µ(At|St)

�
Yt+1 + f(St+1)

T v̂θ − f(St)
T v̂θ

��

θ̂

Σg = T−1
�T

t=1 E
∗
�
g(St)g(St)

T
�
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BASICS Mobile

• Smartphone-based intervention to reduce heavy 

drinking and smoking in college students

– 14 day study

– Self-report 3x/day (morning, afternoon, evening)

– Intervention 2x/day (afternoon, evening)

• Mindfulness-based intervention (At=1) vs general health 

information (At=0)

• Question: Should a mindfulness-based intervention 

(vs general health info) be provided when there is 

an increase in need to self-regulate?
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BASICS Mobile

• n subjects = 27, T decision points = 28

• Availability: To be available to receive a 

treatment, the student must complete self-report 

questions (         ).  If the student is available 

then the student is provided a treatment with 

probability 2/3. 

• Reward is (-)smoking rate 

It = 1
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BASICS Mobile

• St is 8 dimensional composed of 5 discrete and 

3 continuous valued features. 

• Differential value approximated by B-splines 

and two way products of B-splines constructed 

from entries in St.

• Parameterized policy: 

πθ(1|s) = It
eθ0+θ1g1+θ2g2

1 + eθ0+θ1g1+θ2g2
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BASICS Mobile

• g1 is indicator for an increase in self-regulation 

demands (1 if yes, 0 if no)

• g2 is indicator for no burden (1 if yes, 0 if no)

• C                                                 → An 

available student with no increase in self-

regulation demands and who is not indicating 

burden is recommended treatment with 

probability 0.85

θ̂0 = .74, θ̂1 = −.95, θ̂2 = 2.26

πθ(1|s) = It
eθ0+θ1g1+θ2g2

1 + eθ0+θ1g1+θ2g2
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Challenges

• Bandit vs Average Reward vs Discounted 

Reward?

– Burden → disengagement raises the need to pay 

attention to future.

– In batch setting and/or online setting?

• Disengagement is a terminal event: Safe 

exploration?

• Method should provide confidence 

intervals/permit scientists to test hypotheses. 
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General Challenges

• How to reduce the amount of self-report data 
(How might you do this?)

• Non-stationarity: Transfer learning within a 

user?

• Measuring burden without causing burden. 

• How to accommodate/utilize the vast amount of 

missing data, some of which will be 

informative……
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Collaborators


