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People coloring a street on a college campus
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It was a great event! It brought families 
out, and the whole community together.
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Q. What are they coloring the street with?
A. Chalk



AI: What a nice picture! What event was 
this?
User: “Color College Avenue”. It was a lot of 
fun!
AI: I am sure it was! Do they do this every 
year?
User: I wish they would. I don’t think 
they’ve organized it again since 2012. 
…
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Aid visually-impaired users
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Peter just uploaded a picture 
from his vacation in Hawaii 

No, on a mountain 

Great, is he at the beach? 

…

Aid visually-impaired users
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Aid ‘situationally-impaired’ analysts

Yes, 127 instances logged on camera 

Did anyone enter this room last week? 

Were any of them carrying 
a black bag? 

…
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Natural language instructions for robots

Yes, in one room 

Is there smoke in any room around you? 

Go there and look for people 

…

Image Credit: Lockheed Martin; DARPA Robotics Challenge



Outline
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Visual Question Answering

Visual Dialog
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Outline
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Visual Question Answering

Visual Dialog
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Visual Question Answering (VQA)



What is the mustache 
made of?

17

Visual Question Answering (VQA)



What is the mustache 
made of?

AI System
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Visual Question Answering (VQA)



What is the mustache 
made of?

bananasAI System
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Visual Question Answering (VQA)



www.visualqa.org

Visual Question Answering (VQA)
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Does it appear to be rainy? 

Does this person have 20/20 vision? 

Is this person expecting company? 

What is just under the tree? 

How many slices of pizza are there? 

Is this a vegetarian pizza? 

What color are her eyes? 

What is the mustache made of? 

21

Visual Question Answering (VQA)
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VQA Dataset



>0.25 million images
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VQA Dataset



254,721 images (COCO)
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50,000 scenes
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>0.25 million images

>0.76 million questions
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VQA Dataset



Stump a smart robot! 
Ask a question that a human can answer,

but a smart robot probably can’t!
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Questions



>0.25 million images

>0.76 million questions

~10 million answers
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VQA Dataset

[Antol et al., ICCV 2015]



Papers using VQA
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VQA Challenge @ CVPR16



VQA Challenge @ CVPR16
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~ 30 teams

Winning entry (MCB)
Open-ended: 66%

Multiple-choice: 70%



The Power of Language Priors 

32Slide credit: Yash Goyal and Peng Zhang



A giraffe is standing in grass next to a tree

The Power of Language Priors 

33Slide credit: Yash Goyal and Peng Zhang



Is there a clock … ?

‘yes’ 98%

Is the man wearing 
glasses … ?

‘yes’ 94%

……

……

Are the lights on … ?

‘yes’ 85%

Do you see a … ?

‘yes’ 87%

……

……

34Slide credit: Yash Goyal and Peng Zhang

The Power of Language Priors 



What sport is … ?

How many … ?

‘2’ 39%

……‘tennis’ 41%

What animal is … ?

‘dog’ 35%
……

……

The Power of Language Priors 

35Slide credit: Yash Goyal and Peng Zhang

Is the man standing … ?

‘no’ 69% ……
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Balancing the VQA dataset
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Balancing the VQA dataset
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Balancing the VQA dataset
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Balancing the VQA dataset
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Balancing the VQA dataset



41

Balancing the VQA dataset
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Balancing the VQA dataset



VQA v2.0

• More balanced than VQA v1.0

– Entropy of answers increases by 56%

• Bigger than VQA v2.0

– ~1.8 times image-question pairs

43



Benchmarking SOTA VQA models

• SOTA VQA models

– Drop in performance by 7-8%

– Gain 1-2% back when re-trained on balanced 
dataset

• By answer types

– Biggest drop in performance in yes/no (10-12%)

– Biggest improvement gained by re-training in 
yes/no (3-4%) and number (2-3%)
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Trends
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0.15% 1.51% 7.03% 3.5%



VQA v2.0
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2nd VQA Challenge @ CVPR17!



47

Yash Goyal
(Virginia Tech)

Dhruv Batra
(Georgia Tech / FAIR)

Tejas Khot
(Virginia Tech)

Devi Parikh
(Georgia Tech / FAIR)

Doug Summers-Stay
(Army Research Lab)

Making the V in VQA Matter:
Elevating the Role of Image Understanding in 

Visual Question Answering (CVPR 2017)



(Another) problem with existing setup

Q: What color is the dog?

white
red
blue
green
yellow

Training 

Prior

Train Test

A: White

Q: What color is the dog?

A: Black

Prediction:

White

Slide credit: Aishwarya Agrawal



Q: What color is the dog?

Training 

Prior

Train Test

A: White

Q: What color is the dog?

A: Black

Prediction:

White
white
red
blue
green
yellow

(Another) problem with existing setup

Slide credit: Aishwarya Agrawal



Q: What color is the dog?

Training 

Prior

Train Test

A: White

Q: What color is the dog?

A: Black

Prediction:

White
white
red
blue
green
yellow

(Another) problem with existing setup

Slide credit: Aishwarya Agrawal



Q: Is the person wearing shorts?

Training 

Prior

Train Test

A: No

Q: Is the person wearing shorts?

A: Yes

Prediction:

Nono

female
woman

(Another) problem with existing setup

Slide credit: Aishwarya Agrawal



• Similar priors in train and test

• Memorization does not hurt as much

• Problematic for benchmarking progress

(Another) problem with existing setup

Slide credit: Aishwarya Agrawal



Meet VQA-CP!

• Visual Question Answering 
under Changing Priors

• A new split of the VQA v1.0 dataset 
(Antol et al., ICCV 2015)

Slide credit: Aishwarya Agrawal



VQA-CP Train Split VQA-CP Test Split

54Slide credit: Aishwarya Agrawal



Performance of VQA models on VQA-CP

31% drop

25% drop

29% drop

27% drop

(Antol et al. ICCV15)

(Andreas et al. CVPR16)

(Yang et al. CVPR16)

(Fukui et al. EMNLP16)

Slide credit: Aishwarya Agrawal



Glove

Image (I)

Question

(Q)

Qmain

VGG

Att Hop 1 Att Hop 2

Visual Concept Classifier (VCC)

Concepts 
grouped into 

clusters

Answer Cluster Predictor (ACP)
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fc
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Grounded-VQA (GVQA)

Slide credit: Aishwarya Agrawal
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C-VQA: Compositional VQA
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Outline
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Visual Dialog

Visual Question Answering







A man and a woman are holding umbrellas



A man and a woman are holding umbrellas

What color is his umbrella?



man

his



umbrella



A man and a woman are holding umbrellas

What color is his umbrella?



A man and a woman are holding umbrellas

What color is his umbrella?

His umbrella is black



A man and a woman are holding umbrellas

What color is his umbrella?

His umbrella is black

What about hers?



woman

her



umbrella

umbrella

hers



A man and a woman are holding umbrellas

What color is his umbrella?

What about hers?

His umbrella is black



A man and a woman are holding umbrellas

What color is his umbrella?

What about hers?

His umbrella is black

Hers is multi-colored



A man and a woman are holding umbrellas

What color is his umbrella?

What about hers?

How many other people are in the image?

Hers is multi-colored

His umbrella is black



man and a woman 

other people



A man and a woman are holding umbrellas

What color is his umbrella?

What about hers?

How many other people are in the image?

Hers is multi-colored

I think 3. They are occluded

His umbrella is black



A man and a woman are holding umbrellas

What color is his umbrella?

What about hers?

Hers is multi-colored

How many other people are in the image?

I think 3. They are occluded

How many are men?

His umbrella is black



other people

3. 

How many are men?



Visual Dialog: Task

• Given
– Image I

– History of human dialog
(Q1, A1), (Q2, A2), …, (Qt-1, At-1)

– Follow-up Question Qt

• Task
– Produce free-form 

natural language answer
At

81

Visual Dialogue



Visual Dialog: Evaluation Protocol

• Given
– Image I
– History of human dialog

(Q1, A1), (Q2, A2), …, (Qt-1, At-1)
– Follow-up Question Qt

– 100 Answer Options
• 50 answers from NN questions
• 30 popular answers
• 20 random answers

• Evaluation Task
– Rank the list of 100 options

• Accuracy/Error 
– mean-rank-of-GT, mean-reciprocal-rank

82

Visual Dialogue

Question: Do people look happy ?

GT: Not really
• Yes they do
• I can't tell 
• Not facing me
• Yes they look happy
• Yes I can only see 1 of their faces 

but she looks happy
• Not really but not unhappy either 
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VisDial Dataset

VisDial Dataset 
Live Two-Person Chat on Amazon Mechanical Turk

Questioner Answerer



(C) Dhruv Batra 
85

VisDial Dataset 
Live Two-Person Chat on Amazon Mechanical Turk



86



VisDial v0.9 Stats

>120k images (from COCO)

1 dialog/image

10 question-answer rounds/dialog

Total of >1.2 Million dialog QA pairs 
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visualdialog.org

(C) Dhruv Batra 
90

http://visualdialog.org/


Models for Visual Dialog
• Encoder

1. Late Fusion

2. Hierarchical 
Recurrent Encoder

3. Memory Network

• Decoder

1. Generative
o During training, 

maximizes LL of 
human response

o For evaluation, ranks 
options by LL scores

2. Discriminative
o Learn to rank 100 

options

95



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das



Visual Dialog Model #3

Memory Network Encoder
Slide credit: Abhishek Das
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Results

• Memory Network (generally) performs best

– 0.53 MRR / ~17 mean rank (Generative)

– 0.60 MRR / ~5.5 mean rank (Discriminative)

123Slide credit: Abhishek Das
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Q:  Is the bottle open?

A:  Yes

Q:  Red or white wine?

A:  Red

Q:  Is there only 1 glass?

A:  Yes

Q:  Any food?

A:  No

Q:  What color is the table?

A:  Brown

Q:  Is it in a restaurant?

A:  No

Q:  Is it in the kitchen?

A:  Yes

Slide credit: Abhishek Das

Results



Q:  Is the bottle open?

A:  Yes

Q:  Red or white wine?

A:  Red

Q:  Is there only 1 glass?

A:  Yes

Q:  Any food?

A:  No

Q:  What color is the table?

A:  Brown

Q:  Is it in a restaurant?

A:  No

Q:  Is it in the kitchen?

A:  Yes

Q:  What color is the building?

A:  Brown

Q: What color is the clock?

A:  Black and white

Q: Is it a digital or analog clock?

A:  Analog

Q:  What color are the numbers?

A:  Black

Q:  Are all of the numbers visible?

A:  Yes

Q:  Is it an outdoor view?

A:  Yes

Q:  Are there any people?

A:  No

Q:  Can you see other buildings?

A:  No

Slide credit: Abhishek Das

Results



Q:  What color is the cat?

A:  Orange and white

Q:  Is the cat on the floor?

A:  Yes

Q:  What is the cat on?

A:  I can’t tell

Q:  Can you see anything in the mirror?

A:  No, just the cat and the cat

Q:  Can you see a ceiling light?

A:  No

Q:  What color are the cat’s eyes?

A:  I can’t see the eyes

Q:  What color is the cat’s nose?

A:  Orange

Slide credit: Abhishek Das

Results



Q:  What color is the cat?

A:  Orange and white

Q:  Is the cat on the floor?

A:  Yes

Q:  What is the cat on?

A:  I can’t tell

Q:  Can you see anything in the mirror?

A:  No, just the cat and the cat

Q:  Can you see a ceiling light?

A:  No

Q:  What color are the cat’s eyes?

A:  I can’t see the eyes

Q:  What color is the cat’s nose?

A:  Orange

Slide credit: Abhishek Das

Results



Q:  What color is the cat?

A:  Orange and white

Q:  Is the cat on the floor?

A:  Yes

Q:  What is the cat on?

A:  I can’t tell

Q:  Can you see anything in the mirror?

A:  No, just the cat and the cat

Q:  Can you see a ceiling light?

A:  No

Q:  What color are the cat’s eyes?

A:  I can’t see the eyes

Q:  What color is the cat’s nose?

A:  Orange

Slide credit: Abhishek Das

Results



Q:  What color is the vase?

A:  White

Q:  Can you tell what kind of flowers?

A:  I can’t tell

Q:  Is there any water in the vase?

A:  Yes

Q:  How much water is there?

A:  A small amount

Q:  What is the vase on?

A:  Can’t tell

Q:  Does this look like someone’s home?

A:  Can’t tell

Slide credit: Abhishek Das

Results



Q:  What color is the vase?

A:  White

Q:  Can you tell what kind of flowers?

A:  I can’t tell

Q:  Is there any water in the vase?

A:  Yes

Q:  How much water is there?

A:  A small amount

Q:  What is the vase on?

A:  Can’t tell

Q:  Does this look like someone’s home?

A:  Can’t tell

Slide credit: Abhishek Das

Results



Visual Dialog (CVPR 2017)
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Slide credit: Jiasen Lu

Caption: a man and a dog on a motorcycle.

Q1:what is the 
man wearing ?

A1: green shirt 
and pants

Q3:how old is 
the man?

maybe in 
his 40s

𝑒𝑡

Discriminator

𝑓(𝑎𝑡
𝑔𝑡
)

𝑓(𝑎1
−)

𝑓(𝑎4
−)

𝑓(𝑎𝑁
−)

𝑓(𝑎6
−)

𝑓( ො𝑎𝑡)

…

Q2: what is he 
doing ?

A2: he 's on a 
motorcycle.

A3:

Deep metric learning

Image, Question, History

LSTM

𝑎𝑡
𝑔𝑡

𝑎1
−

𝑎𝑁
−

…

𝑓(𝑎𝑡
𝑔𝑡
)

𝑓(𝑎1
−)…

𝑓(𝑎𝑁
−)

HCIAE
Encoder

Generator

LSTM

Gumbel 
Sampler

ො𝑎𝑡

HCIAE
Encoder

𝑒𝑡

𝑓( ො𝑎𝑡)

𝑎𝑡
𝑔𝑡

: Ground truth answer

𝑎𝑁
−: Negative answer 𝑁

𝑒𝑡 : encoder feature 

𝑓(): embedding function

• Quantitative: 
• Ground truth response scores 

higher more often

• Qualitative: 
• Responses are more 

informative
• Responses are longer
• Responses are more diverse



Best of Both Worlds: Transferring 
Knowledge from Discriminative Learning to 

a Generative Visual Dialog Model (arXiv)
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Open directions

• Improve dialog agents via self-talk
– No additional human intervention

– Are these agents better at human-bot interaction?

• Domain adaptation via self-talk
– No need to collect a new dataset for each domain

• Dialog rollouts, future prediction, theory of 
mind, …

146



Conclusion
• Natural progression in Vision+Language

– Captioning  VQA  Visual Dialog

• VQA: Elevating the role of image understanding
– Balancing
– Changing priors
– Compositional

• Visual Dialog
– New AI task
– Challenges: Memory, history, reasoning over time
– VisDial dataset

• Live 2-person Chat on AMT
• 120k COCO images, 1 dialog/image, ~1.2 Million dialog QA pairs

– Visual Dialog Models (Neural Encoder-Decoders)
• Late Fusion, Hierarchical Recurrent Encoder, Memory Network 
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Thank you.



Visual Dialog: 
Towards AI agents that can see, talk, and act

Dhruv Batra 



Outline

2

Cooperative Visual Dialog Agents

Emergence of Grounded Dialog
Task

(color,	shape)

Q1:	Y

Q2:	X

Q1:	2

Q2:	2

Negotiation Dialog Agents
I’d	like	the	ball	and	hats

I	need	the	hats,	you	
can	have	the	ball

Ok,	if	I	get	both	books?

Ok,	deal



Learning Cooperative Visual Dialog Agents 

with Deep Reinforcement Learning
[ICCV ‘17]

Abhishek Das*
(Georgia Tech)
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Visual Dialog: Task

• Given

– Image I

– History of human dialog

(Q1, A1), (Q2, A2), …, (Qt-1, At-1)

– Follow-up Question Qt

• Task

– Produce free-form 

natural language answer

At

(C) Dhruv Batra 4

Visual Dialogue



Problems

• No goal

– Why are we talking?

• Agent not in control

– Artificially injected at every round into a human conversation

– Can’t steer conversation

– Doesn’t get to see its errors during training

• Learning equivalent utterances

– Many ways of answering the same question that should be 

treated equally, but aren’t

– Is log-likelihood of human response really a good metric?

(C) Dhruv Batra 5



Image Guessing Game

(C) Dhruv Batra 6Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 8

Q-Bot asks questions

is blindfolded

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 9

Q-Bot

asks questions

is blindfolded

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 10

asks questions

A-Bot answers questions
sees an image

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 11

asks questions

A-Bot
answers questions
sees an image

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 12

asks questions

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 13

asks questions

Slide Credit: Abhishek Das



Image Guessing Game

(C) Dhruv Batra 14

asks questions

Slide Credit: Abhishek Das



RL for Cooperative Dialog Agents 

• Agents: (Q-bot, A-bot)

• Environment: Image

• Action: 

– Q-bot: question (symbol sequence) 

– A-bot: answer (symbol sequence)

– Q-bot: image regression 

• State

– Q-bot: 

– A-bot: 

(C) Dhruv Batra 15

qt Any people in the shot?

at No, there aren’t any.



RL for Cooperative Dialog Agents 

(C) Dhruv Batra 16

• Action: 

– Q-bot: question (symbol sequence) 

– A-bot: answer (symbol sequence)

– Q-bot: image regression 

• State

– Q-bot: 

– A-bot: 

qt Any people in the shot?

at No, there aren’t any.



RL for Cooperative Dialog Agents 

• Action: 

– Q-bot: question (symbol sequence) 

– A-bot: answer (symbol sequence)

– Q-bot: image regression 

• State

– Q-bot: 

– A-bot: 

• Policy

• Reward

(C) Dhruv Batra 17

qt Any people in the shot?

at No, there aren’t any.

Q-bot A-bot



Policy Networks

(C) Dhruv Batra 18

A-BOT

Q-Bot A-Bot

Slide Credit: Abhishek Das



Policy Networks

A-BotQ-Bot

Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 20Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 21Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 22Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 23Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 24Slide Credit: Abhishek Das



A-BotQ-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 26Slide Credit: Abhishek Das



A-BotQ-Bot

Policy Networks

(C) Dhruv Batra 27Slide Credit: Abhishek Das



A-Bot
VGG-16

Q-Bot

Policy Networks

(C) Dhruv Batra 28Slide Credit: Abhishek Das



A-BotQ-Bot

Policy Networks

(C) Dhruv Batra 29Slide Credit: Abhishek Das



A-Bot

Policy Networks

(C) Dhruv Batra 30

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Fact

Embedding

Policy Networks

(C) Dhruv Batra 31

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Is this zoo?

Yes

Policy Networks

(C) Dhruv Batra 32

Fact

Embedding

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Is this zoo?

Yes

How many 

zebra?

Two

Policy Networks

(C) Dhruv Batra 33

Fact

Embedding

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Is this zoo?

Yes

How many 

zebra?

Two

Policy Networks
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Fact

Embedding

Q-Bot History

Encoder

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Is this zoo?

Yes

How many 

zebra?

Two

Policy Networks

(C) Dhruv Batra 35

Fact

Embedding

Q-Bot History

Encoder

Slide Credit: Abhishek Das



A-Bot

Two zebra 

are walking 

around 

their pen at  

the zoo.

Is this zoo?

Yes

How many 

zebra?

Two

Policy Networks
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Fact

Embedding

Q-Bot History

Encoder

Slide Credit: Abhishek Das



A-Bot

Policy Networks
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Q-Bot

Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 40Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 41Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 42Slide Credit: Abhishek Das



REINFORCE Gradients

Policy Gradients

(C) Dhruv Batra 44Slide Credit: Abhishek Das



Turing Test
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SL vs RL

(C) Dhruv Batra 52

SL Agents RL Agents



Image Guessing
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Concurrent Work

(C) Dhruv Batra 55



Outline
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Cooperative Visual Dialog Agents

Emergence of Grounded Dialog
Task

(color,	shape)

Q1:	Y

Q2:	X

Q1:	2

Q2:	2

Negotiation Dialog Agents
I’d	like	the	ball	and	hats

I	need	the	hats,	you	
can	have	the	ball

Ok,	if	I	get	both	books?

Ok,	deal



Natural Language Does Not Emerge 

'Naturally' in Multi-Agent Dialog
[EMNLP ‘17]
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(CMU)

José Moura
(CMU)

Dhruv Batra
(Georgia Tech)

Stefan Lee
(Virginia Tech)



Toy World

• Sanity check

• Simple, synthetic world

– Instances - (shape, color, style)

– Total of 43(64) instances

– Example instances:

(triangle, purple, filled) (square, blue, solid) (circle, blue, dotted)

color

triangle

shape

square

circle

star

blue

green

red

purple

style

filled

dashed

dotted

solid



Task & Talk
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• Task (G)

• Inquire pair of attributes

• (color, shape), (shape, color)

• Talk

• Single token per round

• Two rounds

• Q-bot guesses a pair

• Reward : +1 / -1

• Prediction order matters!

Q1: Y

Q2: Z

A1: 2

A2: 3

Guess: (purple, square)

Task
(color, shape)

Instance
(purple, square, filled)

Get reward!



Emergence of Grounded Dialog
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T: (style, color)
P: (solid, green)

X 3 Z 4

T: (style, shape)
P: (filled, triangle)

Y 1 Z 2

color? green style? solid

shape? triangle style? filled



Emergence of Grounded Dialog

• Compositional grounding

• Predict dialog for unseen instances

(C) Dhruv Batra 65

Task
(color, shape)

Q1: Y

Q2: X

Q1: 2

Q2: 2



Summary of findings

Setting

Vocabula

ry
Memory Generalizati

on
Characteristics

|𝑉𝑄| |𝑉𝐴| Q-bot A-bot

A. Over-

complete
64 64 Yes Yes 25.6 %

• Non-compositional language

• Q-bot insignificant

• Inconsistent A-bot grounding

• Poor generalization

B. Attribute 3 12 Yes Yes 38.5 %

• Non-compositional language

• Q-bot uses one round to 

convey task

• Inconsistent A-bot grounding

• Poor generalization

C. Minimal 3 4 Yes No 74.4 %

• Compositional language

• Q-bot uses both rounds

• Consistent A-bot grounding

• Good generalization

66



Deep Multi-Agent Communication
• NIPS ‘16

[DeepMind] Learning – to Communicate with Deep Multi-Agent Reinforcement Learning. 
Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, Shimon Whiteson. NIPS ‘16. 

[NYU / FAIR] Learning – Multiagent Communication with Backpropagation. Sainbayar
Sukhbaatar, Arthur Szlam, Rob Fergus. NIPS ‘16.

Arxiv• ‘17
– [OpenAI] Emergence of Grounded Compositional Language in Multi-Agent 

Populations. Igor Mordatch, Pieter Abbeel. 

[FAIR] Multi– -Agent Cooperation and the Emergence of (Natural) Language. Angeliki
Lazaridou, Alexander Peysakhovich, Marco Baroni. 

Learning – to play guess who? and inventing a grounded language as a consequence. 
Emilio Jorge, Mikael Kågebäck, and Emil Gustavsson. 

Emergence – of language with multi-agent games: Learning to communicate with 
sequences of symbols. Serhii Havrylov and Ivan Titov. 

[Berkeley] Translating – neuralese. Jacob Andreas, Anca Dragan and Dan Klein. ACL 
2017.
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Outline
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Cooperative Visual Dialog Agents

Emergence of Grounded Dialog
Task

(color,	shape)

Q1:	Y

Q2:	X

Q1:	2

Q2:	2

Negotiation Dialog Agents
I’d	like	the	ball	and	hats

I	need	the	hats,	you	
can	have	the	ball

Ok,	if	I	get	both	books?

Ok,	deal



Deal or No Deal? End-to-End Learning for 

Negotiation Dialogues
[EMNLP ‘17]

Mike Lewis
(FAIR)

Denis Yarats
(FAIR)

Dhruv Batra
(Georgia Tech)

Yann Dauphin 
(FAIR)

Devi Parikh
(Georgia Tech)



Why Negotiation?

CooperativeAdversarial Negotiation

Slide Credit: Mike Lewis



Why Negotiation?

Negotiation useful when:

• Agents have different goals

• Not all can be achieved at 

once

• (all the time)

Slide Credit: Mike Lewis



Why Negotiation?

• Both linguistic and reasoning problem

• Interpret multiple sentences, and generate new 

message

• Plan ahead, make proposals, counter-offers, bluffing, 

lying, compromising

Slide Credit: Mike Lewis



Framework

Agent 2 Goals

Agent 1 Goals

Both agents given reward function, 

can’t observe each other’s

Dialog

Dialogue until they agree

on common action

Agent 1 Output

Agent 2 Output

Both agents independently

select agreement

If agents agree, they 

are given reward

Agent 1 Reward

Agent 2 Reward

Slide Credit: Mike Lewis



Object Division Task

Agents shown same set of object 

but different values for each

Asked to agree how to divide 

objects between them

2 points each

1 point each

5 points each

Slide Credit: Mike Lewis



Multi-Issue Bargaining

I’d like the ball and hats

I need the hats, you 

can have the ball

Ok, if I get both books?

Ok, deal

Slide Credit: Mike Lewis



Data Collection on AMT

Slide Credit: Mike Lewis



Dataset

• ~6k dialogs

• Average 6.6 

turns/dialog

• Average 7.6 words/turn

• 80% agreed solutions

• 77% Pareto Optimal 

solutions 

Slide Credit: Mike Lewis



<write> Give me both books <read> ok deal

Language model predicts both agent’s 

tokens

Read input at each 

timestep

Input Encoder

Attention over complete 

dialogue

Separate classifier for 

each output

Output Decoder

Baseline Model

Slide Credit: Mike Lewis



SL-Pretraining

• Train to maximize 

likelihood of 

human-human 

dialogues

• Decode by 

sampling likely 

messages

Slide Credit: Mike Lewis



SL-Pretraining

• Model knows 

nothing about task, 

just tries to imitate 

human actions

• Agrees too easily

• Can’t go beyond 

human strategies

Slide Credit: Mike Lewis



Goal-based RL-Finetuning

• Very sensitive to hyperparameters

Generate dialogues •
using self-play

Backpropagate•
reward using 
REINFORCE

Interleave with •
supervised updates

reward = 9 points

Slide Credit: Mike Lewis



Dialog Rollouts: 

Goal-based Decoding

• Dialog rollouts use model to simulate remainder of 

conversation

• Average scores to estimate future reward

Slide Credit: Mike Lewis



4.8

37

5.1

48

0

46

0

10

20

30

40

50

60

Perplexity Average Rank

Likelihood Reinforce

Supervised learning 

gives most “human 

like” dialog

Intrinsic Evaluation

Slide Credit: Mike Lewis
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End-to-End Evaluation 

against SL negotiators

Slide Credit: Mike Lewis



End-to-End Evaluation 

against Turkers
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Slide Credit: Mike Lewis
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I can not make that deal. I need the ball 

and book, you can have the hats

Sorry, I want the book and 

one hat

How about I give you the book and 

I keep the rest

Can I have the hats 

and book?

I need the book and 

hats

I need the book and 2 

hats

No deal then

No deal doesn’t work for 

me sorry

Ok deal

Model generates meaningful novel language

6
1
0

3
1
3

Slide Credit: Mike Lewis
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That would work for me. I can take the ball 

and 1 hat

I would like the ball and 

two hats

I need the book and 3 

hats

2
1
4

0
10
0

Model can be deceptive to achieve its goals

Slide Credit: Mike Lewis



Conclusion

• Negotiation is useful and challenging

• End-to-End approach trades cheaper data for difficult 

modelling

• Goal-based training and decoding improves over 

likelihood 

• Model can generate meaningful language be be 

deceptive to achieve their goals

Slide Credit: Mike Lewis
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Cooperative Visual Dialog Agents

Emergence of Grounded Dialog
Task

(color,	shape)

Q1:	Y

Q2:	X

Q1:	2

Q2:	2

Negotiation Dialog Agents
I’d	like	the	ball	and	hats

I	need	the	hats,	you	
can	have	the	ball

Ok,	if	I	get	both	books?

Ok,	deal



Sneak Peek:

Inner Dialog:

Pragmatic Visual Dialog Agents that 

Rollout a Mental Model of their Interlocutors 
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Inner Dialog
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What next?

• So far

– Vision + Language

• Captioning  VQA  Visual Dialog

• Interacting with an intelligent agent

– Perceive + Communicate + Act

– Vision + Language + Reinforcement Learning

– Ok Google – can you find my picture where I was wearing this 

red shirt? And order me a new one?
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Agents in Virtual Environments
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AI2 Thor



What next?

• So far

– Vision + Language

• Captioning  VQA  Visual Dialog

• Interacting with an intelligent agent

– Perceive + Communicate + Act

– Vision + Language + Reinforcement Learning

– Ok Google – can you find my picture where I was wearing this 

red shirt? And order me a new one?
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What next?

• So far

– Vision + Language

• Captioning  VQA  Visual Dialog

• Interacting with an intelligent agent

– Perceive + Communicate + Act

– Vision + Language + Reinforcement Learning

– Ok Google – can you find my picture where I was wearing this 

red shirt? And order me a new one?

• Teaching with natural language

– ”No, not that shirt. This one.”
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Computer Vision Lab
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Thanks!
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