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Background

Agent

Environment

Action, 𝑎State, 𝑠 Reward, 𝑟

Policy: Decision rule 𝑠 → 𝑎



Notation

• Policy, 𝜋
𝜋 𝑎 𝑠 = Pr(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠)

• History:
𝐻 = 𝑆1, 𝐴1, 𝑅1, 𝑆2, 𝐴2, 𝑅2, … , 𝑆𝐿 , 𝐴𝐿 , 𝑅𝐿

• Historical data:
𝐷 = 𝐻1, 𝐻2, … , 𝐻𝑛

• Historical data from behavior policy, 𝜋b
• Objective: 

𝐽 𝜋 = 𝐄 σ𝑡=1
𝐿 𝛾𝑡𝑅𝑡 𝜋

Agent

Environment

Action, 𝑎

State, 𝑠 Reward, 𝑟



Background

Agent

Environment

Action, 𝑎

State, 𝑠

Reward, 𝑟

Policy: Decision rule 𝑠 → 𝑎

Sensors

Observation, 𝑜



Potential Application: Digital Marketing



Potential Application: Intelligent Tutoring 
Systems



Potential Application: Functional Electrical 
Stimulation



Potential Application: Diabetes Treatment

Blood Glucose
(sugar)

Eat Carbohydrates Release Insulin
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Potential Application: Diabetes Treatment

Blood Glucose
(sugar)

Eat Carbohydrates Release Insulin

Hypoglycemia

Hyperglycemia



Potential Application: Diabetes Treatment

injection =
blood glucose − target blood glucose

𝐶𝐹
+
meal size

𝐶𝑅



Potential Application: Diabetes Treatment

Intelligent Diabetes Management



Motivation for Safe Reinforcement Learning

• If you deploy an existing reinforcement learning algorithm to one of 
these problems, do you have confidence that the policy that it 
produces will be better than the current policy?

vs.



Learning Curves are Deceptive

• … after billions of episodes
• Millions (billions?) of episodes of parameter optimization

• Human intuition from past experience with these domains

• Billions of episodes of experimental design
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What property should a safe algorithm have?

• Guaranteed to work on the first try
• “I guarantee that with probability at least 1 − 𝛿, I will not change your policy 

to one that is worse than the current policy.”

• You get to choose 𝛿

• This guarantee is not contingent on the tuning of any hyperparameters

Pr 𝐽 𝜋 ≥ 𝐽 𝜋𝑏 ≥ 1 − 𝛿

Historical Data, 𝐷

Probability, 1 − 𝛿

New policy 𝜋, or 
No Solution Found



Limitations of the Safe RL Setting

• Assumes that an initial policy is available

• Often assumes that the initial policy is known

• Often assumes that the initial policy is stochastic

• Batch setting



Standard RL vs Safe RL
Expected Return

Episodes

𝐽(initial policy)

y

Standard

Safe: Pr 𝐽 𝜋 ≥ 𝐽 𝜋𝑏 ≥ 1 − 𝛿



Other Definitions of “Safe”



Other Definitions of “Safe”
Sa

fe
 R

L Optimization 
Criterion

Worst Case 
Criterion

Risk-Sensitive 
Criterion

Exploration 
Process

External 
Knowledge

Teacher Advice



• Expected return:
𝐽 𝜋 = 𝐄 σ𝑡=1

𝐿 𝛾𝑡𝑅𝑡 𝜋

• Which policy is better if I am a casino?

• Which policy is better if I am a doctor?

Risk-Sensitive Criterion

Return, σ𝑡=1
𝐿 𝛾𝑡𝑅𝑡



Risk-Sensitive Criterion

• Idea: Change our objective to minimize a notion of risk
• Penalize variance: 𝐽 𝜋 = 𝐄 σ𝑡=1

𝐿 𝛾𝑡𝑅𝑡 𝜋 − 𝜆Var σ𝑡=1
𝐿 𝛾𝑡𝑅𝑡 𝜋

• Maximize Value at Risk (VaR), Conditional Value at Risk (CVaR),  or another 
robust objective 



Benefits and Limitations of Changing 
Objectives
• For some applications a risk-sensitive objective is more appropriate

• Changing the objective does not address our motivation



Another notion of safety



Another Definition of Safety



Another Definition of Safety



Another Definition of Safety

• Probably Approximately Correct (PAC) RL
• Guarantee that with probability at least 1 − 𝛿 the policy (or 𝑞-function) will 

be within 𝜖 of optimal after 𝑛 episodes
• Typically an equation is given for 𝑛 in terms of the number of states and actions, the 

horizon, 𝐿, and both 𝜖 and 𝛿

Strong GuaranteeWeak Guarantee

Asymptotic convergence
(expected return or risk-sensitive)

PAC

“Safe”
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Off-Policy Policy Evaluation
(OPE)
• Given the historical data, 𝐷, produced by a behavior policy, 𝜋𝑏
• Given a new policy, which we call the evaluation policy, 𝜋𝑒
• Predict the performance, 𝐽 𝜋𝑒 , of the evaluation policy

• Do not deploy 𝜋𝑒 since doing so could be costly or dangerous

Historical Data, 𝐷

Proposed Policy, 𝜋𝑒
Estimate of 𝐽(𝜋𝑒)



High Confidence Off-Policy Policy Evaluation
(HCOPE)
• Given the historical data, 𝐷, produced by the behavior policy, 𝜋𝑏
• Given a new policy, which we call the evaluation policy, 𝜋𝑒
• Given a probability, 1 − 𝛿

• Lower bound the performance, 𝐽 𝜋𝑒 , of the evaluation policy with 
probability 1 − 𝛿

• Do not deploy 𝜋𝑒 since doing so could be costly or dangerous

Historical Data, 𝐷

Proposed Policy, 𝜋𝑒
1 − 𝛿 confidence lower 
bound on 𝐽(𝜋𝑒)

Probability, 1 − 𝛿



Safe Policy Improvement (SPI)

• Given the historical data, 𝐷, produced by the behavior policy, 𝜋𝑏
• Given a probability, 1 − 𝛿

• Produce a policy, 𝜋, that we predict maximizes 𝐽 𝜋 and which 
satisfies:

Pr 𝐽 𝜋 ≥ 𝐽 𝜋𝑏 ≥ 1 − 𝛿

Historical Data, 𝐷

Probability, 1 − 𝛿

New policy 𝜋, or 
No Solution Found
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Importance Sampling (Intuition)

Probability of history

Evaluation Policy, 𝜋e
Behavior Policy, 𝜋b

መ𝐽 𝜋𝑒 =
1

𝑛


𝑖=1

𝑛



𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖መ𝐽 𝜋e =

1

𝑛


𝑖=1

𝑛

𝑤𝑖

𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖
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• Reminder: 
• History, 𝐻 = 𝑆1, 𝐴1, 𝑅1, 𝑆2, 𝐴2, 𝑅2, … , 𝑆𝐿 , 𝐴𝐿, 𝑅𝐿
• Objective, 𝐽 𝜋e = 𝐄 σ𝑡=1

𝐿 𝛾𝑡𝑅𝑡 𝜋e

Importance weighted return



Importance Sampling (Derivation)

• Let 𝑋 be a random variable with probability mass function (PMF) 𝑝
• 𝑋 is a history generated by the evaluation policy

• Let 𝑌 be a random variable with PMF 𝑞 and the same range as 𝑋
• 𝑌 is a history generated by the behavior policy

• Let 𝑓 be a function
• 𝑓 𝑋 is the return of the history 𝑋

• We want to estimate 𝐄 𝑓(𝑋) given samples of 𝑌
• Estimate the expected return if trajectories are generated by the evaluation 

policy given trajectories generated by the behavior policy

• Let 𝑃 = supp 𝑝 , 𝑄 = supp(𝑞), and 𝐹 = supp(𝑓)



Importance Sampling (Derivation)

• Given one sample, 𝑌, the importance sampling estimate of 𝐄𝑝 𝑓 𝑋 is:

IS 𝑌 =
𝑝 𝑌

𝑞 𝑌
𝑓 𝑌

𝐄
𝑝(𝑌)

𝑞(𝑌)
𝑓(𝑌) = 

𝑦∈𝑄

𝑞(𝑦)
𝑝(𝑦)

𝑞(𝑦)
𝑓(𝑦) = 

𝑥∈𝑄

𝑞(𝑥)
𝑝(𝑥)

𝑞(𝑥)
𝑓(𝑥)

= 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥) − 

𝑥∈𝑃∩ ത𝑄

𝑝 𝑥 𝑓 𝑥

= 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥) + 

𝑥∈ ത𝑃∩𝑄

𝑝(𝑥) 𝑓(𝑥) − 

𝑥∈𝑃∩ ത𝑄

𝑝 𝑥 𝑓 𝑥



Importance Sampling (Derivation)

• Assume 𝑃 ⊆ 𝑄 (can relax assumption to 𝑃 ⊆ 𝑄 ∪ ത𝐹)

• Importance sampling gives an unbiased estimator of 𝐄 𝑓 𝑋

𝐄
𝑝(𝑌)

𝑞(𝑌)
𝑓(𝑌) = 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥) − 

𝑥∈𝑃∩ ത𝑄

𝑝 𝑥 𝑓 𝑥

= 𝐄 𝑓 𝑋

= 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥)



Importance Sampling (Derivation)

• Assume 𝑓 𝑥 ≥ 0 for all 𝑥

• Importance sampling gives a negative-bias estimator of 𝐄 𝑓 𝑋

𝑬
𝑝(𝑌)

𝑞(𝑌)
𝑓(𝑌) = 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥) − 

𝑥∈𝑃∩ ത𝑄

𝑝 𝑥 𝑓 𝑥

≤ 

𝑥∈𝑃

𝑝(𝑥) 𝑓(𝑥)

= 𝐄 𝑓 𝑋



Importance Sampling for Reinforcement 
Learning
• 𝑋 ← 𝐻 produced by 𝜋𝑒
• 𝑌 ← 𝐻 produced by 𝜋𝑏
• 𝑝 ← Pr(⋅ |𝜋𝑒)

• 𝑞 ← Pr ⋅ 𝜋𝑏
• 𝑓 𝐻 = σ𝑡=1

𝐿 𝛾𝑡𝑅𝑡

• 𝐄 𝑓 𝑋 ← 𝐽 𝜋𝑒

• IS 𝑌 =
𝑝 𝑌

𝑞 𝑌
𝑓 𝑌

• Assume either:
• Support of 𝜋𝑒 is a subset of the 

support of 𝜋𝑏
• Returns are non-negative

• Importance sampling estimator from one 
history, 𝐻 ~ 𝜋𝑏:

IS 𝐻 =
Pr 𝐻 𝜋𝑒
Pr 𝐻 𝜋𝑏



𝑡=1

𝐿

𝛾𝑡𝑅𝑡

• IS(𝐻) is an unbiased estimate of 𝐽 𝜋𝑒
• Estimate from 𝐷:

IS 𝐷 =
1

𝑛


𝑖=1

𝑛

IS 𝐻𝑖

=
1

𝑛


𝑖=1

𝑛
Pr 𝐻 𝜋𝑒
Pr 𝐻 𝜋𝑏



𝑡=1

𝐿

𝛾𝑡𝑅𝑡



Computing the Importance Weight
Pr 𝐻 𝜋𝑒
Pr 𝐻 𝜋𝑏

=
Pr 𝑆1 𝜋𝑒 𝐴1 𝑆1 Pr 𝑅1, 𝑆2 𝑆1, 𝐴1 𝜋𝑒 𝐴2 𝑆2 Pr(𝑅_2,𝑆_3|𝑆2,𝐴2)…

Pr 𝑆1 𝜋𝑏 𝐴1 𝑆1 Pr 𝑅1, 𝑆2 𝑆1, 𝐴1 𝜋𝑏 𝐴2 𝑆2 Pr(𝑅_2,𝑆_3|𝑆2,𝐴2)…

=
𝜋𝑒 𝐴1 𝑆1 𝜋𝑒 𝐴2 𝑆2 …

𝜋𝑏 𝐴1 𝑆1 𝜋𝑏 𝐴2 𝑆2 …

= ς𝑡=1
𝐿 𝜋𝑒 𝐴𝑡 𝑆𝑡

𝜋𝑏 𝐴𝑡 𝑆𝑡



Importance Sampling for Reinforcement 
Learning

IS 𝐷 =
1

𝑛


𝑖=1

𝑛
Pr 𝐻 𝜋𝑒
Pr 𝐻 𝜋𝑏



𝑡=1

𝐿

𝛾𝑡𝑅𝑡

=
1

𝑛


𝑖=1

𝑛

ෑ

𝑡=1

𝐿
𝜋𝑒 𝐴𝑡

𝑖 𝑆𝑡
𝑖

𝜋𝑏 𝐴𝑡
𝑖 𝑆𝑡

𝑖


𝑡=1

𝐿

𝛾𝑡𝑅𝑡



Per-Decision Importance Sampling
• Use importance sampling to estimate 𝐄 𝑅𝑡|𝜋𝑒 independently for each 𝑡

IS𝑡 𝐷 =
1

𝑛


𝑖=1

𝑛
Pr 𝐻𝑡

𝑖 𝜋𝑒

Pr 𝐻𝑡
𝑖|𝜋𝑏

𝑅𝑡
𝑖

=
1

𝑛


𝑖=1

𝑛

ෑ

𝑗=1

𝑡
𝜋e 𝐴𝑗

𝑖 𝑆𝑗
𝑖

𝜋b 𝐴𝑗
𝑖 𝑆𝑗

𝑖
𝑅𝑡
𝑖

PDIS 𝐷 =

𝑡=1

𝐿

𝛾𝑡IS𝑡 𝐷 =

𝑡=1

𝐿

𝛾𝑡
1

𝑛


𝑖=1

𝑛

ෑ

𝑗=1

𝑡
𝜋e 𝐴𝑗

𝑖 𝑆𝑗
𝑖

𝜋b 𝐴𝑗
𝑖 𝑆𝑗

𝑖
𝑅𝑡
𝑖



Importance Sampling Range / Variance

• What is the range of the importance sampling estimator?

IS 𝐷 =
1

𝑛


𝑖=1

𝑛

ෑ

𝑡=1

𝐿
𝜋e 𝐴𝑡

𝑖 𝑆𝑡
𝑖

𝜋b 𝐴𝑡
𝑖 𝑆𝑡

𝑖


𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖

• Mountain car with mediocre behavior policy, 𝐿 ≈ 1000

•
𝜋𝑒 𝑎 𝑠
𝜋𝑏 𝑎 𝑠

∈ 0, 2.0 ,   σ𝑡=1
𝐿 𝛾𝑡𝑟𝑡 ∈ 0,1

• IS 𝐷 ∈ 0,21000

• The importance sampling estimator may be unbiased, but it has high 
variance.
• Particularly when 𝜋𝑒 and 𝜋𝑏 are quite different

• MSE = Bias2 + Var,    𝐄 IS 𝐷 − 𝐽 𝜋𝑒
2
= 𝐄 IS 𝐷 − 𝐽 𝜋𝑒

2
+ Var IS(𝐷)



Importance Sampling (More Intuition)

• What value does the IS estimator take in practice if 𝜋𝑒 and 𝜋𝑏 are 
very different?

IS 𝐷 =
1

𝑛


𝑖=1

𝑛
Pr 𝐻𝑖 𝜋𝑒
Pr 𝐻𝑖|𝜋𝑏

Return(𝐻𝑖)

• IS 𝐷 ≈ 0

• As 𝑛 (the number of histories in 𝐷) increases, IS 𝐷 tends towards 
𝐽 𝜋𝑒
• Formally, IS 𝐷 is a strongly consistent estimator of 𝐽 𝜋𝑒

• IS 𝐷 converges almost surely to 𝐽 𝜋𝑒 as 𝑛 → ∞

• Pr lim
𝑛→∞

𝐼𝑆(𝐷) = 𝐽 𝜋𝑒 = 1



An Idea

• Recall that MSE = Bias2 + Var

• Bias(IS) = 0

• Var(IS) = Huge

• Can we make a new importance sampling estimator that has some 
bias, but drastically lower variance?
• Perhaps make 𝐄 new estimator = 𝐽 𝜋𝑏 when there is little data

• As we gather more data, have the expected value converge to 𝐽 𝜋𝑒
• The new estimator should remain strongly consistent



Weighted Importance Sampling

𝑤𝑖 =ෑ

𝑡=1

𝐿
𝜋𝑒 𝐴𝑡

𝑖 𝑆𝑡
𝑖

𝜋𝑏 𝐴𝑡
𝑖 𝑆𝑡

𝑖

IS 𝐷 =
1

𝑛


𝑖=1

𝑛

𝑤𝑖

𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖 =

𝑖=1

𝑛
𝑤𝑖

𝑛


𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖

WIS 𝐷 =

𝑖=1

𝑛
𝑤𝑖

σ𝑗=1
𝑛 𝑤𝑗



𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖



Weighted Importance Sampling

WIS 𝐷 =

𝑖=1

𝑛
𝑤𝑖

σ𝑗=1
𝑛 𝑤𝑗



𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖

• What if 𝑛 = 1?

WIS 𝐻 =

𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖

• 𝐄 𝑤𝑖 = 𝐄
𝑝 𝑌

𝑞 𝑌
= σ𝑦 𝑞 𝑦

𝑝(𝑦)

𝑞(𝑦)
= σ𝑦 𝑝 𝑦 = 1

• σ𝑗=1
𝑛 𝑤𝑗 → 𝑛 almost surely

• WIS acts like the Monte Carlo estimator of 𝐽 𝜋𝑏 with little data and IS(𝐷) with lots 
of data



Off-Policy Policy Evaluation (OPE) Overview
• Importance Sampling (IS)

• Per-Decision Importance Sampling (PDIS)

• Weighted Importance Sampling (WIS)

• Others
• Weighted Per-Decision Importance Sampling (WPDIS or CWPDIS)

• Importance sampling with unequal support (US)

• Model-based estimators (Direct Method / Indirect Method / Approximate 
Model)

• Doubly robust importance sampling

• Weighted doubly robust importance sampling

• Importance Sampling (IS) + Time Series Prediction (TSP)

• MAGIC (Model And Guided Importance sampling Combined)



Off-Policy Policy Evaluation (OPE) Examples
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High confidence off-policy policy evaluation 
(HCOPE)

Historical Data, 𝐷

Proposed Policy, 𝜋𝑒
1 − 𝛿 confidence lower 
bound on 𝐽(𝜋𝑒)

Probability, 1 − 𝛿



• Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent identically distributed random 
variables such that 𝑋i ∈ [0, 𝑏]

• Then with probability at least 1 − 𝛿:

𝐄 𝑋𝑖 ≥
1

𝑛


𝑖=1

𝑛

𝑋𝑖 −𝑏
ln ൗ1 𝛿

2𝑛

Hoeffding’s Inequality

Math Slide 3/3

1

𝑛


𝑖=1

𝑛

𝑤𝑖

𝑡=1

𝐿

𝛾𝑡𝑅𝑡
𝑖



• Example: Mountain Car
• 𝐽 𝜋𝑒 = 0.19 ∈ [0,1]

• 𝑛 = 100,000

• Lower bound from Hoeffding’s inequality:

−5,831,000

Applying Hoeffding’s Inequality



What went wrong?

• Recall: IS 𝐷 ∈ 0,21000

• 𝑏 = 21000

𝐄 𝑋𝑖 ≥
1

𝑛


𝑖=1

𝑛

𝑋𝑖 −𝑏
ln ൗ1 𝛿

2𝑛



Applying Other Concentration Inequalities

Actual Hoeffding Maurer & Pontil Anderson & Massart CUT Inequality

0.19 -5,831,000 -129,703 0.055 0.154

See “High Confidence Off-Policy Policy Evaluation”, AAAI 2015 for how to select 𝑐𝑖



Approximate Confidence Intervals: 𝑡-Test

• If  
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 is normally distributed, then by Student’s 𝑡-test, with 

probability at least 1 − 𝛿:

𝐄 𝑋𝑖 ≥
1

𝑛


𝑖=1

𝑛

𝑋𝑖 −
𝜎

𝑛
𝑡1−𝛿,𝑛−1

where 𝜎 is the sample standard deviation of 𝑋1, … , 𝑋𝑛 with Bessel’s 
correction.

• By the central limit theorem, 
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 is approximately normally 

distributed

• If rewards non-negative then the 𝑡-test tends to be conservative.



Approximate Confidence Intervals: Bootstrap

• Efron’s bootstrap, not TD’s bootstrap

• Resample 𝑛 samples from 𝑋1, … , 𝑋𝑛 with replacement to create a 
new data set, 𝐷1

• Repeat this process 𝛽 ≈ 2,000 times to create 𝛽 data sets, 𝐷1, … , 𝐷𝛽

• Pretend that these 𝛽 data sets represent new independent runs

• Run importance sampling (or any OPE method) on each data set:
IS 𝐷1 , … , IS 𝐷𝛽

• Sort these estimates and return the 𝛿𝛽’th smallest



CI vs 𝑡-Test vs Bootstrap 
(non-negative rewards)



HCOPE: Mountain Car



HCOPE: Digital Marketing



HCOPE Summary

• Use OPE method (e.g., importance sampling) to produce an estimate 
of 𝐽 𝜋𝑒 from each history

• Use a concentration inequality to bound 𝐽 𝜋𝑒 given these 𝑛
estimates

• Suggested method: 
• Weighted doubly robust + Student’s 𝑡-Test

• Suggested simple method: 
• Weighted per-decision importance sampling + Student’s 𝑡-Test

• Suggested method if computation is not an issue:
• Weighted doubly robust + Bias-Corrected and Accelerated Bootstrap (BCa)



HCOPE Using Weighted Per-Decision 
Importance Sampling and Student’s 𝑡-Test
• Input: 1) 𝑛 histories, 𝐻1, … , 𝐻𝑛 produced by a known policy, 𝜋𝑏. 2) An evaluation policy, 𝜋𝑒. 3) A 

probability, 1 − 𝛿.

• Allocate 2-dimensional array, 𝜌 𝐿 [𝑛], and 1-dimensional arrays 𝜉 𝐿 and መ𝐽[𝑛]. Initialize መ𝐽 array to zero.

• For 𝑡 = 1 to 𝐿
• For 𝑖 = 1 to 𝑛

• 𝜌 𝑡 𝑖 = ς𝑗=1
𝑡

𝜋e 𝐴𝑗
𝑖 𝑆𝑗

𝑖

𝜋b 𝐴𝑗
𝑖 𝑆𝑗

𝑖

• 𝜉 𝑡 = σ𝑖=1
𝑛 𝜌 𝑡 𝑖

• For 𝑖 = 1 to 𝑛
• For 𝑡 = 1 to 𝐿

• መ𝐽 𝑖 = መ𝐽 𝑖 +
𝜌 𝑡 𝑖

𝜉 𝑡
𝛾𝑡𝑅𝑡

𝑖

• ҧ𝐽 = average( መ𝐽 1 , መ𝐽 2 , … , መ𝐽 𝑛 )

• 𝜎 =
1

𝑛−1
σ𝑖=1
𝑛 መ𝐽 𝑖 − ҧ𝐽

2

• Return ҧ𝐽 −
𝜎

𝑛
tinv(1 − 𝛿, 𝑛 − 1) // See MATLAB documentation for tinv

Note: More efficient implementations exist. 
E.g., 𝜌 𝑡 𝑖 can be computed starting from 𝜌 𝑡 − 1 𝑖
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Safe Policy Improvement (SPI)

• Given the historical data, 𝐷, produced by the behavior policy, 𝜋𝑏
• Given a probability, 1 − 𝛿

• Produce a policy, 𝜋, that we predict maximizes 𝐽 𝜋 and which 
satisfies:

Pr 𝐽 𝜋 ≥ 𝐽 𝜋𝑏 ≥ 1 − 𝛿

Historical Data, 𝐷

Probability, 1 − 𝛿

New policy 𝜋, or 
No Solution Found



Safe Policy Improvement

• Split data, 𝐷, into two sets, 𝐷train and 𝐷test
• Use batch RL algorithm on 𝐷train

• Call output policy, 𝜋𝑐, the candidate policy

• Use HCOPE algorithm and 𝐷test to lower bound 𝐽 𝜋𝑐 with probability 
1 − 𝛿. Store this value in lower_bound.

• If lower_bound≥ 𝐽 𝜋𝑏 , return 𝜋𝑐
• Else, return No Solution Found, i.e., 𝜋𝑏



Historical 
Data

Training Set 
(20%)

Candidate 
Policy, 𝜋𝑐

Testing Set 
(80%)

Safety Test

66

Safe Policy Improvement

Is 1 − 𝛿 confidence lower bound on 𝐽 𝜋𝑐
larger that 𝐽(𝜋𝑏)?



Selecting the Candidate Policy
Space of all policies

Current policy

Policy predicted 
to perform the 
best, e.g., by FQI

Performance of candidate 
policy

Tightness of performance 
lower bound

Best candidate policy: best 
performing policy that we 
can declare “safe”

• Use regularization when selection candidate policy to stay “close” 
to the current policy.
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Experimental Results: Mountain Car



Experimental Results: Mountain Car



Experimental Results: Mountain Car

Desired performance
lower bound, −9. 5

Natural Actor-Critic



Experimental Results: Digital Marketing

Agent

Environment

Action, 𝑎

State, 𝑠 Reward, 𝑟



Experimental Results: Digital Marketing
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Experimental Results: Diabetes Treatment



Experimental Results : Diabetes Treatment
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Conclusion: Summary

• Many definitions of “safe reinforcement learning”.
• With probability at least 1 − 𝛿 the algorithm will not return a worse policy

• Three steps to making a safe reinforcement algorithm
• Off-policy Policy Evaluation (OPE)

• Importance sampling variants

• High Confidence Off-policy Policy Evaluation (HCOPE)
• Concentration inequalities / Student’s 𝑡-Test / Bootstrap

• Safe Policy Improvement
• Select candidate policy using some data and bound its performance using the rest

• Empirical Results
• Safe RL is tractable!



Conclusion: Future Directions

• Improvements have been by orders of magnitude. Several orders left to go.
• OPE

• Can we handle long horizon problems?
• Can we handle non-episodic problems?
• What if the behavior policy is not known?
• What if the environment is non-stationary?
• How best to leverage prior knowledge like an estimate of the transition function?

• HCOPE
• Better concentration inequalities for importance sampling?

• Safe Policy Improvement
• Better techniques for selecting the candidate policy?
• Automate decision of how much data to use in 𝐷train?
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