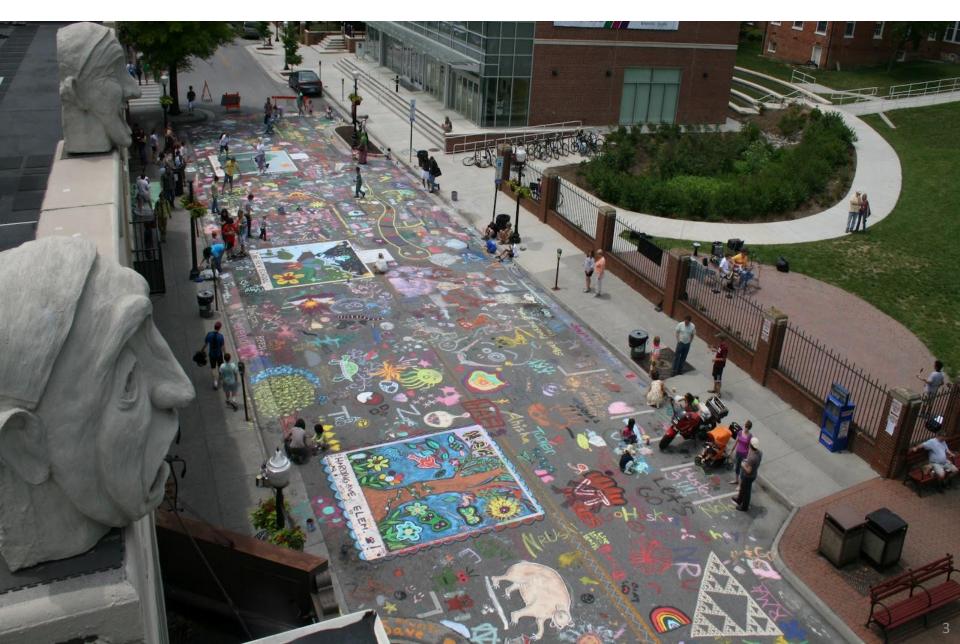

VQA → Visual Dialog


Devi Parikh

People coloring a street on a college campus

It was a great event! It brought families out, and the whole community together.

Q. What are they coloring the street with? A. Chalk

- AI: What a nice picture! What event was this?
- User: "Color College Avenue". It was a lot of
- fun!
- Al: I am sure it was! Do they do this every year?
- User: I wish they would. I don't think they've organized it again since 2012.

Aid visually-impaired users

* 77%

A Share

 (\mathbf{S})

.2≣

1:20 PM

FACEBOOK'S AI CAN CAPTION PHOTOS FOR THE BLIND ON ITS **OWN**

Aid visually-impaired users

Peter just uploaded a picture from his vacation in Hawaii

Great, is he at the beach?

No, on a mountain

Aid 'situationally-impaired' analysts

Did anyone enter this room last week?

Yes, 127 instances logged on camera

Were any of them carrying a black bag?

••

Natural language instructions for robots

Is there smoke in any room around you?

Yes, in one room

Go there and look for people

Image Credit: Lockheed Martin; DARPA Robotics Challenge

Outline

Visual Question Answering

Visual Dialog

GuessWhat?! Visual object discovery through multi-modal dialogue

Harm de Vries University of Montreal mail@harmdevries.com

> Olivier Pietquin DeepMind

pietquin@google.com

Florian Strub Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 CRIStAL

florian.strub@inria.fr

Hugo Larochelle Twitter hlarochelle@twitter.com Sarath Chandar University of Montreal sarathcse2008@gmail.com

Aaron Courville University of Montreal

aaron.courville@gmail.com

Abstract

We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. The goal of the game is to locate an unknown object in a rich image scene by asking a sequence of questions. Higher-level image understanding, like spatial reasoning and language grounding, is required to solve the proposed task. Our key contribution is the collection of a large-scale dataset consisting of 150K human-played games with a total of 800K visual question-answer pairs on 66K images. We explain our design decisions in collecting the dataset and introduce the oracle and questioner tasks that are associated with the two players of the game. We prototyped deep learning models to establish initial baselines of the introduced tasks.

Questioner	Oracle		
Is it a vase?	Yes		
Is it partially visible?	No		
Is it in the left corner?	No		
Is it the turquoise and purple one?	Yes		

End-to-end optimization of goal-driven and visually grounded dialogue systems

Florian Strub

florian.strub@inria.fr Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Bilal Piot

piot@google.com DeepMind

Harm de Vries

mail@harmdevries.com University of Montreal

Aaron Courville

aaron.courville@gmail.com University of Montreal

Jeremie Mary

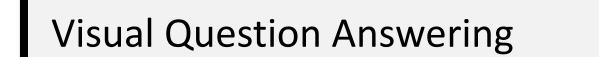
jeremie.mary@univ-lille3.fr Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Olivier Pietquin

pietquin@google.com DeepMind

Abstract

End-to-end design of dialogue systems has recently become a popular research topic thanks to powerful tools such as encoder-decoder architectures for sequence-to-sequence learning. Yet, most current approaches cast human-machine dialogue management as a supervised learning problem, aiming at predicting the next utterance of a participant given the full history of the dialogue. This vision is too simplistic to render the intrinsic planning problem inherent to dialogue as well as its grounded nature, making the context of a dialogue larger than the sole history. This is why only chit-chat and question answering tasks have been addressed so

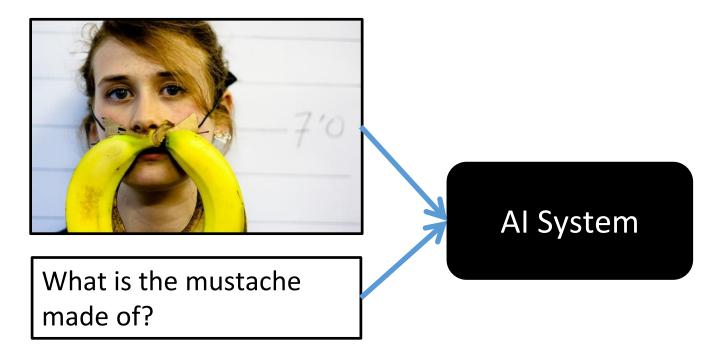

Is it a person?	No
Is it an item being worn or held?	Yes
Is it a snowboard?	Yes
Is it the red one?	No
Is it the one being held by the person in blue?	Yes

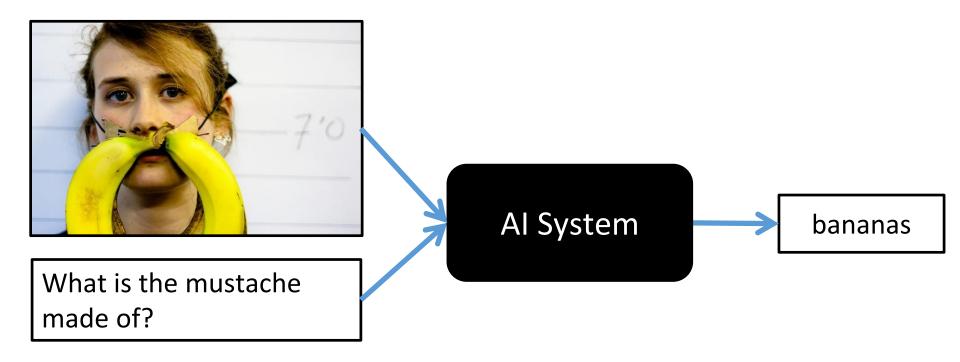
and the second division of the second divisio	- Aller		#2039	74
	- 184	a pure		
The second		A State	in the second	
ALC: N		1	1	gp.
N	11	1	5.0	
and states in the	5.05.00		11	
2011		Carlos A	No.	3
ALC PAR	Sec.		A AN	

Is it a cow?	Yes
Is it the big cow in the middle?	No
Is the cow on the left?	No
On the right ?	Yes
First cow near us?	Yes

Figure 1: Two example games of the GuessWhat?! dataset. The correct object is highlighted by a green mask.

Outline


Visual Dialog





What is the mustache made of?

www.visualqa.org

What color are her eyes? What is the mustache made of?

Is this person expecting company? What is just under the tree?

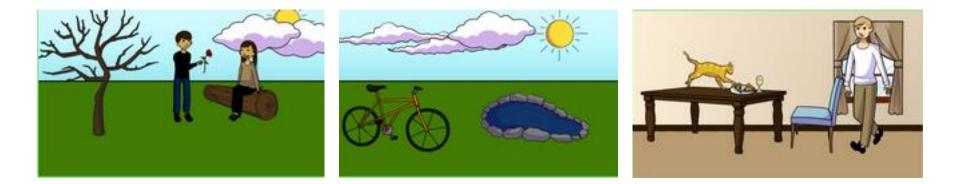
How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy? Does this person have 20/20 vision?

VQA Dataset

VQA Dataset

>0.25 million images



254,721 images (COCO)

50,000 scenes

VQA Dataset

>0.25 million images

>0.76 million questions

Questions

Stump a smart robot! Ask a question about this image that a human can answer, but a smart robot probably can't!

We have built kitchen, beach)

Ask a question IMPORTANT: T the question wi

Stump a smart robot! Ask a question that a human can answer, but a smart robot probably can't!

can recognize the scene (e.g, mart robot!

should not be able to answer

ns below:

- Do not repeat questions. Do not ask the same questions or the same questions with minor variations over and over again across images. Think of a new question each time specific to each image.
- Each question should be a single question. Do not ask questions that have multiple parts or multiple sub-questions in them.
- Do not ask generic questions that can be asked of many other images. Ask questions specific to each image.

Please ask a question about this image that a human can answer *if* looking at the image (and not otherwise), but would stump this smart robot:

Q1: Write your question here to stump this smart robot.

VQA Dataset

>0.25 million images

>0.76 million questions

~10 million answers

[Antol et al., ICCV 2015]

Papers using VQA

Ask Me Anything: Free-form Visual Question Answering **Based on Knowledge from External Sources**

Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, Anthony Dick School of Computer Science, The University of Adelaide

{qi.wu01, p.wang, chunhua.shen, anton.vandenhengel, anthony.dick}@adelaide.edu.au

Simple Baseline for Visual Question Answering

Bolei Zhou¹, Yuandong Tian², Sainbayar Sukhbaatar², Arthur Szlam², and Rob Fergus²

¹Massachusetts Institute of Technology ²Facebook AI Research

Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering

Huijuan Xu UMass Lowell hxul@cs.uml.edu

Kate Saenko UMass Lowell saenko@cs.uml.edu

Where To Look: Focus Regions for Visual Question Answering

Kevin J. Shih, Saurabh Singh, and Derek Hoiem

University of Illinois at Urbana-Champaign

{kjshih2, ss1, dhoiem}@illinois.edu

Jacob Andreas Marcus Rohrbach Trevor Darrell Dan Klein Department of Electrical Engineering and Computer Sciences University of California, Berkeley

{jda,rohrbach,trevor,klein}@{cs,eecs,eecs,cs}.berkeley.edu

ABC-CNN: An Attention Based Convolutional Neural Network for Visual **Question Answering**

Kan Chen

Stacked Attention Networks for Image Question Answering

Jiang Wang Zichao Yang¹, Xiaodong He², Jianfeng Gao², Li Deng², Alex Smola¹ University of Southern California Baidu Research - IDL UCLA wangjiang03@baidu.com lcchen@cs.ucla.edu kanchen@usc.edu ¹Carnegie Mellon University, ²Microsoft Research, Redmond, WA 98052, USA Haovuan Gao Wei Xu Ram Nevatia Baidu Research - IDL >y@cs.cmu.edu, {xiaohe, jfgao, deng}@microsoft.com, alex@smola.org Baidu Research - IDL University of Southern California gaohaoyuan@baidu.com wei.xu@baidu.com nevatia@usc.edu

Compositional Memory for Visual Question Answering

Aiwen Jiang^{1,2} Yi Li* 2,3 Fang Wang² Fatih Porikli² ¹Jiangxi Normal University ²NICTA and ANU ³Toyota Research Institute North America ²{fang.wang, fatih.porikli}@nicta.com.au ³yi.li@tema.toyota.com ¹aiwen.jiang@nicta.com.au

Deep Compositional Question Answering with Neural Module Networks

Liang-Chieh Chen

29

VQA Challenge @ CVPR16

VQA Real Image Challenge (Open-Ended)

Organized by vqateam - Current server time: March 22, 2016, 5 a.m. UTC

Current	Next		
Real Challenge test2015 (oe)	Real test2015 (oe)		
ct. 21, 2015, midnight UTC	Oct. 21, 2015, midnight UTC		

Learn the Details

Phases Participate

Results 🛛 Forums 🕤

Overview

Evaluation

Terms and Conditions

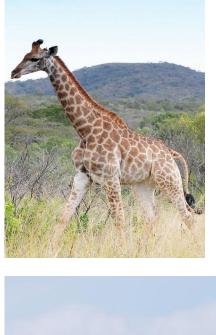
Visual Question Answering (VQA)

What color are her eyes? What is the mustache made of?

How many slices of pizza are there? Is this a vegetarian pizza?

Is this person expecting company? What is just under the tree?

Does it appear to be rainy? Does this person have 20/20 vision?

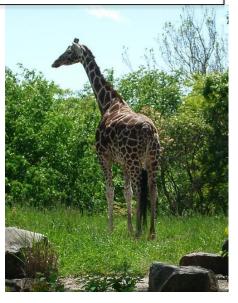

Recent progress in computer vision and natural language processing has demonstrated that lower-level tasks are much closer to being solved. We believe that the time is ripe to pursue

VQA Challenge @ CVPR16

	By Answer Type		Overall -	
	Yes/No 🚽	Number 🚽	Other 🚽	
UC Berkeley & Sony ^[14]	83.24	39.47	58	66.47
Naver Labs ^[10]	83.31	38.7	54.62	64.79
DLAIT ^[5]	83.25	40.07	52.09	63.68
snubi-naverlabs ^[25]	83.16	39.14	51.33	63.18
POSTECH ^[11]	81.67	38.16	52.79	63.17

Winning entry (MCB) Open-ended: 66% Multiple-choice: 70%

79.11	36.41	40.40	
	30.41	46.42	58.85
81.16	37.7	44.01	58.66
78.24	36.27	46.32	58.43
80.56	36.53	43.73	58.16
80.28	36.92	42.24	57.36
78.82	35.97	42.13	56.61
76.76	34.98	42.62	55.89
78.88	36.33	40.27	55.77
78.1	35.3	40.27	55.34
79.01	35.55	36.8	54.06
78.05	35.53	36.7	53.62
71.73	24.31	22	42.73
71.17	35.63	9.32	37.55
70.53	0.43	1.26	29.72
	81.16 78.24 80.56 80.28 78.82 76.76 78.88 78.1 79.01 78.05 71.17	81.16 37.7 78.24 36.27 80.56 36.53 80.28 36.92 78.82 35.97 76.76 34.98 78.84 36.33 78.85 35.53 78.05 35.55 71.73 24.31 71.17 35.63	81.16 37.7 44.01 78.24 36.27 46.32 80.56 36.53 43.73 80.28 36.92 42.24 78.82 35.97 42.13 76.76 34.98 42.62 78.88 36.33 40.27 78.1 35.3 40.27 79.01 35.55 36.8 78.05 35.53 36.7 71.73 24.31 22 71.17 35.63 9.32



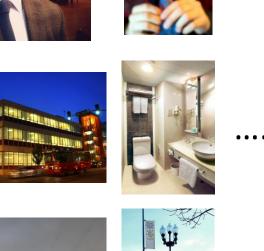
A giraffe is standing in grass next to a tree

Slide credit: Yash Goyal and Peng Zhang

1

Is there a clock ... ?

'yes' 98%


Is the man wearing glasses ... ?

'yes' 94%

Are the lights on ... ? 'yes' 85%

Do you see a ... ?

'yes' 87%

Is the man standing ... ?

'no' 69%

What sport is ... ? 'tennis' 41%

How many ... ? **'2' 39%**

What animal is ... ?

Balancing the VQA dataset

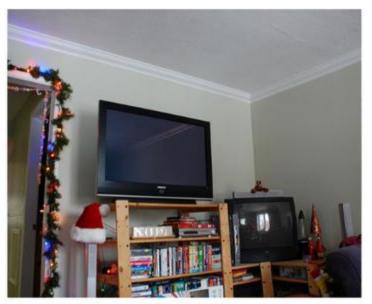
Select an image for which answer to the question

What game is this? is NOT tennis

SHOW INSTRUCTIONS

PAGE 1/5

NEXT



Is the TV on?

yes

no

How many pets are present? 2 1

What sign is this?

handicap

one way

Where is the child sitting?

fridge

arms

What is the cat doing on the rug? sleeping sitting

What color are the pants?

orange

brown

VQA v2.0

More balanced than VQA v1.0
 – Entropy of answers increases by 56%

- Bigger than VQA v2.0
 - ~1.8 times image-question pairs

Benchmarking SOTA VQA models

- SOTA VQA models
 - Drop in performance by 7-8%
 - Gain 1-2% back when re-trained on balanced dataset
- By answer types
 - Biggest drop in performance in yes/no (10-12%)
 - Biggest improvement gained by re-training in yes/no (3-4%) and number (2-3%)

Trends

		Overall 🚽			
	Yes/No	🔻 Number 🚽	Other		
UC Berkeley & Sony ^[14]	83.79	38.9	58.64	66.9	
Naver Labs ^[10]	83.78	37.67	54.74	64.89	
DLAIT ^[5]	83.65 0 .	.15% 1.51 39.18	% 7 52.62	.03% 3.5% 63.97	
snubi-naverlabs ^[25]	83.64	38.43	51.61	63.4	

VQA v2.0

2nd VQA Challenge @ CVPR17!

Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering (CVPR 2017)

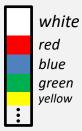
Yash Goyal (Virginia Tech)

Tejas Khot (Virginia Tech)

Doug Summers-Stay (Army Research Lab)

Dhruv Batra (Georgia Tech / FAIR) (Georgia Tech / FAIR)

Devi Parikh

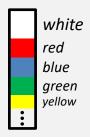

Train

Q: What color is the dog?

A: White

Training Prior

Slide credit: Aishwarya Agrawal


Train

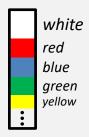
Q: What color is the dog?

A: White

Training Prior

Test

Q: What color is the dog?A: Black


Train

Q: What color is the dog?

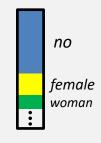
A: White

Training Prior

Test

Q: What color is the dog?

A: Black


Prediction: White

Train

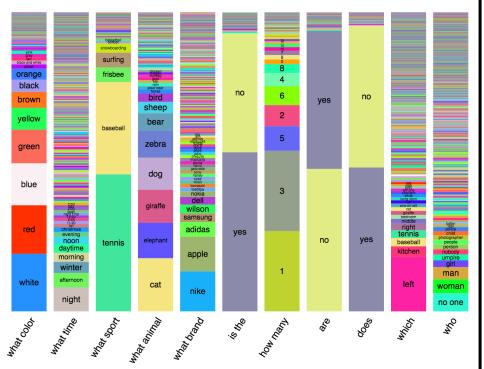
Q: Is the person wearing shorts?A: No

Test

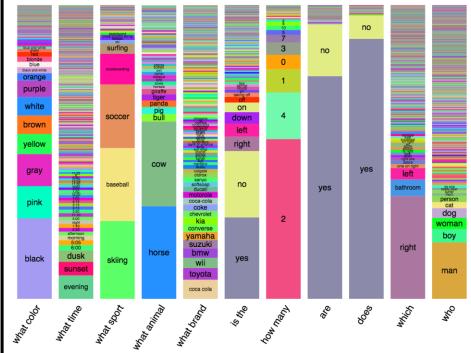
Q: Is the person wearing shorts?A: Yes

Prediction: No

Slide credit: Aishwarya Agrawal

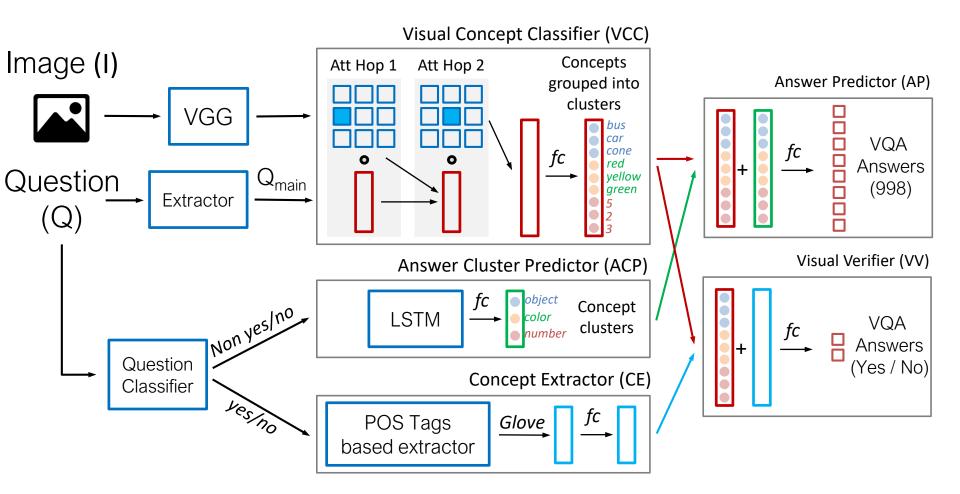

- Similar priors in train and test
- Memorization does not hurt as much
- Problematic for benchmarking progress

Meet VQA-CP!


• Visual Question Answering under Changing Priors

• A new split of the VQA v1.0 dataset (Antol et al., ICCV 2015)

VQA-CP Train Split


VQA-CP Test Split

Performance of VQA models on VQA-CP

Model	Dataset	Overall	Yes/No	Number	Other	
d-LSTM Q + norm I	VQA	54.23	79.81	33.26	40.35	31% drop
(Antol et al. ICCV15)	VQA-CP	23.51	34.53	11.40	17.42	
NMN	VQA	54.83	80.39	33.45	41.07	25% drop
(Andreas et al. CVPR16)	VQA-CP	29.64	38.85	11.23	27.88	
SAN	VQA	55.86	78.54	33.46	44.51	29% drop
(Yang et al. CVPR16)	VQA-CP	26.88	35.34	11.34	24.70	
MCB	VQA	60.97	81.62	34.56	52.16	27% drop
(Fukui et al. EMNLP16)	VQA-CP	34.39	37.96	11.80	39.90	

Grounded-VQA (GVQA)

Aishwarya Agrawal (Virginia Tech)

Dhruv Batra (Georgia Tech / FAIR)

Devi Parikh (Georgia Tech / FAIR)

Ani Kembhavi (Al2)

C-VQA: Compositional VQA

Q: What color is the plate?

A: Green

Training

Q: What color are stop lights?

A: Red

Q: What color is the stop light?

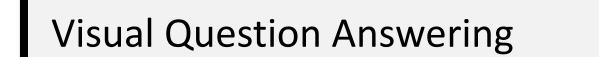
A: Green

Testing

Q: What is the color of the plate?

A: Red

Aishwarya Agrawal (Virginia Tech)



Dhruv Batra (Georgia Tech / FAIR)

Devi Parikh (Georgia Tech / FAIR)

Outline

Visual Dialog

A man and a woman are holding umbrellas

A man and a woman are holding umbrellas

A man and a woman are holding umbrellas

A man and a woman are holding umbrellas

A man and a woman are holding umbrellas

A man and a woman are holding umbrellas

What color is his umbrella?

 $\bigcirc \bigcirc$

His umbrella is black

A man and a woman are holding umbrellas

His umbrella is black

What color is his umbrella?

A man and a woman are holding umbrellas

His umbrella is black

What color is his umbrella?

A man and a woman are holding umbrellas

His umbrella is black

What color is his umbrella?

A man and a woman are holding umbrellas

His umbrella is black

What color is his umbrella?

A man and a woman are holding umbrellas

His umbrella is black

Hers is multi-colored

What color is his umbrella?

What about hers?

A man and a woman are holding umbrellas

 $\mathbf{O}\mathbf{O}$

Hers is multi-colored

What color is his umbrella?

What about hers?

How many other people are in the image?

A man and a woman are holding umbrellas

 \mathbf{O}

 $\bigcirc \bigcirc$

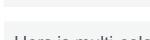
Hers is multi-colored

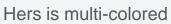
His umbrella is black

What color is his umbrella?

What about hers?

How many other people are in the image?




A man and a woman are holding umbrellas

 $\bigcirc \bigcirc$

 $\mathbf{O}\mathbf{O}$

His umbrella is black

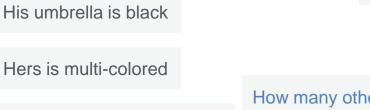
I think 3. They are occluded

What color is his umbrella?

What about hers?

How many other people are in the image?

A man and a woman are holding umbrellas

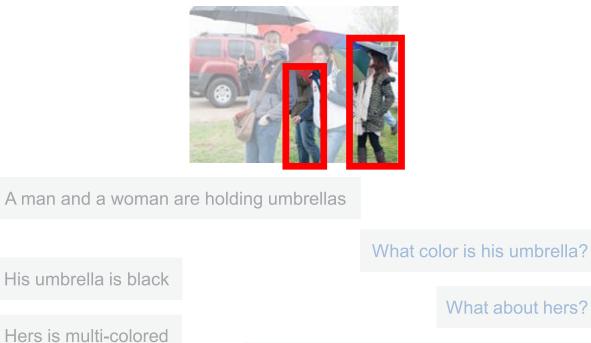

I think 3. They are occluded

 $\bigcirc \bigcirc$

 $\mathbf{O}\mathbf{O}$

 $\mathbf{O}\mathbf{O}$

How many other people are in the image?


How many are men?

What about hers?

What color is his umbrella?


 $\bigcirc \bigcirc$

 \mathbf{O}

 $\mathbf{O}\mathbf{O}$

 \mathbf{O}

I think 3. They are occluded

How many are men?

Visual Dialog: Task

Given

- Image I
- History of human dialog
 (Q₁, A₁), (Q₂, A₂), ..., (Q_{t-1}, A_{t-1})
- Follow-up Question Q_t

Task

Produce free-form
 natural language answer
 A_t

Visual Dialog

Q: How many people on wheelchairs? A: Two.

Q : What gender are the people in the wheelchairs?

A : One is female, one is male.

Q : Which one is holding the racket?

A : The female.

Q : Is the other one holding anything?

A : He is not.

Visual Dialog: Evaluation Protocol

• Given

- Image I
- History of human dialog
 (Q₁, A₁), (Q₂, A₂), ..., (Q_{t-1}, A_{t-1})
- Follow-up Question Q_t
- 100 Answer Options
 - 50 answers from NN questions
 - 30 popular answers
 - 20 random answers
- Evaluation Task
 - Rank the list of 100 options
- Accuracy/Error
 - mean-rank-of-GT, mean-reciprocal-rank

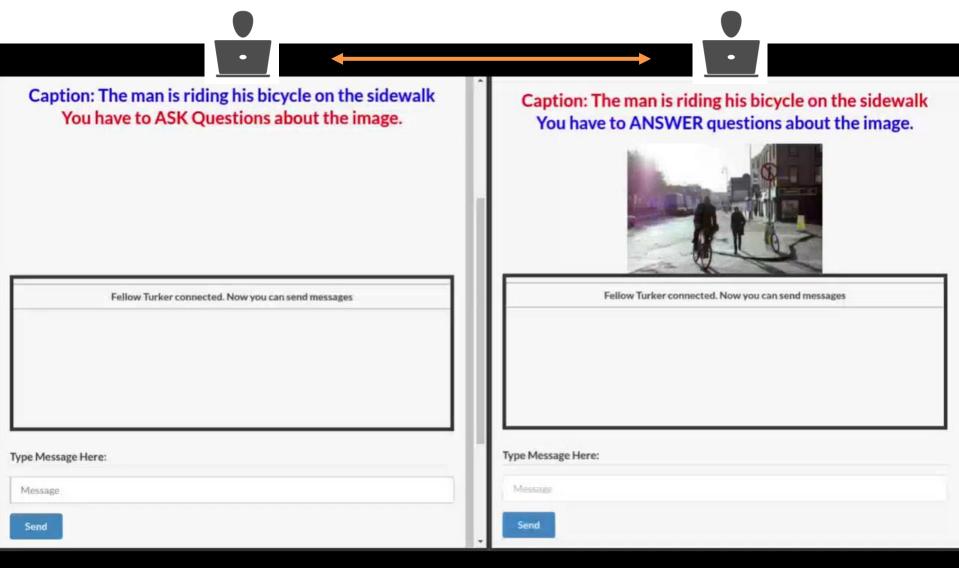
Visual Dialog

Question: Do people look happy ?

GT: Not really

- Yes they do
- I can't tell
- Not facing me
- Yes they look happy
- Yes I can only see 1 of their faces but she looks happy
- Not really but not unhappy either /

VisDial Dataset


Live Two-Person Chat on Amazon Mechanical Turk

VisDial Dataset

VisDial Dataset

Live Two-Person Chat on Amazon Mechanical Turk

[📮 batra-mlp-lab / visdial-amt-chat						• Watch	7	🛨 Star	19	∛ Fork	2
	<> Code	Issues 0	1 Pull requests 0	Projects 0	Pulse	III Graphs						

Code for the chat interface used to collect the VisDial dataset on AMT http://visualdialog.org/

T commit	₽ 1 branch	🛇 0 releases	೩ 1 contributor		
Branch: master - New pull request			Find file Clone or download -		
abhshkdz Initial commit			Latest commit 4e7206e 6 days ago		
mturk_scripts	Initial commit		6 days ago		
🖬 nodejs	Initial commit		6 days ago		
.gitignore	Initial commit		6 days ago		
README.md	Initial commit		6 days ago		
schema.sql	Initial commit		6 days ago		
I README.md					

VisDial AMT Chat

Source for the two-person chat interface used to collect the VisDial dataset (arxiv.org/abs/1611.08669) on Amazon Mechanical Turk.

VisDial v0.9 Stats

>120k images (from COCO)

1 dialog/image

10 question-answer rounds/dialog

Total of >1.2 Million dialog QA pairs

Overview People

Data Bibtex

Acknowledgements

🌡 VirginiaTech

Georgia Tech

VisDial Dataset

Code for the real-time chat interface used to collect the VisDial dataset on Amazon Mechanical Turk

VisDial v0.9

Training set (235M) 82,783 images

Validation set (108M) 40,504 images

Readme

- v0.9 Training is from COCO Training and v0.9 Validation set is from COCO Validation
- Numbers (in papers, etc.) should be reported on v0.9 val

Format

```
[
    {
        'data': {
            'questions': [
            'does it have a doorknob',
            'do you see a fence around the bear',
            '...
        ],
        'answers': [
            'no, there is just green field in foreground',
            'countryside house',
        ...
```

Models for Visual Dialog

Encoder

1. Late Fusion

- 1. Generative
 - During training, maximizes LL of human response
 - For evaluation, ranks
 options by LL scores
- 2. Discriminative
 - Learn to rank 100 options

- 2. Hierarchical Recurrent Encoder
- 3. Memory Network

Image I

Memory Network Encoder

Image I

Do you think the woman is with him? Question Q_t

Memory Network Encoder

CNN

Image I

Do you think the woman is with him? LSTM

Question Q_t

The man is riding his bicycle on the sidewalk. Is the man wearing a helmet? No he does not have a helmet on. How old is the man? He looks around 40 years old. What color is his bike? It has black wheels and handlebars. I can't see the body of the bike that well. Is anyone else riding a bike? No he's the only one.

Are there any people nearby? Yes there's a woman walking behind him.

t rounds of history {(Caption), (Q_1, A_1) , ..., (Q_{t-1}, A_{t-1}) }

Memory Network Encoder

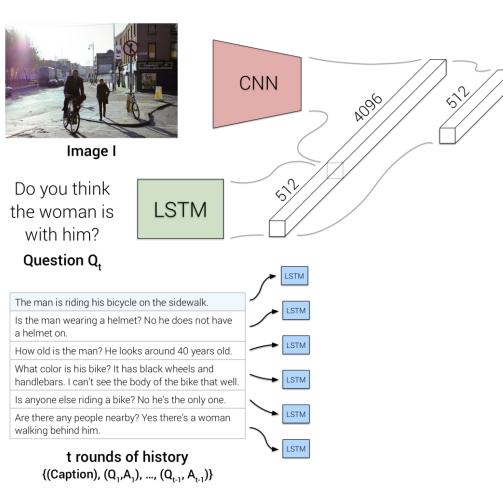
52

4096

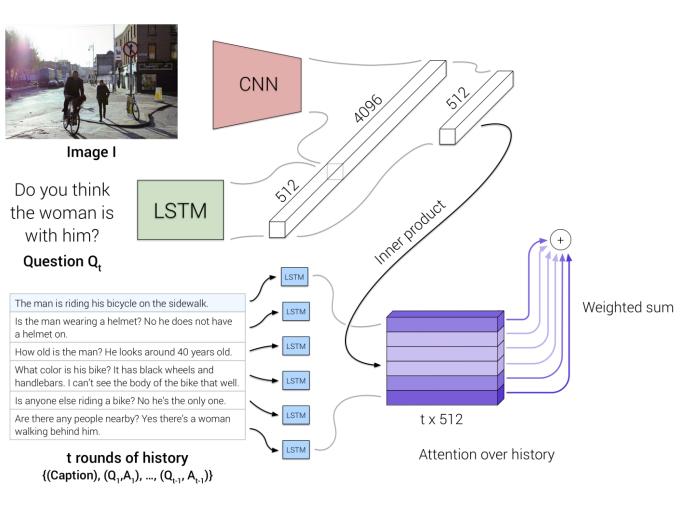
Image I

Do you think the woman is with him? Question Q,

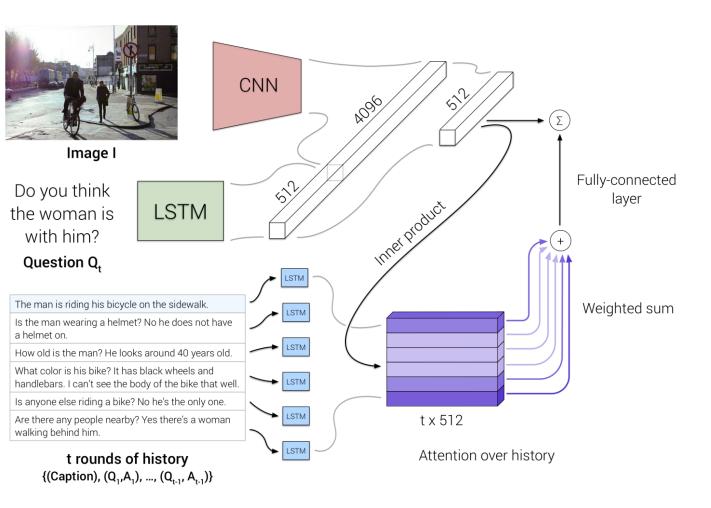
The man is riding his bicycle on the sidewalk.
Is the man wearing a helmet? No he does not have a helmet on.
How old is the man? He looks around 40 years old.
What color is his bike? It has black wheels and handlebars. I can't see the body of the bike that well.
Is anyone else riding a bike? No he's the only one.
Are there any people nearby? Yes there's a woman walking behind him.

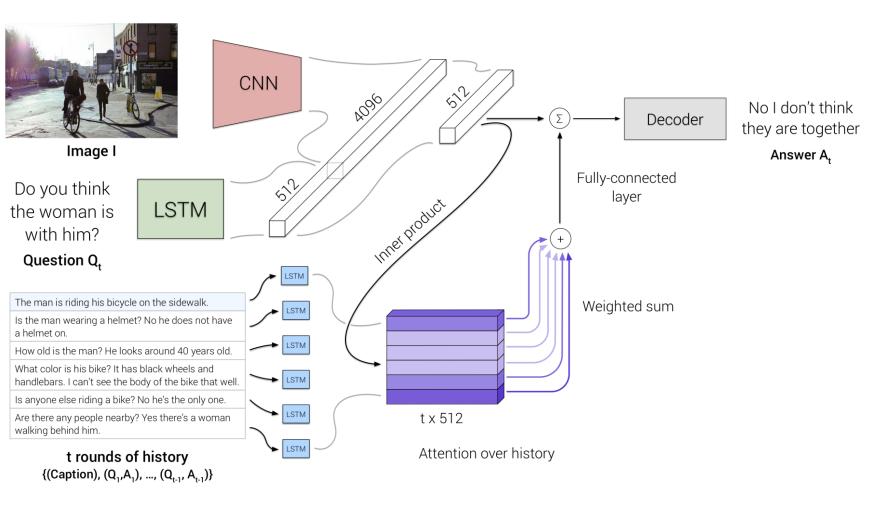

LSTM

t rounds of history {(Caption), (Q_1, A_1) , ..., (Q_{t-1}, A_{t-1}) }


Memory Network Encoder

CNN


5°2


Memory Network Encoder

Memory Network Encoder

Memory Network Encoder

Memory Network Encoder

	Model	MRR	R@1	R@5	R@10	Mean
) se	Answer prior	0.3735	23.55	48.52	53.23	26.50
elin	NN-Q	0.4570	35.93	54.07	60.26	18.93
Baseline	NN-QI	0.4274	33.13	50.83	58.69	19.62
(LF-Q-G	0.5048	39.78	60.58	66.33	17.89
	LF-QH-G	0.5055	39.73	60.86	66.68	17.78
CD.	LF-QI-G	0.5204	42.04	61.65	67.66	16.84
itiv	LF-QIH-G	0.5199	41.83	61.78	67.59	17.07
Generative	HRE-QH-G	0.5102	40.15	61.59	67.36	17.47
Jen	HRE-QIH-G	0.5237	42.29	62.18	67.92	17.07
$\overline{}$	HREA-QIH-G	0.5242	42.28	62.33	68.17	16.79
	$\overline{MN}-\overline{QH}-\overline{G}$	0.5115	40.42	61.57	67.44	17.74
	MN-QIH-G	0.5259	42.29	62.85	68.88	17.06
(LF-Q-D	0.5508	41.24	70.45	79.83	7.08
	LF-QH-D	0.5578	41.75	71.45	80.94	6.74
ive	LF-QI-D	0.5759	43.33	74.27	83.68	5.87
Discriminative	LF-QIH-D	0.5807	43.82	74.68	84.07	5.78
i d	- HRE-QH-D	0.5695	$4\overline{2}.\overline{70}$	73.25	82.97	6.11
scri	HRE-QIH-D	0.5846	44.67	74.50	84.22	5.72
Di	HREA-QIH-D	0.5868	44.82	74.81	84.36	5.66
	$\overline{MN}-\overline{QH}-\overline{D}$	0.5849	44.03	75.26	84.49	5.68
	MN-QIH-D	0.5965	45.55	76.22	85.37	5.46
QA }	SAN1-QI-D	0.5764	43.44	74.26	83.72	5.88
\geq 1	HieCoAtt-QI-D	0.5788	43.51	74.49	83.96	5.84

• Memory Network (generally) performs best

- 0.53 MRR / ~17 mean rank (Generative)

- 0.60 MRR / ~5.5 mean rank (Discriminative)

batra-mlp-lab / visdial Code Issues 2	• Watch 15 ★ Star 82 % Fork 16						
Visual Dialog code in Torch https://arxiv.org/abs/1611.08669 torch computer-vision natural-language-processing deep-learning							
🕞 3 commits	ဖို ာ 1 branch	🛇 0 releases 🏭 1 contr					
Branch: master - New pull request			Find file Clone or download -				
abhshkdz committed on GitHub Updates demo link Latest commit 5b97b5b on Apr 19							
🖿 data	Changes type to `int` for lengths; Refs #	1	a month ago				
decoders	Initial commit		a month ago				
encoders	Initial commit		a month ago				
model_utils	Initial commit		a month ago				
scripts	Initial commit		a month ago				
vis	Initial commit		a month ago				
.gitignore	Initial commit		a month ago				
E README.md	Updates demo link		a month ago				
dataloader.lua	Initial commit		a month ago				
🖹 evaluate.lua	Initial commit		a month ago				

Visual Chatbot

▼▲ 12:29

>

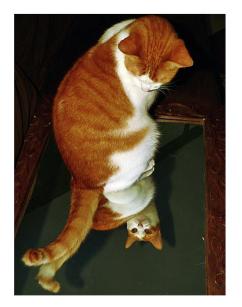
Co

 \triangleleft

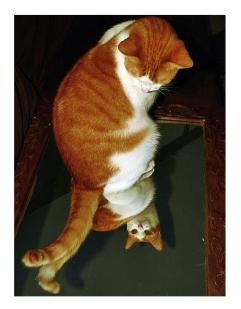
Hi, I am a Visual Chatbot, capable of answering a sequence of questions about images. Please upload an image and fire away!

Start typing question here ...

0

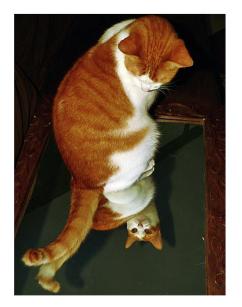

- Q: Is the bottle open?
- A: Yes
- Q: Red or white wine?
- A: Red
- Q: Is there only 1 glass?
- A: Yes
- Q: Any food?
- A: No
- Q: What color is the table?
- A: Brown
- Q: Is it in a restaurant?
- A: No
- Q: Is it in the kitchen?
- A: Yes

- Q: Is the bottle open?
- A: Yes
- Q: Red or white wine?
- A: Red
- Q: Is there only 1 glass?
- A: Yes
- Q: Any food?
- A: No
- Q: What color is the table?
- A: Brown
- Q: Is it in a restaurant?
- A: No
- Q: Is it in the kitchen?
- A: Yes


- Q: What color is the building?
- A: Brown
- Q: What color is the clock?
- A: Black and white
- Q: Is it a digital or analog clock?
- A: Analog
- Q: What color are the numbers?
- A: Black
- Q: Are all of the numbers visible?
- A: Yes
- Q: Is it an outdoor view?
- A: Yes
- Q: Are there any people?
- A: No
- Q: Can you see other buildings
- A: No

- Q: What color is the cat?
- A: Orange and white
- Q: Is the cat on the floor?

A: Yes


- Q: What is the cat on?
- A: I can't tell
- Q: Can you see anything in the mirror?
- A: No, just the cat and the cat
- Q: Can you see a ceiling light?
- A: No
- Q: What color are the cat's eyes?
- A: I can't see the eyes
- Q: What color is the cat's nose?
- A: Orange

- Q: What color is the cat?
- A: Orange and white
- Q: Is the cat on the floor?

A: Yes

- Q: What is the cat on?
- A: I can't tell
- Q: Can you see anything in the mirror?
- A: No, just the cat and the cat
- Q: Can you see a ceiling light?
- A: No
- Q: What color are the cat's eyes?
- A: I can't see the eyes
- Q: What color is the cat's nose?
- A: Orange

- Q: What color is the cat?
- A: Orange and white
- Q: Is the cat on the floor?
- A: Yes
- Q: What is the cat on?
- A: I can't tell
- Q: Can you see anything in the mirror?
- A: No, just the cat and the cat
- Q: Can you see a ceiling light?
- A: No
- Q: What color are the cat's eyes?
- A: I can't see the eyes
- Q: What color is the cat's nose?
- A: Orange

- Q: What color is the vase?
- A: White
- Q: Can you tell what kind of flowers?
- A: I can't tell
- Q: Is there any water in the vase?
- A: Yes
- Q: How much water is there?
- A: A small amount
- Q: What is the vase on?
- A: Can't tell
- Q: Does this look like someone's home?
- A: Can't tell

- Q: What color is the vase?
- A: White
- Q: Can you tell what kind of flowers?
- A: I can't tell
- Q: Is there any water in the vase?
- A: Yes
- Q: How much water is there?
- A: A small amount
- Q: What is the vase on?
- A: Can't tell
- Q: Does this look like someone's home?
- A: Can't tell

Visual Dialog (CVPR 2017)

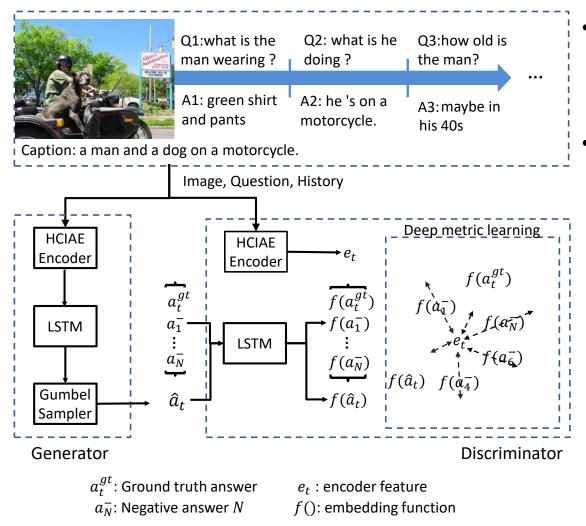
Abhishek Das (Georgia Tech)

Khushi Gupta (CMU)

Avi Singh (UC Berkeley)

Devi Parikh (Georgia Tech / FAIR)

Satwik Kottur (CMU)


Deshraj Yadav (Virginia Tech)

Dhruv Batra (Georgia Tech / FAIR)

José Moura (CMU)

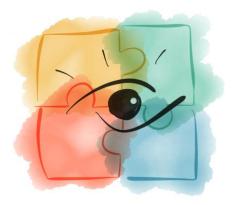
- Quantitative:
 - Ground truth response scores higher more often
- Qualitative:
 - Responses are more informative
 - Responses are longer
 - Responses are more diverse

Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model (arXiv)

Jiasen Lu (Virginia Tech)

Jianwei Yang (Georgia Tech)

Anitha Kannan Dhruv Batra Devi Parikh (Facebook AI Research) (Georgia Tech / FAIR) (Georgia Tech / FAIR)


Open directions

- Improve dialog agents via self-talk
 - No additional human intervention
 - Are these agents better at human-bot interaction?
- Domain adaptation via self-talk
 - No need to collect a new dataset for each domain
- Dialog rollouts, future prediction, theory of mind, ...

Conclusion

- Natural progression in Vision+Language
 - − Captioning \rightarrow VQA \rightarrow Visual Dialog
- VQA: Elevating the role of image understanding
 - Balancing
 - Changing priors
 - Compositional
- Visual Dialog
 - New AI task
 - Challenges: Memory, history, reasoning over time
 - VisDial dataset
 - Live 2-person Chat on AMT
 - 120k COCO images, 1 dialog/image, ~1.2 Million dialog QA pairs
 - Visual Dialog Models (Neural Encoder-Decoders)
 - Late Fusion, Hierarchical Recurrent Encoder, Memory Network

Thank you.

Visual Dialog: Towards AI agents that can see, talk, and act

Dhruv Batra

Outline

Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning [ICCV '17]

Abhishek Das* (Georgia Tech)

Satwik Kottur* (CMU)

José Moura (CMU)

Stefan Lee (Virginia Tech)

Dhruv Batra (Georgia Tech)

Visual Dialog: Task

- Given
 - Image I
 - History of human dialog
 (Q₁, A₁), (Q₂, A₂), ..., (Q_{t-1}, A_{t-1})
 - Follow-up Question Q_t
- Task
 - Produce free-form
 natural language answer
 A_t

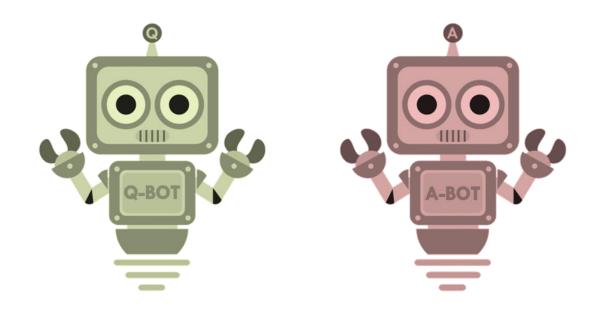
Visual Dialog

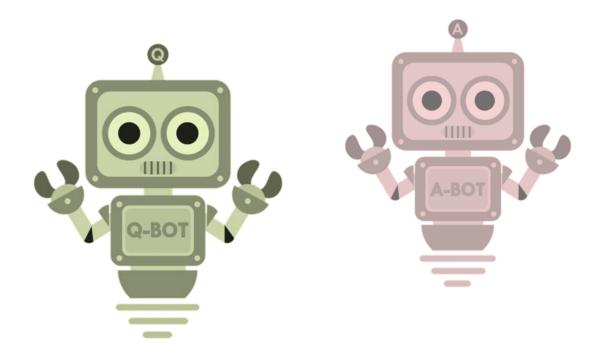
Q: How many people on wheelchairs? A: Two.

Q : What gender are the people in the wheelchairs?

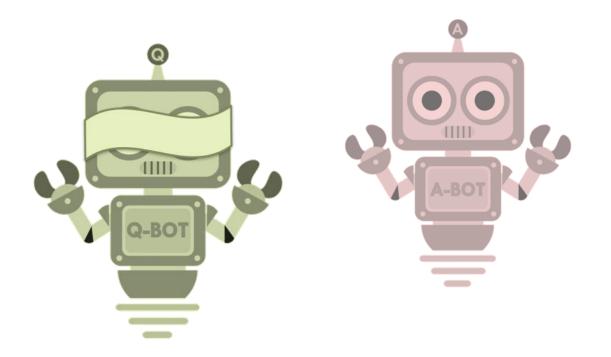
A : One is female, one is male.

Q : Which one is holding the racket?

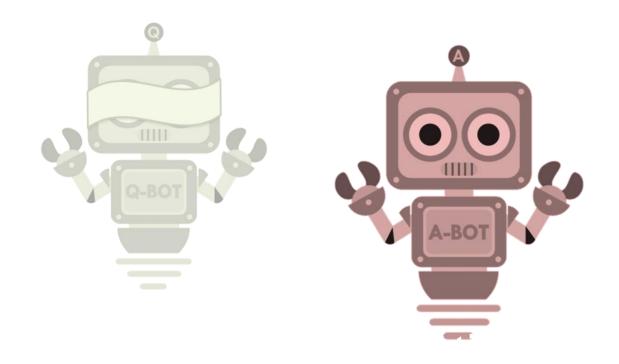

A : The female.

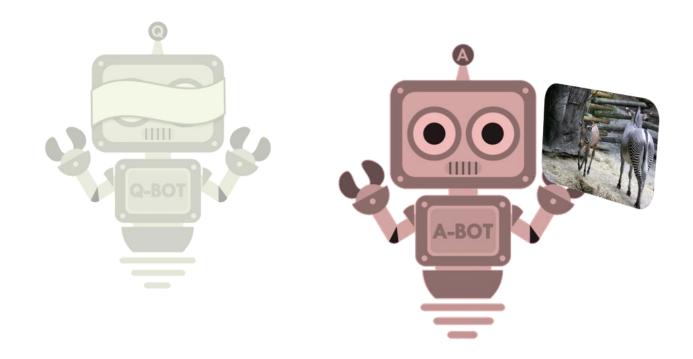

Q : Is the other one holding anything?

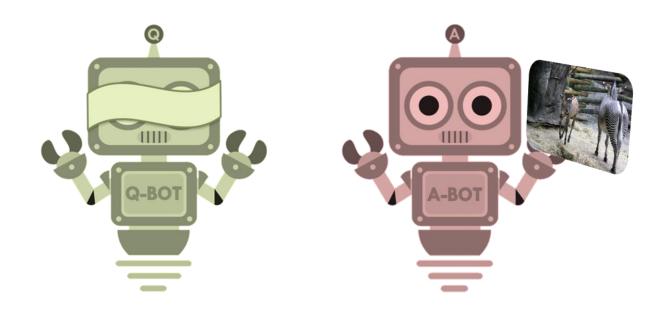
A : He is not.

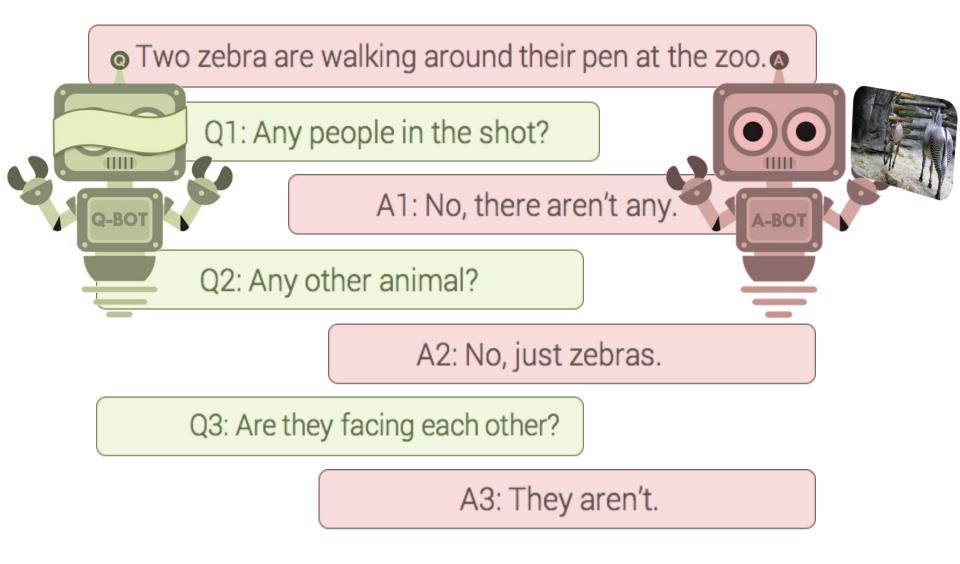

Problems

- No goal
 - Why are we talking?
- Agent not in control
 - Artificially injected at every round into a human conversation
 - Can't steer conversation
 - Doesn't get to see its errors during training
- Learning equivalent utterances
 - Many ways of answering the same question that should be treated equally, but aren't
 - Is log-likelihood of human response really a good metric?

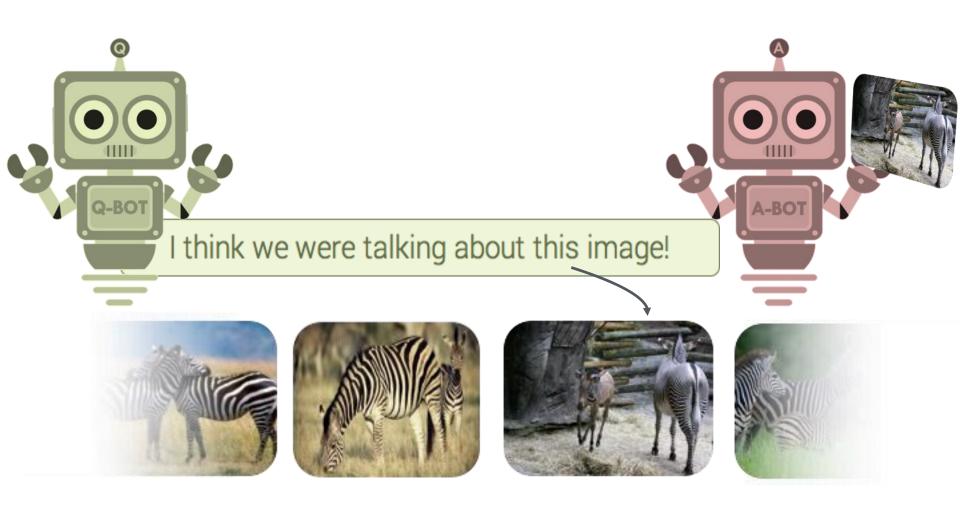



Q-Bot asks questions


Q-Bot is blindfolded



A-Bot answers questions



A-Botsees an image

Image Guessingentame

RL for Cooperative Dialog Agents

- Agents: (Q-bot, A-bot)
- Environment: Image
- Action:
 - Q-bot: question (symbol sequence)
 - A-bot: answer (symbol sequence)
 - Q-bot: image regression

Any people in the shot? No, there aren't any. $\hat{y}_t \in \mathbb{R}^{4096}$

- State
 - Q-bot: $s_t^Q = [c, q_1, a_1, \dots, q_{t-1}, a_{t-1}]$ - A-bot: $s_t^A = [I, c, q_1, a_1, \dots, q_{t-1}, a_{t-1}, q_t]$

q,

a,

RL for Cooperative Dialog Agents

- Action:
 - Q-bot: question (symbol sequence)
 - A-bot: answer (symbol sequence)
 - Q-bot: image regression

Any people in the shot? No, there aren't any. $\hat{y}_t \in \mathbb{R}^{4096}$

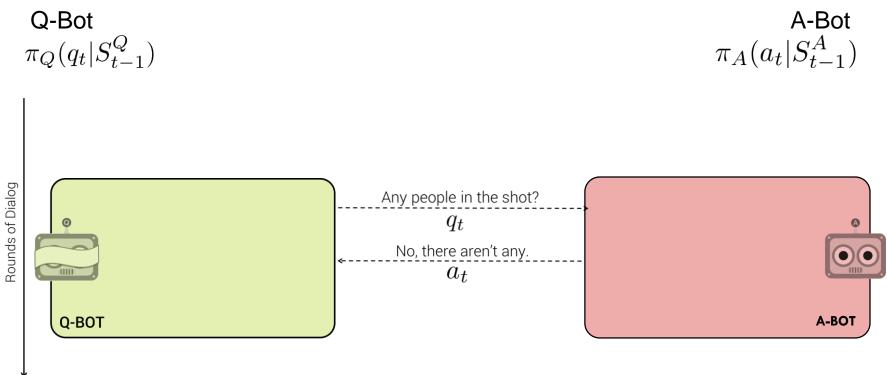
q,

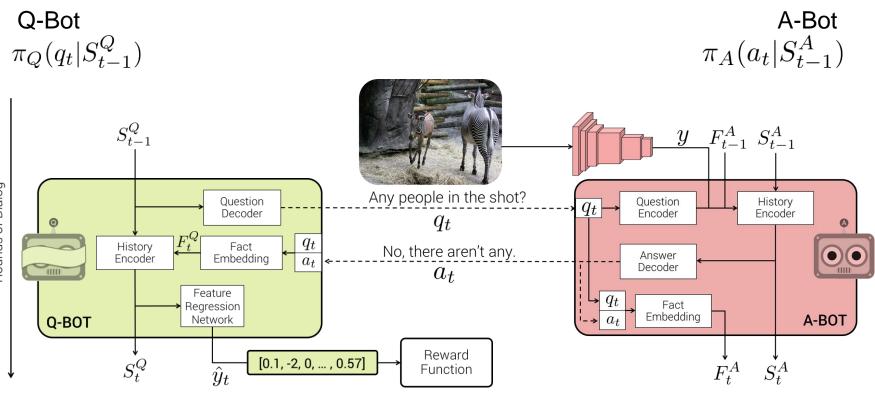
a,

- State
 - Q-bot: $s_t^Q = [c, q_1, a_1, \dots, q_{t-1}, a_{t-1}]$ - A-bot: $s_t^A = [I, c, q_1, a_1, \dots, q_{t-1}, a_{t-1}, q_t]$

RL for Cooperative Dialog Agents

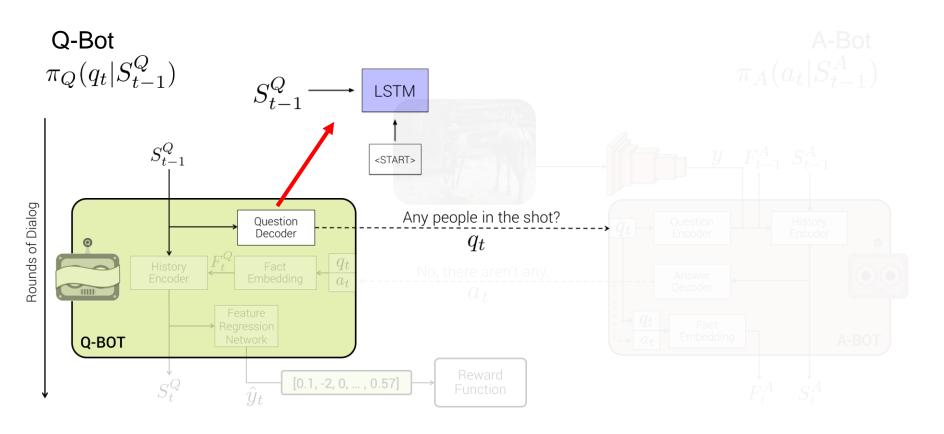
- Action:
 - Q-bot: question (symbol sequence)
 - A-bot: answer (symbol sequence)
 - Q-bot: image regression

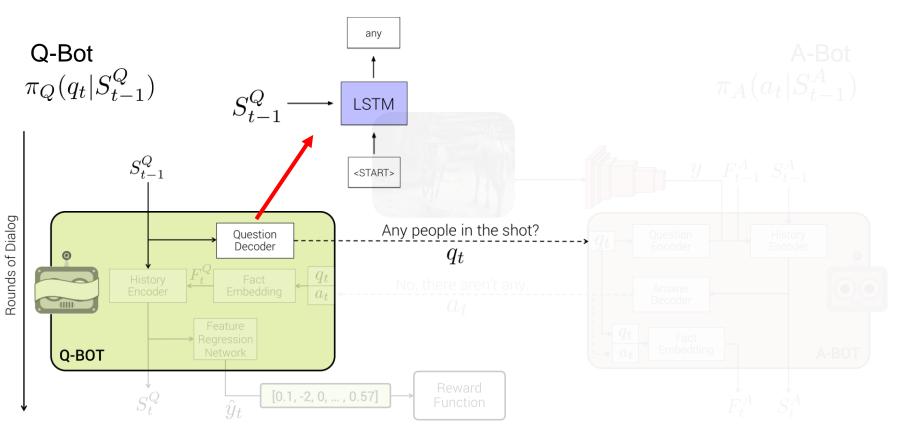

- **q**_t Any people in the shot?
 - No, there aren't any.
- $\hat{y}_t \in \mathbb{R}^{4096}$

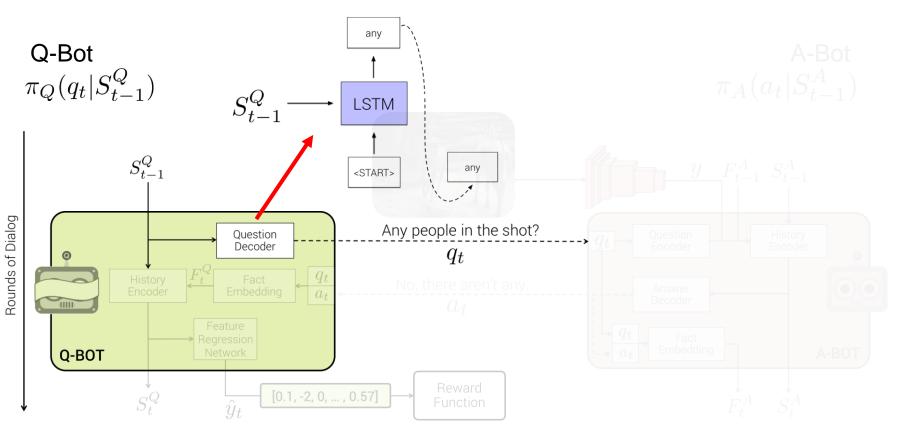

a,

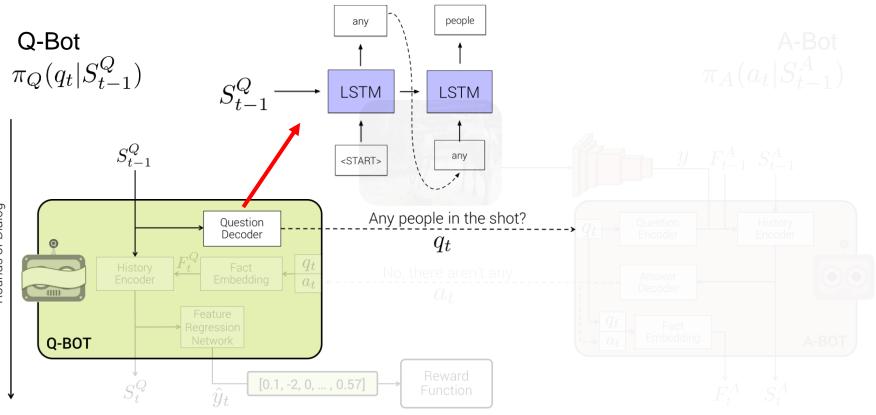
- State
 - Q-bot: $s_t^Q = [c, q_1, a_1, \dots, q_{t-1}, a_{t-1}]$ - A-bot: $s_t^A = [I, c, q_1, a_1, \dots, q_{t-1}, a_{t-1}, q_t]$
- Policy

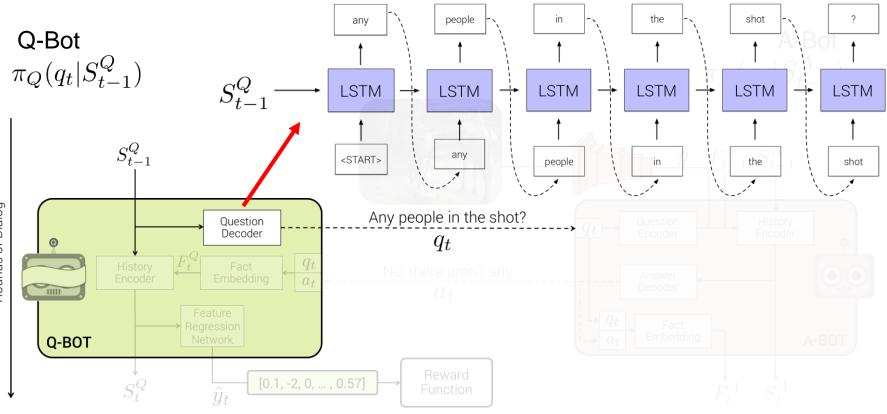

 $\begin{array}{cc} \mathsf{Q}\text{-bot} & \mathsf{A}\text{-bot} \\ \pi_Q(q_t|S^Q_{t-1}) & \pi_A(a_t|S^A_{t-1}) \end{array}$


• Reward

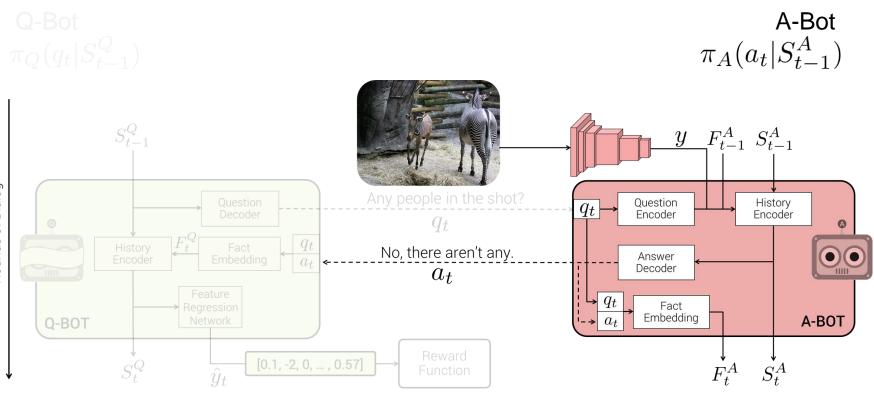


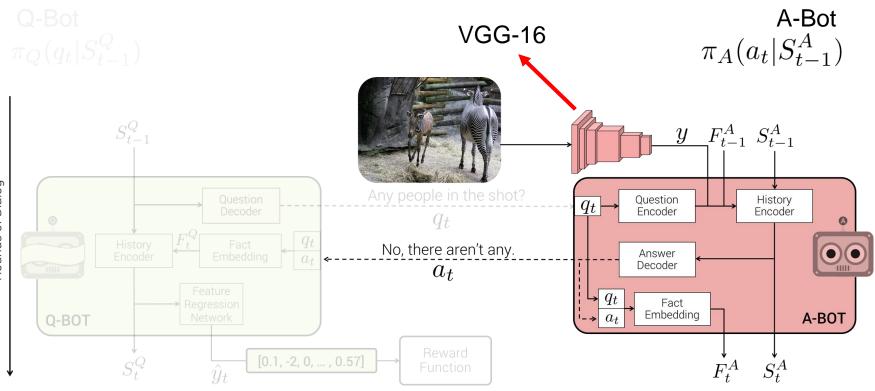


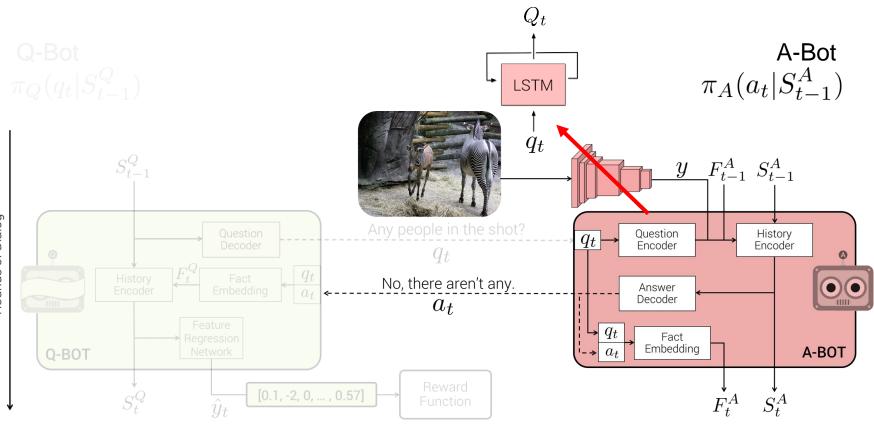

Slide Credit: Abhishek Das

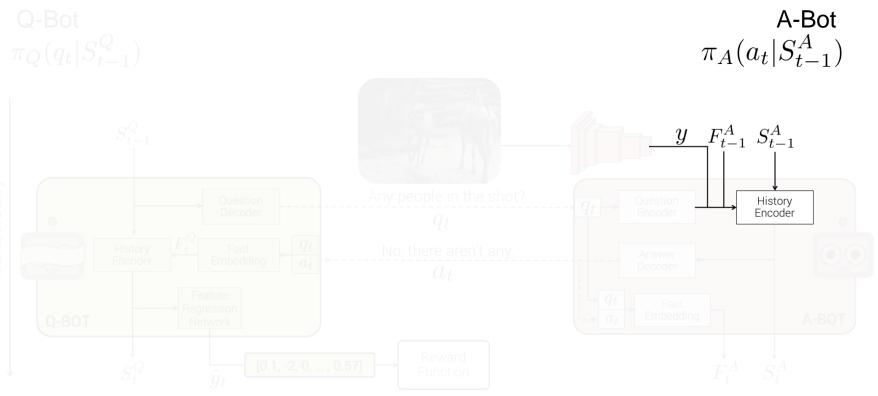


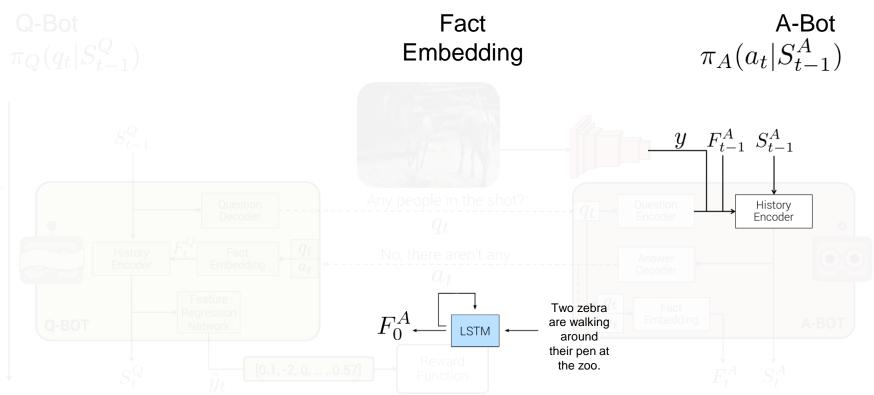


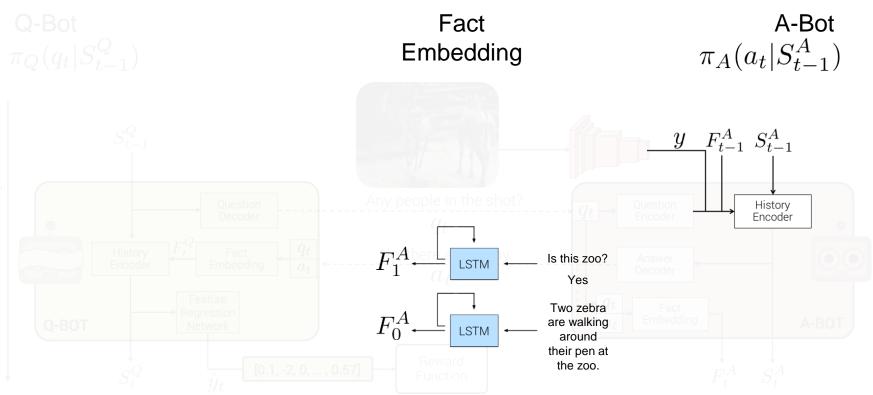


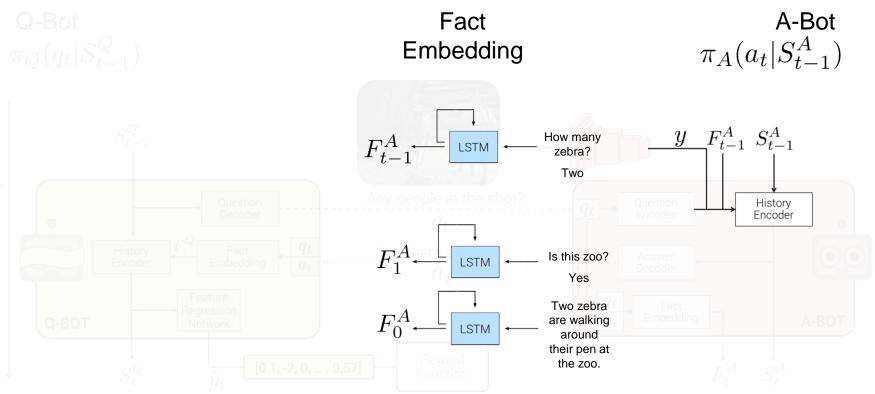


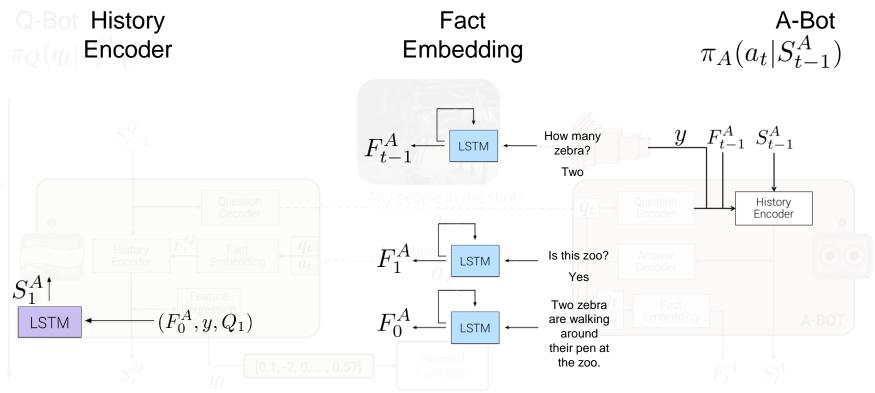


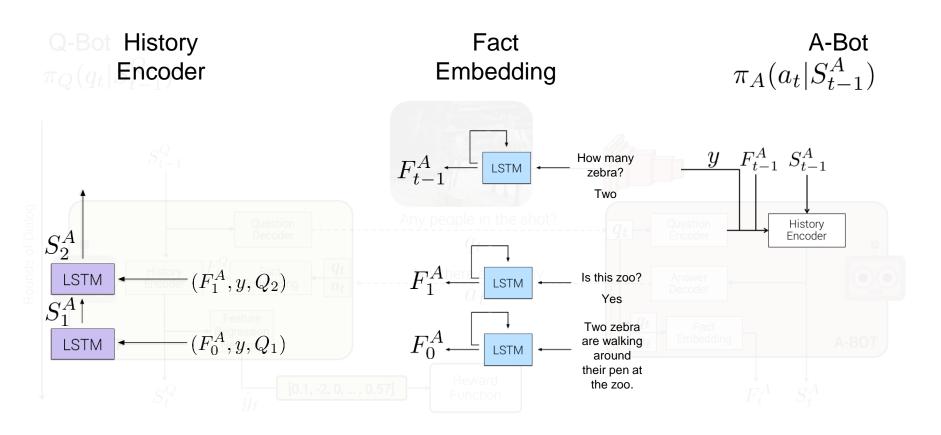


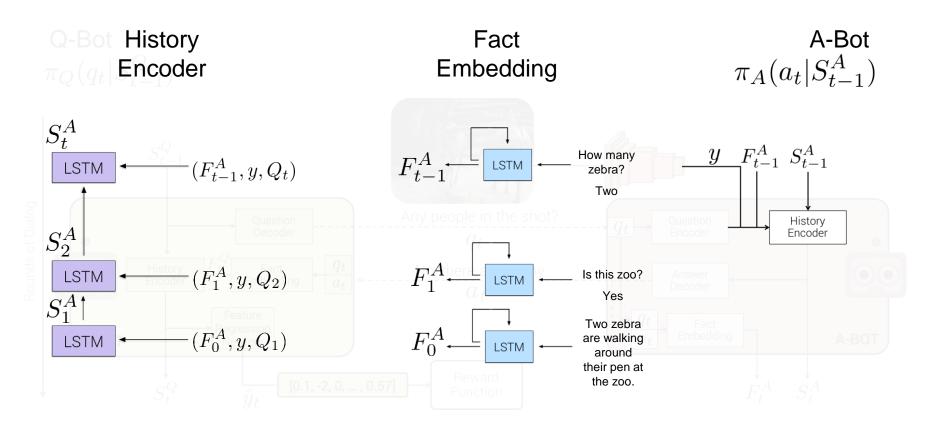


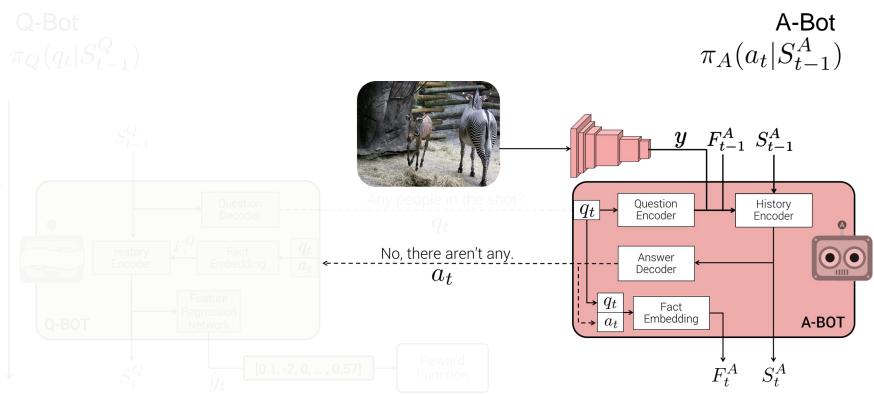


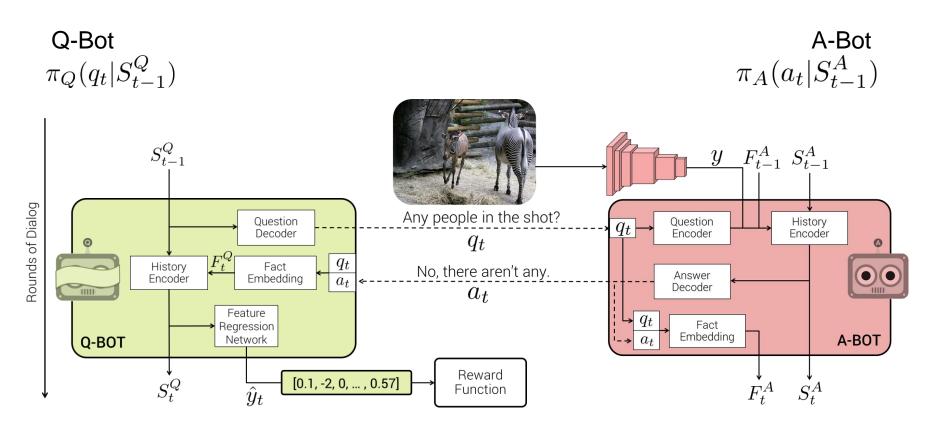


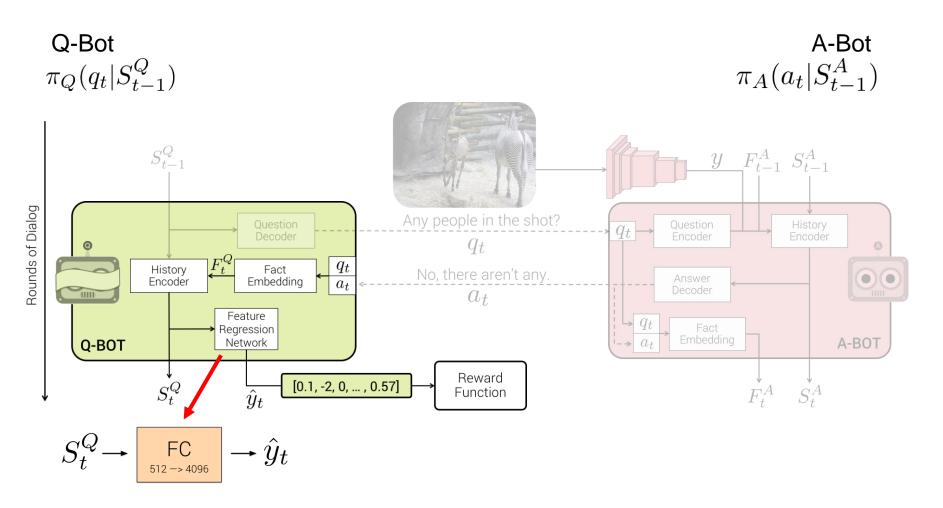


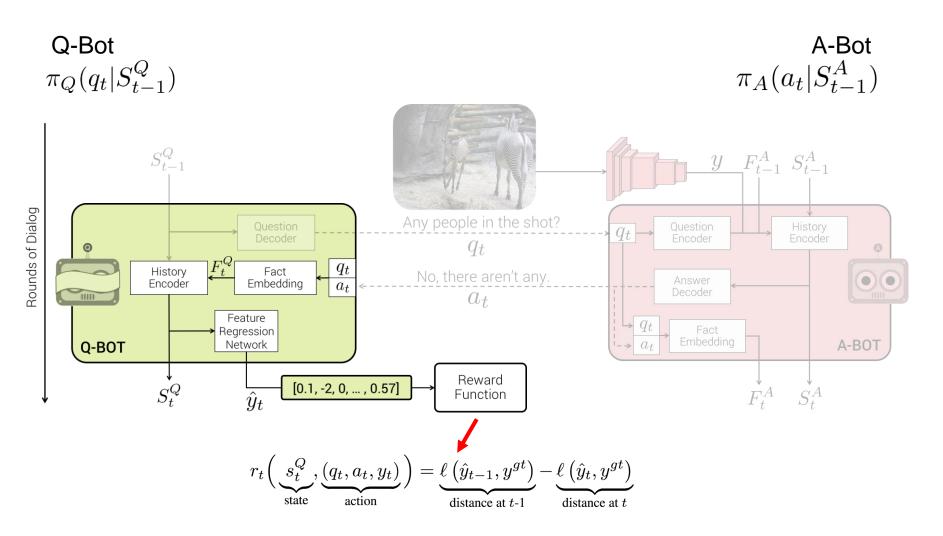











(C) Dhruv Batra

Policy Gradients

$$J(\theta_A, \theta_Q) = \mathop{\mathbb{E}}_{\pi_Q, \pi_A} \left[r_t \left(s_t^Q, (q_t, a_t, y_t) \right) \right]$$

REINFORCE Gradients

$$\begin{aligned} \nabla_{\theta_Q} J &= \nabla_{\theta_Q} \left[\mathbb{E}_{\pi_Q, \pi_A} \left[r_t \left(\cdot \right) \right] \right] \\ &= \sum_{q_t, a_t} \pi_Q \left(q_t | s_{t-1}^Q \right) \nabla_{\theta_Q} \log \pi_Q \left(q_t | s_{t-1}^Q \right) \pi_A \left(a_t | s_t^A \right) r_t \left(\cdot \right) \\ &= \mathbb{E}_{\pi_Q, \pi_A} \left[r_t \left(\cdot \right) \nabla_{\theta_Q} \log \pi_Q \left(q_t | s_{t-1}^Q \right) \right] \end{aligned}$$

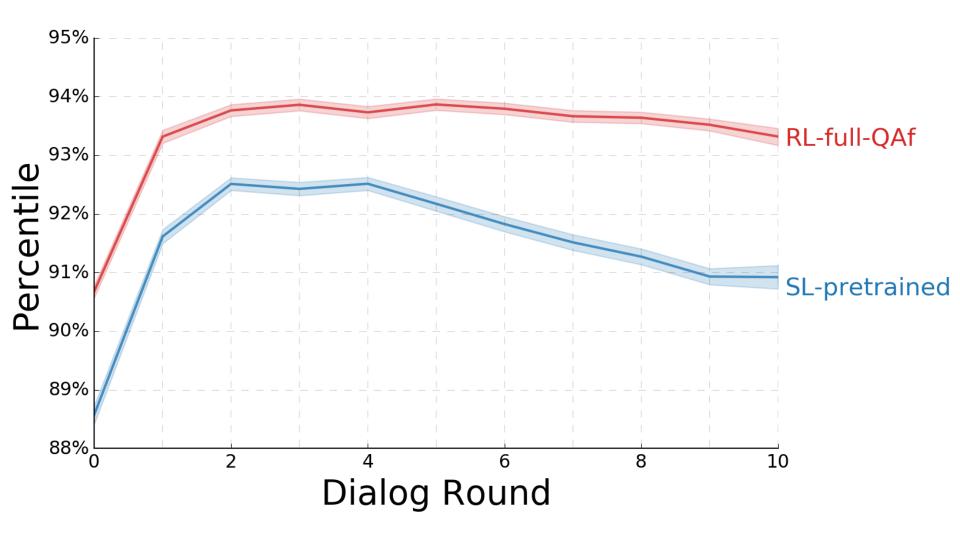
Turing Test

How old is this man?	He looks like late teens
Does he have short hair or long hair?	Medium
What color is his hair?	Brown
Is he wearing glasses?	No
Does he have facial hair?	No
How is he dressed?	He's white dress shirt with red tie school uniform
Is he larger man or is he skinny?	He's skinny
Is this picture taken outside?	Inside
Can you tell if it's daytime?	I'm not sure
Can you tell what room he is standing	g in? He's in hallway

A man making the live long and prosper sign from star trek.

Where is man located? Looks like classroom of some sort What is man wearing? Black t shirt and jeans Are there any other people in picture? Yes, quite few people in background What color is table? Picture is black and white, but it's wood table Is there anything else on table? Not that I can see They are standing in front of him, but I don't ... What are other people doing? Are there any windows? Not that I can see What color are walls? I can't see walls What time of day do you think it is? I can't tell What is man wearing? Black t shirt and jeans

Image + Caption	Human-Human dialog [4]	SL-pretrained(Q-BOT-A-BOT dialog	RL-full-QAf Q -BOT	-A-BOT dialog
	What are their genders? 1 man 1 woman Are they both adults? Yes Do they wear goggles? Looks like sunglasses Do they have hats on? Man does Are there any other people? No What color is man's hat? Black Is it snowing now? No What is woman wearing? Blue jacket and black pants Are they smiling? Yes Do you see trees? Yes	How many people? Male or female? What are they wearing? What color are skis? Are they wearing goggles? Are they wearing goggles? Are they wearing goggles? Are they wearing goggles? Are they wearing hats? Are they wearing goggles?	2 I can't tell I can't tell, they are far away I can't tell Yes Yes Yes Yes Yes Yes Yes	Are people male or female or both? What are they wearing? Is it snowing? Can you see any trees? Can you see any trees? Can you see any trees? Can you see any trees? Can you see any buildings in background? Can you see any buildings in background? Does it look like they are in park?	Yes, there are lot of trees in background No, I do not see any buildings Yes, there are lot of trees in background
A couple of people in the snow of	on skis.				
Two men giving thumbs up hold	How old are men? They look to be 30's Are they in restaurant? I can't tell, its close up Do men look they might be related? Maybe Are they each holding slice of pizza in 1 hand and giving thumbs up with other? 1 holding slice, other holding box What kind of pizza do they have? cheese Does box have pizza company name on it? No Are there any pictures or graphics on box? No Are there any netures or graphics on box? No Are men slender or heavy set? Slender Do either of men wear glasses? Yes 1 or both? 1 ing large slices of pizza.	How old are men? Are they male or female? What are they wearing? What kind of pizza is it? Does it look good? Can you tell what kind of pizza it is Are there any toppings on pizza? Are there any toppings on pizza? Are there any other toppings on pizza?	Pepperoni Pepperoni Looks like cheese, but I can't tell	How old are men? Are they wearing chef's hat? Do they have long hair? What kind of pizza is it? Does it look good? Are they any other people around? Are they inside or outside? Can you tell what time of day it is? Are there any other people around? What color are walls?	They look like they are in their 20's No No Looks like pepperoni Yes No Inside No No White
A man riding a skateboard down	How old is man? In his teens Is he wearing helmet? No Is he wearing any protective gear? No What color is his hair? Dirty blonde or dark brown What color is his shirt? Black with red letters Is he wearing shorts? Yes What color are his shorts? Denim Are there other people visible? No What color are his shoes? I can't see them Is this at skate park? Yes the side of a ramp. Yes	How old is man? What is he wearing? What color is his shirt? what color are his pants? what color are his shor? What color are his shoes? What color are his shoes? What color are his shoes? What color are his shoes? What color are his shoes?	I can't see his face, I don't know shorts and t shirt black blue Black Black Black Black Black Black Black	What color is skateboard? Is he wearing helmet? Is he wearing knee pads? Is it day or night? Is it sunny? Can you see any other people? Is it day or night? Is it sunny? What color is skateboard? Is he wearing helmet?	It is hard to tell but I think it's black Yes No, no knee pads It is daytime t is bright out, but I see no shadows, so I can not There are 2 other people in background It is daytime Yes, it is sunny It is hard to tell but I think it's black Yes, he is wearing helmet
An aimlane sitting on an asphalt	What color is plane? White and blue Is there writing on plane? Yes it says lufthansa What color is ground? Grey tarmac Any people? No people visible Can you see airport? Yes What color is it? Grey Is there sunshine? No it's kind of overcast Any other planes? No other planes Any grass? No grass Any trees? No tree landine strin No tree	What color is plane? Is it large or small? Any people? Any writing on plane? Any writing on plane? Any writing on plane? Any writing on plane? What does it say? What color is plane? Any writing on it?	White Large No Yes Yes Yes Yes UNK White Yes	What color is airplane? Can you tell what airline it is? What time of day is it? Can you see any people? Can you see any buildings? Is it day or night time? Can you see sky? Are there clouds in sky? Does it look like it's going to rain? Does it look like it's going to rain?	White with red and blue stripes No, it's too far away It is daytime No Yes, in background It is daytime Yes Yes, few Yes, it does Yes it does


How old is man? What is he wearing? What color is his shirt? what color are his pants? what color are his shoes? I can't see his face, I don't know shorts and t shirt white black blue Black Black Black Black Black Black Black

What color is skateboard? Is he wearing helmet? Is he wearing knee pads? Is it day or night? Is it sunny? Can you see any other people? Is it day or night? Is it sunny? What color is skateboard? Is he wearing helmet? It is hard to tell but I think it's black Yes No, no knee pads It is daytime It is bright out, but I see no shadows, so I can not There are 2 other people in background It is daytime Yes, it is sunny It is hard to tell but I think it's black Yes, he is wearing helmet

SL Agents

RL Agents

Image Guessing

Concurrent Work

Is it a person?	No
Is it an item being worn or held?	Yes
Is it a snowboard?	Yes
Is it the red one?	No
Is it the one being held by the person in blue?	Yes

Is it a cow?	Yes
Is it the big cow in the middle?	No
Is the cow on the left?	No
On the right ?	Yes
First cow near us?	Yes

GuessWhat?! Visual object discovery through multi-modal dialogue

Harm de Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, Aaron Courville

(Submitted on 23 Nov 2016 (v1), last revised 6 Feb 2017 (this version, v2))

We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. The coal of

the game is to locate an unknown object in a rich image scene by asking a sequence of que reasoning and language grounding, is required to solve the proposed task. Our key contri 150K human-played games with a total of 800K visual question-answer pairs on 66K ima and introduce the oracle and questioner tasks that are associated with the two players of initial baselines of the introduced tasks.

the game is to locate an unknown object in a rich image scene by asking a sequence of que End-to-end optimization of goal-driven and visually grounded dialogue systems reasoning and language grounding, is required to solve the proposed task. Our key contri

a Florian Strub, Harm de Vries, Jeremie Mary, Bilal Piot, Aaron Courville, Olivier Pietquin

(Submitted on 15 Mar 2017)

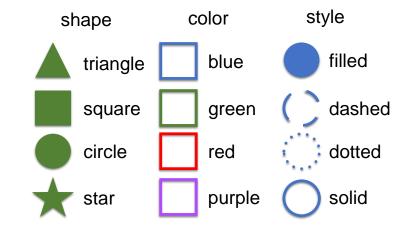
End-to-end design of dialogue systems has recently become a popular research topic thanks to powerful tools such as encoder-decoder architectures for sequence-to-sequence learning. Yet, most current approaches cast human-machine dialogue management as a supervised learning problem, aiming at predicting the next utterance of a participant given the full history of the dialogue. This vision is too simplistic to render the intrinsic planning problem inherent to dialogue as well as its grounded nature, making the context of a dialogue larger than the sole history. This is why only chit-chat and question answering tasks have been addressed so far using end-to-end architectures. In this paper, we introduce a Deep Reinforcement Learning method to optimize visually grounded task-oriented dialogues, based on the policy gradient algorithm. This approach is tested on a dataset of 120k dialogues collected through Mechanical Turk and provides encouraging results at solving both the problem of generating natural dialogues and the task of discovering a specific object in a complex picture.

Outline

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog [EMNLP '17]

Satwik Kottur* (CMU)

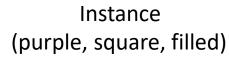
José Moura (CMU)


Stefan Lee (Virginia Tech)

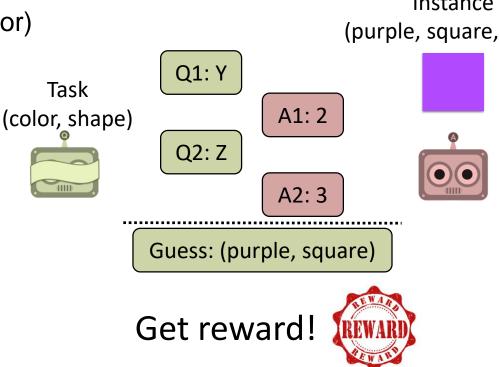
Dhruv Batra (Georgia Tech)

Toy World

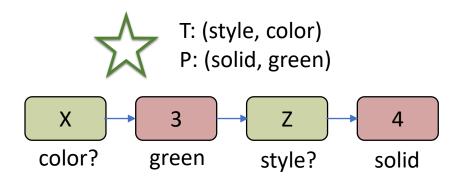
- Sanity check
- Simple, synthetic world
 - Instances (shape, color, style)
 - Total of $4^{3}(64)$ instances

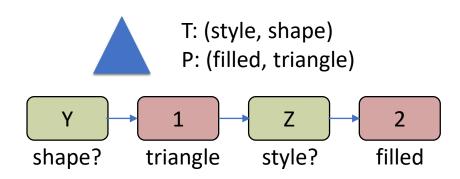


Example instances:

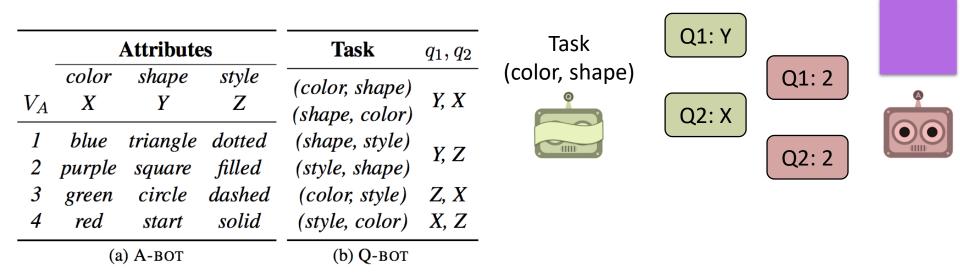


Task & Talk


- Task (G)
 - Inquire pair of attributes ٠
 - (color, shape), (shape, color) •



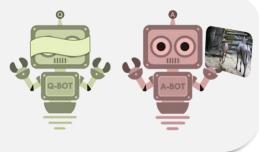
- Talk
 - Single token per round
 - Two rounds ٠
- Q-bot guesses a pair
 - Reward : +1 / -1 •
 - Prediction order matters! ۲


Emergence of Grounded Dialog

Emergence of Grounded Dialog

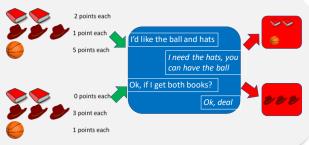
- Compositional grounding
- Predict dialog for unseen instances

Summary of findings


Setting	Voca r		Men	nory	Generalizati	Characteristics
	$ V_Q $	$ V_A $	Q-bot	A-bot	on	
A. Over- complete	64	64	Yes	Yes	25.6 %	 Non-compositional language Q-bot insignificant Inconsistent A-bot grounding Poor generalization
B. Attribute	3	12	Yes	Yes	38.5 %	 Non-compositional language Q-bot uses one round to convey task Inconsistent A-bot grounding Poor generalization
C. Minimal	3	4	Yes	No	74.4 %	 Compositional language Q-bot uses both rounds Consistent A-bot grounding Good generalization

Deep Multi-Agent Communication

- NIPS '16
 - [DeepMind] Learning to Communicate with Deep Multi-Agent Reinforcement Learning. Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, Shimon Whiteson. NIPS '16.
 - [NYU / FAIR] Learning Multiagent Communication with Backpropagation. Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus. NIPS '16.
- Arxiv '17
 - [OpenAI] Emergence of Grounded Compositional Language in Multi-Agent Populations. Igor Mordatch, Pieter Abbeel.
 - [FAIR] Multi-Agent Cooperation and the Emergence of (Natural) Language. Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni.
 - Learning to play guess who? and inventing a grounded language as a consequence.
 Emilio Jorge, Mikael Kageback, and Emil Gustavsson.
 - Emergence of language with multi-agent games: Learning to communicate with sequences of symbols. Serhii Havrylov and Ivan Titov.
 - [Berkeley] Translating neuralese. Jacob Andreas, Anca Dragan and Dan Klein. ACL 2017.


Outline

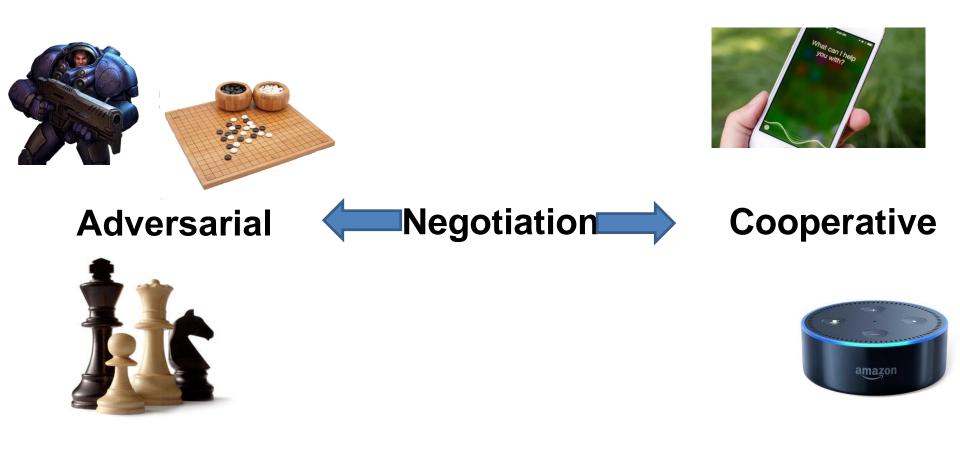
Cooperative Visual Dialog Agents

Deal or No Deal? End-to-End Learning for Negotiation Dialogues [EMNLP '17]

Mike Lewis (FAIR)

Denis Yarats (FAIR)

Yann Dauphin (FAIR)



Devi Parikh (Georgia Tech)

Dhruv Batra (Georgia Tech)

Why Negotiation?

Why Negotiation?

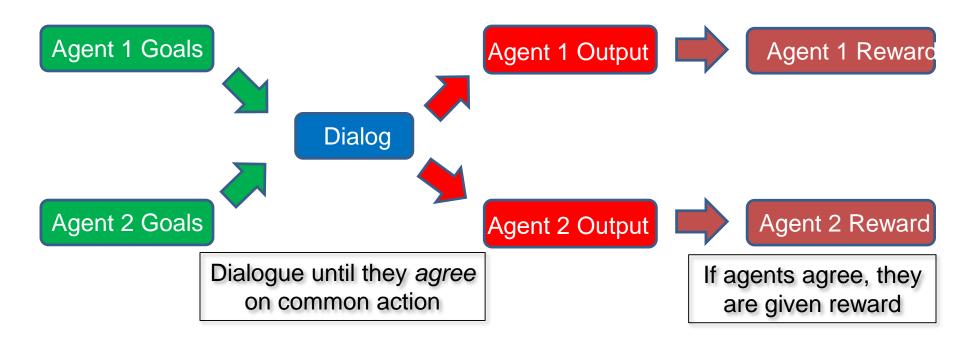
Adversarial

Negotiation 🔜

Cooperative

Negotiation useful when:

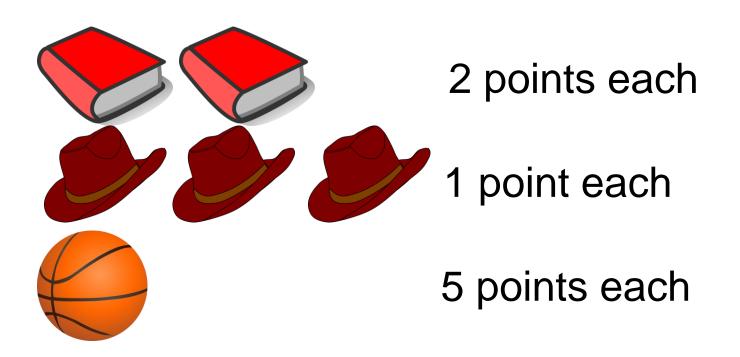
- Agents have different goals
- Not all can be achieved at once
- (all the time)

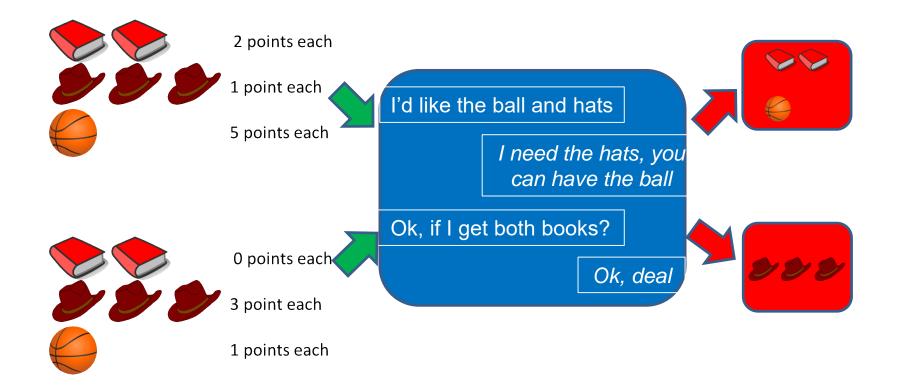

Why Negotiation?

- Both linguistic and reasoning problem
- Interpret multiple sentences, and generate new message
- Plan ahead, make proposals, counter-offers, bluffing, lying, compromising

Framework

Both agents given *reward function*, can't observe each other's


Both agents *independently* select agreement


Object Division Task

Agents shown *same* set of object but *different* values for each

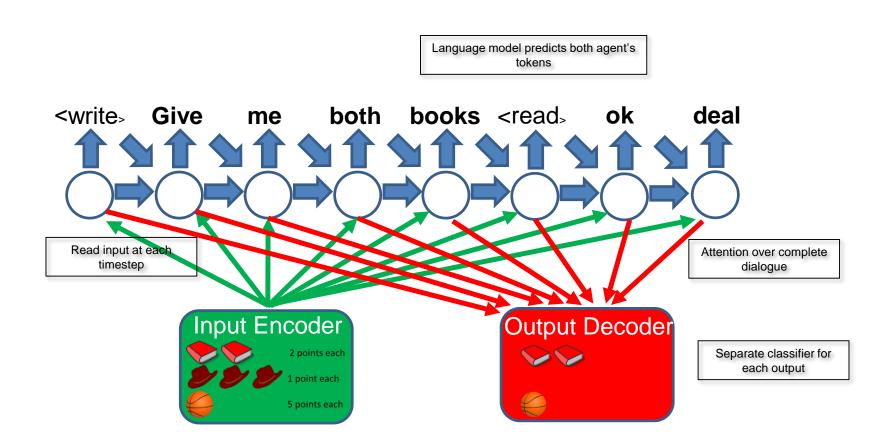
Asked to agree how to divide objects between them

Multi-Issue Bargaining

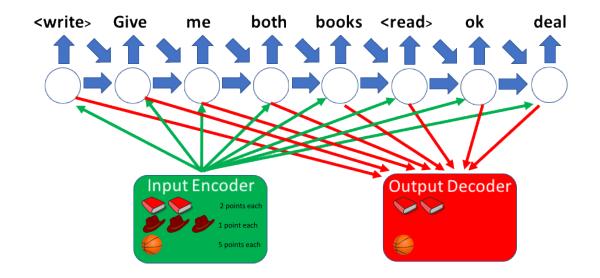
Data Collection on AMT

Divide these items your partner.	s between y	you and
Your partner sees the same items but wi	ith different values	
You get some items, and your partner wi	-	
If you often get low scores then your wo		
Items to Split between You and Partner	Value Each to You	Number You Get
	0	0 \$
۶	7	0 🕈
666	1	0 \$
Deal was Agreed 1		

Dataset

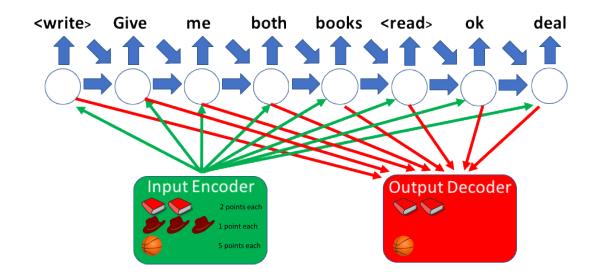

- ~6k dialogs
- Average 6.6
 turns/dialog
- Average 7.6 words/turn
- 80% agreed solutions
- 77% Pareto Optimal solutions

Divide these objects between you and another Turker. Try hard to get as many points as you can! Send a message now, or enter the agreed deal!

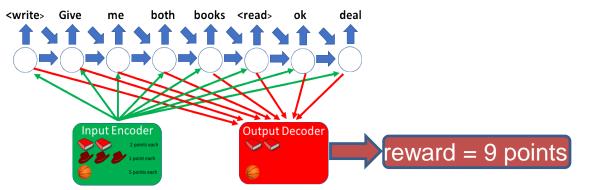


	You: Ok, if I get everything else
Fellow Turker: If I get the book then you have a deal	
	You: No way - you can have one hat and all the balls
Fellow Turker: Ok deal	

Baseline Model

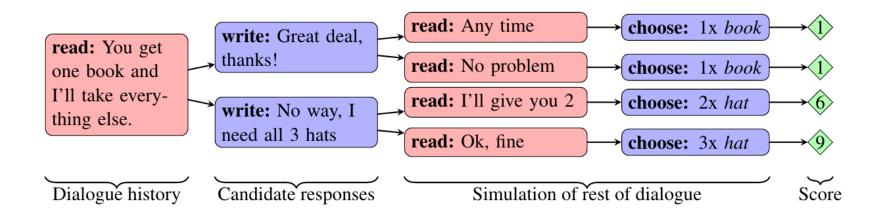


SL-Pretraining

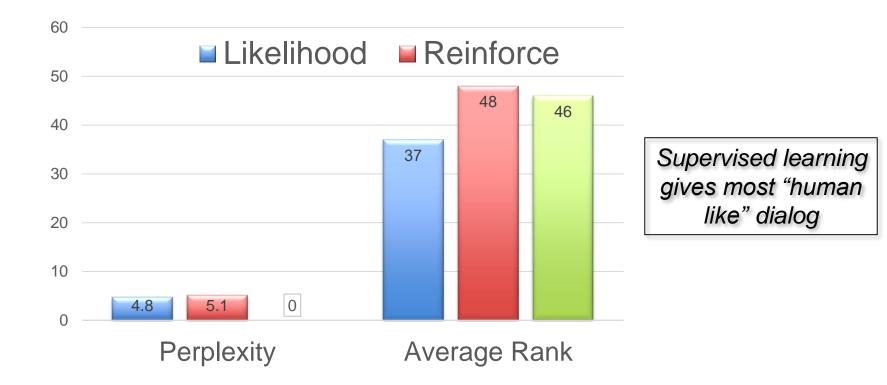

- Train to maximize likelihood of human-human dialogues
- Decode by sampling likely messages

SL-Pretraining

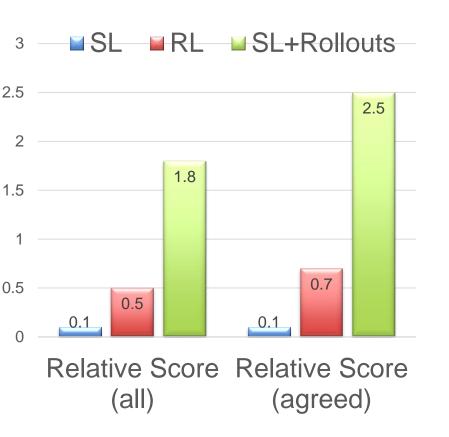
- Model knows nothing about task, just tries to imitate human actions
- Agrees too easily
- Can't go beyond human strategies

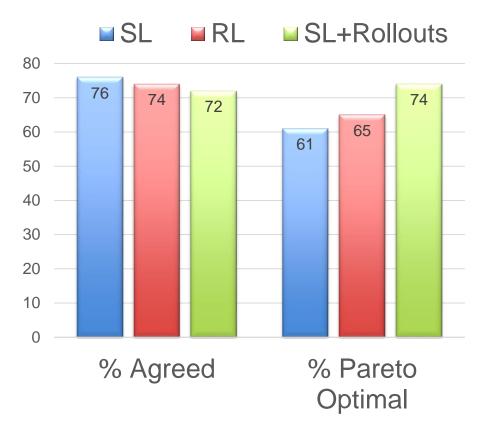

Goal-based RL-Finetuning

- Generate dialogues using self-play
- Backpropagate reward using REINFORCE
- Interleave with supervised updates

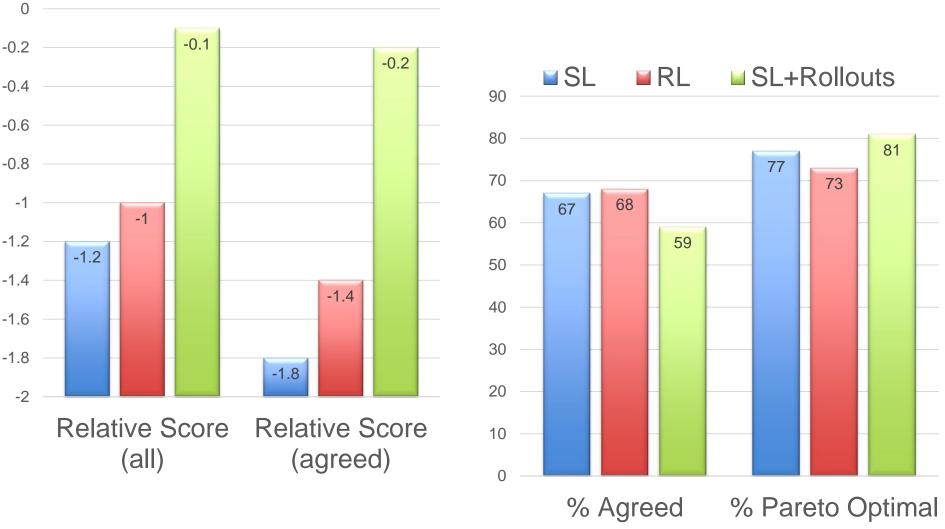

• Very sensitive to hyperparameters

Dialog Rollouts: Goal-based Decoding

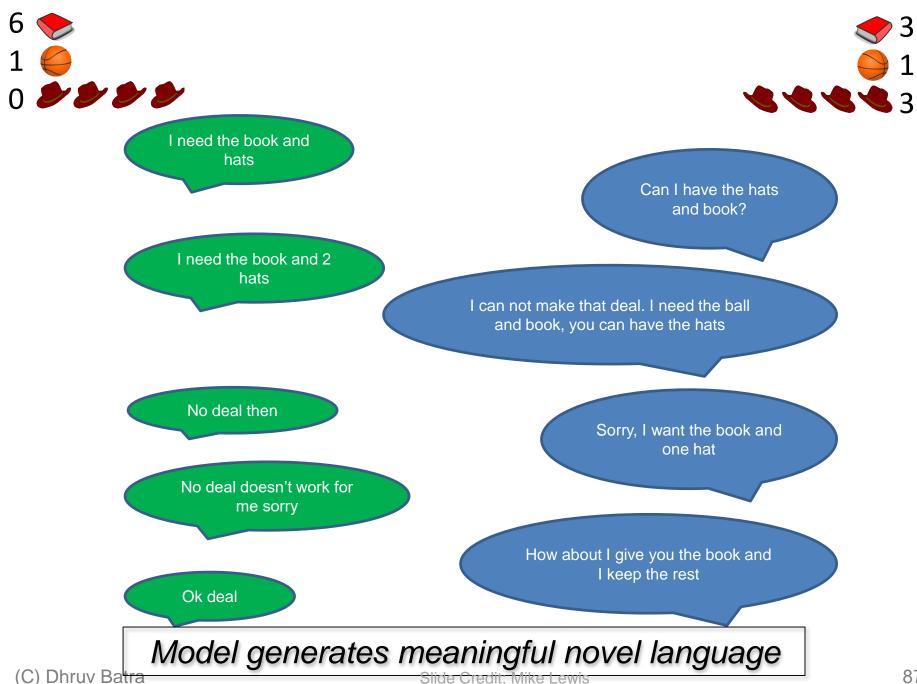


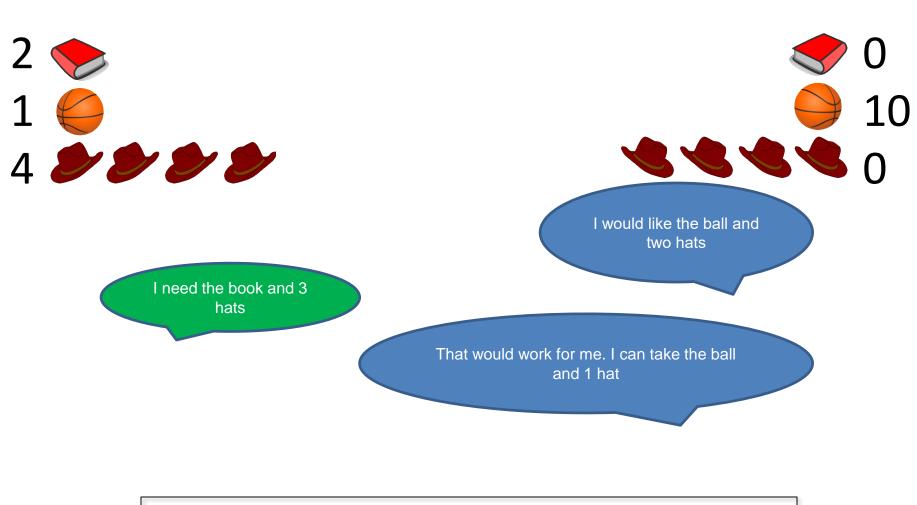

- Dialog rollouts use model to simulate remainder of conversation
- Average scores to estimate future reward

Intrinsic Evaluation



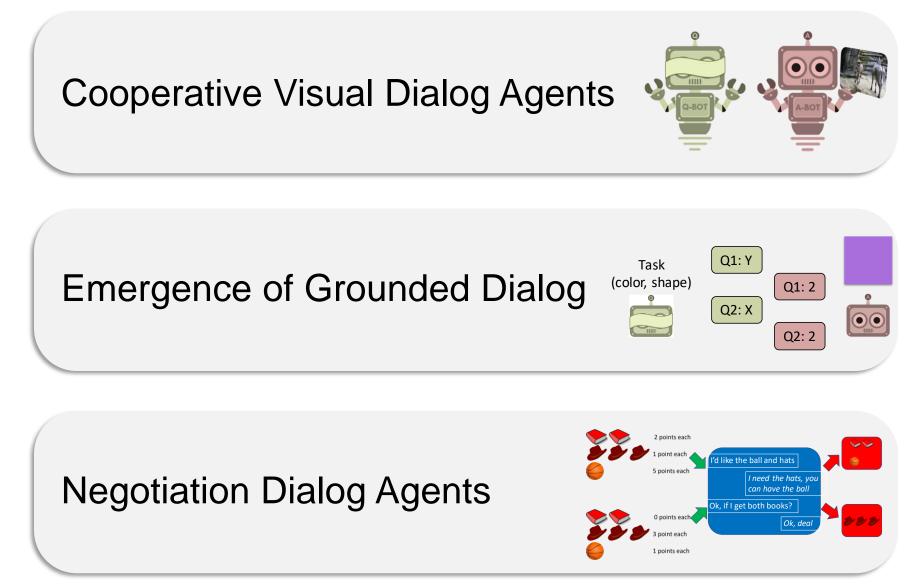
End-to-End Evaluation against SL negotiators





End-to-End Evaluation against Turkers

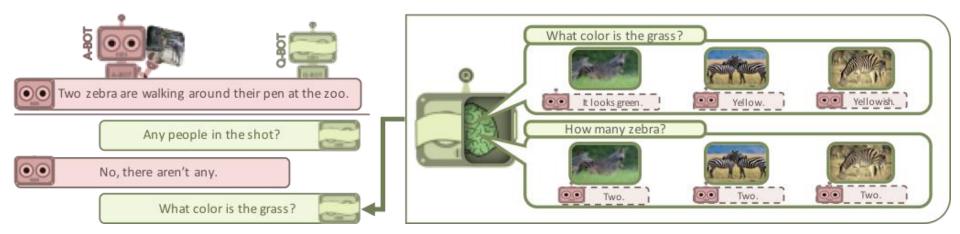
Slide Credit: Mike Lewis



Model can be deceptive to achieve its goals

Conclusion

- Negotiation is **useful** and **challenging**
- End-to-End approach trades cheaper data for difficult modelling
- Goal-based training and decoding improves over likelihood
- Model can generate meaningful language be be deceptive to achieve their goals


Outline

Sneak Peek:

Inner Dialog: Pragmatic Visual Dialog Agents that Rollout a Mental Model of their Interlocutors

Inner Dialog

What next?

- So far
 - Vision + Language
 - Captioning \rightarrow VQA \rightarrow Visual Dialog
- Interacting with an intelligent agent
 - Perceive + Communicate + Act
 - Vision + Language + Reinforcement Learning
 - Ok Google can you find my picture where I was wearing this red shirt? And order me a new one?

There is a cloud on the left side of the frame all the way at the top. The rest of the sky is clear.

What is located in the grass?

There is a tent on the right side sitting on the grass with a bear behind it on the left side.

What else is on the grass?

There is a little boy sitting with his legs straight on the right side of the tent

Is there anything else?

Yes, there is a red grill to the right of the bear and a little girl sitting on the right side of the tent

If the tent is on the right side there is no room for the kids? Is the tent on the right side of the picture?

I am so sorry the grill is on the left of the bear. Yes, the little boy is on the bottom right of the picture

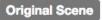
Where is the little girl?

He is in front of the tent. The tent is in the middle of the grass on the right side.

Is that all? Are we goo?

She is on the left side of the tent, she is crying with her legs straight

Great! Are we good?


Yes, we are good.

~ Fin. ~

Empty

(C) Dhruv Batra

Agents in Virtual Environments

AI2 Thor

SUNCG dataset

What next?

- So far
 - Vision + Language
 - Captioning \rightarrow VQA \rightarrow Visual Dialog
- Interacting with an intelligent agent
 - Perceive + Communicate + Act
 - Vision + Language + Reinforcement Learning
 - Ok Google can you find my picture where I was wearing this red shirt? And order me a new one?

What next?

- So far
 - Vision + Language
 - Captioning \rightarrow VQA \rightarrow Visual Dialog
- Interacting with an intelligent agent
 - Perceive + Communicate + Act
 - Vision + Language + Reinforcement Learning
 - Ok Google can you find my picture where I was wearing this red shirt? And order me a new one?
- Teaching with natural language
 - "No, not that shirt. This one."

ParlAI: A Dialog Research Software Platform

Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, Jason Weston

(Submitted on 18 May 2017)

We introduce ParlAI (pronounced "par-lay"), an open-source software platform for dialog research implemented in Python, available at this http URL Its goal is to provide a unified framework for training and testing of dialog models, including multitask training, and integration of Amazon Mechanical Turk for data collection, human evaluation, and online/reinforcement learning. Over 20 tasks are supported in the first release, including popular datasets such as SQuAD, bAbI tasks, MCTest, WikiQA, QACNN, QADailyMail, CBT, bAbI Dialog, Ubuntu, OpenSubtitles and VQA. Included are examples of training neural models with PyTorch and Lua Torch, including both batch and hogwild training of memory networks and attentive LSTMs.

QA datasets bAbl tasks MCTest SquAD, NewsQA, MS MARCO SimpleQuestions WebQuestions, WikiQA WikiMovies, MTurkWikiMovies MovieDD (Movie-Recommendations)	Sentence Completion QACNN QADailyMail CBT BookTest
Dialogue Goal-Oriented	Dialogue Chit-Chat
bAbl Dialog tasks	Ubuntu multiple-choice
Camrest	UbuntuGeneration
Dialog-based Language Learning	Movies SubReddit
MovieDD (QA,Recs dialogue)	Reddit
CommAl-env	Twitter

VQA/Visual Dialog VQA already in v1.0. Add your own dataset! Open source...

Machine Learning & Perception Group

Dhruv Batra Assistant Professor

> Postdoc Stefan Lee

(C) Dhruv Batra

Qing Sun

Abhishek Das

Ashwin Kalyan

Deshraj Yadav

Aishwarya Agrawal Ya

MS

Yash Goyal

Tejas Khot

Aroma Mahendru

Michael Cogswell

Akrit Mohapatra

Viraj Prabhu

Interns

Computer Vision Lab

Devi Parikh Assistant Professor

Xiao Lin Ph.D. Student

Arjun Chandrasekaran Ph.D. Student

Ramakrishna Vedantam Ph.D. Student

Peng Zhang Ph.D. Student

Jiasen Lu Ph.D. Student

Ram Prasaath Selvaraju Ph.D. Student

Ph.D. Student

Arijit (Arren) Ray M.S. Student

Thanks!