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History

Big picture

e Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
o Implement repetitive manual solutions with machines

e Digital revolution (1960 - now) and Information Age
o Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

Al revolution
o We only specify the goal, solutions are found autonomously
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Artificial intelligence

Big picture

e Symbolic GOFAI
o Conclusions are derived, but rules are programmed and static
o Hand-picked knowledge formalism & level of abstraction
o Hard to deal with messy data and uncertainty

@ DeepMind Deep reinforcement learning — Hado van Hasselt



Artificial intelligence

Big picture

e Symbolic GOFAI
o Conclusions are derived, but rules are programmed and static
o Hand-picked knowledge formalism & level of abstraction
o Hard to deal with messy data and uncertainty

e Classic statistics
o Analyse data
o We make decisions based on analysis
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Artificial intelligence

Big picture

e Symbolic GOFAI
o Conclusions are derived, but rules are programmed and static
o Hand-picked knowledge formalism & level of abstraction
o Hard to deal with messy data and uncertainty

e Classic statistics
o Analyse data
o We make decisions based on analysis

e True Al should learn to make decisions autonomously
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Reinforcement learning

A framework for making decisions

e RL provides a general-purpose framework for making decisions

w

action

Image credits - AIGA Collection, Martin Vanco
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Reinforcement learning

A framework for making decisions

e RL provides a general-purpose framework for making decisions
o RL is about learning to act
o Each action can alter the state of the world, and can result in reward
o Goal: optimize future rewards (which may be internal to the agent)

'i'
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Reinforcement learning

Examples

e Examples of reinforcement learning domains:
o Video games (including Atari)
o Board games (including the game of Go)
o Robotics
o Recommender systems

O
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Reinforcement learning

Examples

e Examples of reinforcement learning domains:
o Video games (including Atari)

Board games (including the game of Go)
Robotics
Recommender systems

O i@ 56 1)

e Essentially, problems that involves making decisions and/or making
predictions about the future
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Approaches to reinforcement learning

e The goalisto learn a policy of behaviour

e (At least) three possibilities:

o Learn policy directly
o Learn values of each action - infer policy by inspection

o Learn a model - infer policy by planning
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Approaches to reinforcement learning

e The goalisto learn a policy of behaviour

(At least) three possibilities:
o Learn policy directly
o Learn values of each action - infer policy by inspection
o Learn a model - infer policy by planning
e Agents therefore typically have at least one of these components:
o Policy - maps current state to action
o Value function - prediction of value for each state and action

o Model - agent's representation of the environment.
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Reinforcement learning

Components

8 Polcy qlg) =u
Value Q(S,ﬂr) ~ K [Rt—l—l -+ Rt—l—? -+ Rt—|—3 -+ ... | St == S,At - EI]
o MOde[ m(ﬁ,ﬂ,) ] ]E [St—|—l | St = S,At — ﬂ]
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Reinforcement learning

Components
s Polley inls] —a

e Value: Q(S,ﬂr) ~ ]E[Rt—l—l +Rt—|—2 +Rt—|—3 +... | St = S,At = EI]
o MOde[ m(ﬁ,ﬂ,) ] ]E[Sﬁ—Fl | St = S,At — ﬂ]

e All components are functions

e \We need to represent and learn these functions
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Deep reinforcement learning
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Deep reinforcement learning

Use deep learning to learn
policies, values, and/or models
to use in a reinforcement learning domain
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Deep reinforcement learning

e Reinforcement learning provides: a framework for making decisions
e Deep learning provides: tools to learn components
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Deep reinforcement learning

e Reinforcement learning provides: a framework for making decisions
e Deep learning provides: tools to learn components

Al-RL+DL?

e Concretely, we implement RL components with deep neural networks
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Deep Q Networks
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Q-learning

An algorithm to learn values

e The optimal value function fulfills:

QR*(s,a) =E |:Rt+1 + max Q*(Si11,0) | S: =s8,4A: = a (Bellman, 1957)
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Q-learning

An algorithm to learn values

e The optimal value function fulfills:

QR*(s,a) =E [Rtﬂ + max Q*(Si11,b) | St =8, A; = a] (Bellman, 1957)

e We can turn this into a TD algorithm:

Q:+1(St, At) = Qi(St, Ar) + (Rt+1 = ’}’mngt(StJrl; a) — Qt(St,At)) (Watkins 1989)
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Q-learning

An algorithm to learn values

e By learning off-policy about the policy that is currently greedy,
Q-learning can approximate the optimal value function Q”

e \With Q’, we have an optimal policy:

m'(s) = argmax Q'(s, .)
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DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e | earnsto play video games simply by playing

e Can learn Q function by Q-learning

Aw = « (Rt—l—l p ’}’mc?aX Q(St41,0;w) — Q(St, As; w)) VwQ(St, As; w)

32 4x4 filters

256 hidden units

16 8x8 filters

4x84x84 ‘ ! .

Stack of 4 previous
frames

Convolutional layer
of rectified linear units

Fully-connected linear

output layer

Convolutional layer
of rectified linear units

Fully-connected layer
of rectified linear units



DQN

e Aside: we can phrase the update as a loss

1
minimize §||y —q(s,a;0)||2 where, e.g., y= R¢y1 +vmaxq(Siy1,a;0)
a

e Typically, we consider the target y as constant, and ignore the

dependence on the parameters
o E.g.in TensorFlow you might use placeholders, or a stop_gradient
o Interpretation: y is an estimate for (off-policy) expected return E[ G, | =, a ]
o Then just update towards this estimate
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DQN

(Mnih, Kavukcuoglu, Silver, et al,, Nature 2015)

e | earnsto play video games simply by playing
e Can learn Q function by Q-learning

Aw = « (Rt+1 +ymax Q(St41, a; w) — Q(St, As; 'w)) VauwQ(St, As; w)

e Core components of DQON include:
O Target networks (Mnih et al. 2015)

Aw = o (Ri1 +ymaxQ(Siy1,6w ) — Q(St, A w) ) VaQ(Si, A w)

O Experience replay (Lin 1992). replay previous tuples (s, a, r, )
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Target Network Intuition

. ~ (Slide credit: Vlad Mnih)
e Changing the value of one action

will change the value of other
Li (02) — IEs,a,s’,rer r+ i mZ}XQ(Sla CL/; 01_) - Q(87 a; ‘91)

\ . 7
~"

e The network can end up chasing its target

actions and similar states.

own tail because of bootstrapping.

e Somewhat surprising fact - bigger
networks are less prone to this
because they alias less. s s

b Deelend “‘Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)




Experience replay

e Idea: store experiences, learn from them more than once

o In Nature DQN, sample uniformly, see each sample 4 times on average
e Benefits:

o More data efficient

o Learning resembles supervised learning more (deep learning likes this)
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DQN

(Mnih, Kavukcuoglu, Silver, et al,, Nature 2015)

e Many later improvements to DQN

OREOFE O OO E)

@ DeepMind

Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
Prioritized replay (Schaul et al. 2016)

Dueling networks (Wang et al. 2016)

Asynchronous learning (Mnih et al. 2016)

Adaptive normalization of values (van Hasselt et al. 2016)

Better exploration (Bellemare et al. 2016, Ostrovski et al., 2017, Fortunato, Azar,
Piot et al. 2017)
.. many more ..
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Experience replay

e \We can view the replay as an empirical (hon-parametric) model
e Can we query this model more cleverly?

o Yes:
o Sample non-uniformly: prioritized replay really helps! (Schaul et al. 2016)
o Caneven plan’ - episodic control (Blundell, et al. 2016, Pritzel et al. 2017)
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Prioritized Experience Replay
(Slide credit: Vlad Mnih)
e Replaying all transitions with equal probability is highly suboptimal.
e Replay transitions in proportion to absolute Bellman error:

rymax Q(s',a'07) — Q(s, ;)

DQN DOuble DQN (tuﬂed) 1 S N TIoT: i LBV e vatntins e e A e N AR B S I T
baseline rank-based | baseline rank-based proportional £ 100% g 200%
Median 48% 106% | 111% 113% 128% E sl 5 eon].
Mean 122% 355% 418% 454% 551% T oo g o
> baseline o 41 - 38 42 3| s
> human 15 25 30 33 33 g 0% g 0%
# games 49 49 A7 37 57 20% 20%
0% - - 0% -
1] 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1le6)
= uniform === rank-based === proportional === uniform DQN|

@ DeepMind

“Prioritized Experience Replay”, Schaul et al. (2016)



Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

DQN:
Aw = o (r+maxQ(s',a';w ") — Q(s,0:w) ) VayQ(s, 05 w)

@ DeepMind Deep reinforcement learning — Hado van Hasselt



Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

DQN:
Aw =« (r + maa}xQ(s',a’; w) — Q(s,a;w)) Vw®(s,a;w)

ri ( + Qs argmax Q(s', 5w ) w ) — Qs,a w)) Gy

a
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Double DQN

(van Hasselt, Guez, Silver, AAAl 2015)

DQN:
Aw =« (r + max Q(s',a';w™) — Q(s,a;w)) Vw®(s,a;w)

Aw = ('r + Q(s',argmaxQ(s’,a’;w™ );w™) — Q(s, a; w)) VwQ(s,a;w)

Double DQN:
Aw = afr + Q(s', arg max Q(s', ' w); w) — Q(s,a)) Vo Q(5, a; w)

|dea: decorrelate selection and evaluation to mitigate overestimation
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Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

” Wizard of Wor Asterix
0
£ 40 DQN
= O 10
wn wm 20
O w0 DQN
® 5 1 10
== Double DQN
g s Double DQN
0 50 100 150 200 0 50 100 150 200
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Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

Wizard of Wor

—
o
o

—
L=

DQN

=

Double' DQN

Value estimates
(log scale)

50 100 150 200
Wizard of Wor

4000 Double DQN
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1000
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Training steps (in millions)

' DeepMind
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Double DQN
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DQN
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Training steps (in millions)
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Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

Breakout
Robotank
Assault
Atlantls
Demon Attack
Star Gunner
Krull

Baxing

Crazy Climber
Road Runner
Tennis
Gopher

Fong

Freeway

Time Pilot
Space Invaders

Fishing Derby
Name This Game
Enduro

Ice Hackey
Beam Rider
Kung-Fu Master
Battle Zone

Q*Bert

Chopper Command
Up and Down

River Rald

Bank Helst
Centipede
Tutankham

Amidar

Alien

Seaquest

Bowling

Zaxxon

Ms. Pacman
Venture

Frosthite
Montezuma's Revenge
Asterolds

Asterix

Private Eye

Gravitar
Video Finball
Wizard of War
Double Dunk i

o @ 2 2 @
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T
g
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F
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Normalized score
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Double DQN

(van Hasselt, Guez, Silver, AAAIl 2015)

Breakout
Robotank
Assault
Atlantis
Demon Attack
Star Gunner
Krull

Boxing

Crazy Climber
Road Runner
Tennis

Gopher

Pang

Freeway

Time Pilot
Space Invaders
Kangaroo
James Bond
Fishing Derby
Name This Game
Enduro

ce Hockey
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Kung-Fu Master
Battle Zone
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Chopper Command
Up and Down
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Bank Helst
Centipede
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Private Eye
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Insights

e The take-home message is:
o Be aware of the properties of your learning algorithms
o Track and analyse statistics
o If you understand what the problem is, a solution is sometimes very simple
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Insights

e The take-home message is:

o Be aware of the properties of your learning algorithms

o Track and analyse statistics

o If you understand what the problem is, a solution is sometimes very simple
e RL-aware DL and DL-aware RL

o Target networks, experience replay: DL-aware RL

o Next up, dueling networks: RL-aware DL

b DeepMind



Dueling DQN

(Slide credit: Vlad Mnih)
e Value-Advantage decomposition of Q:

Q" (s,a) =V7™(s)+ A" (s,a)

e Dueling DQN (Wang et al., 2015):
| Al

Qs.0) = V() + Als.0) = =5 > Als.a) i

’ Atari Results
30 no-ops Human Starts

Mean Median Mean Median
I V(s) Prior. Duel Clip | 591.9% 172.1% | 567.0% 115.3%
4
Q(s,a)

\m

Prior. Single 434.6%  123.7% | 386.7% 112.9%

Dueling — . , Duel Clip 373.1% 151.5% | 343.8% 117.1%
Single Clip

DQN 341.2%  132.6% | 302.8% 114.1%
Single 3073% 117.8% | 332.9% 110.9%
A(s,a) Nature DQN 2279%  7191% | 219.6%  68.5%

b Deeplvuno “Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)



http://www.youtube.com/watch?v=Ks-9we2QNUc

Rewards

Defining optimality

e Ataskis defined by its rewards
o Atari: change in score
o Go:win (+1) or lose (-1)
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Rewards

Defining optimality

e Ataskis defined by its rewards
o Atari: change in score
o Go: win (+1) or lose (-1)
e |In DQN, all rewards were clipped to [-1, 1]
o This helps learning
o But it also changes the objective
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Adaptive normalization

(van Hasselt et al. NIPS 2016)

e Optimization algorithms like vmcligped | cipped | Popensb
normalized updates i : = '
e Clipping rewards is one solution, oy
but we can do better g
e e tried adaptive target a1
normalization (algorithm is called g 107
Pop-Art) %1"1
E 10°
ot
102

5 1015202 5 1015202 5 1015202
frames (x 1,000,000)
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Adaptive normalization

(van Hasselt et al. NIPS 2016)
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Unclipping rewards

Videos at: hadovanhasselt.com/2016/08/17/atari-videos/

—
—-— o -
— =
L —-— . ..
— -
—

and obtains higher scores

b DeepMind


http://hadovanhasselt.com/2016/08/17/atari-videos/
http://www.youtube.com/watch?v=OJYRcogPcfY

Policy gradients and actor-critic methods

Several slides adapted from Vlad Mnih
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Policy Gradient

e \We can often do better if the policy is differentiable.
o Optimize the performance with gradient descent.
e The goalisto compute the gradient of the objective:
VoJ(0) = VoE [7“1 + vy 4+ ¥irs + .. }
e How can we compute this when rewards aren't differentiable?

e |t turns out that there is a simple unbiased estimate of this gradient.

@ DeepMind



Contextual Bandit Policy Gradient

e Consider the simple one-step MDP (contextual bandit) setting.

e Start states are distributed according to d and episodes are one step long.
VoE[R(S, A)l =V > d(s) D _m(als)R(s, a)
=Y d(s)Y Vem(als)R(s, a)

= Z d(s) Z mo(als) Voro(als) R(s, a)

mo(als) Likelihood ratio trick

= " d(s)_ m(als) Vo logmo(als)R(s, a)

= B[V logmg(A[S)R(S, A)]

@ DeepMind



Contextual Bandit Policy Gradient

e The gradient of the expected reward is given by:
VoE[R(S, A)] = E[Vglog mo(AIS)R(S, A)]
e We can approximate this with samples and update the policy using SGD:

Ot 41 = 0t + aRe 1V log mg, (A¢|St)

@ DeepMind



Policy Gradient Theorem

e A more general result applies to full multi-step MDPs.
e For all differentiable policies:

_ T
VQ'](H) =k [V@ log o ((IlS)Q (8’ a)] “Policy gradient methods for reinforcement learning

where expectation is over states and actions. with function approximation”, Sutton et al. (2000)

e Thereis an easy sample-based approximation (REINFORCE):
VQ log o (at|st)Gt

where
“Simple statistical gradient-following algorithms for

Gt = Rt—+—1 + ’)’RH_Q + "}’2Rt_+_3 + ... connectionist reinforcement learning”, Williams (1992)

@ DeepMind



Variance Reduction

e The REINFORCE gradient suffers from high variance.,

e Subtracting a baseline keeps the gradient unbiased and reduces the variance:
Vg log mg(as|s:) (Gy — b(st))

e The state value function V(s) is a good choice for a baseline.

e [eadsto a very intuitive form of update:

Vg logmg(as|s:) (Gy — v(st))

e — Increase probability when action was better than expected

6 DeepMind “Simple statistical gradient-following algorithms for connectionist reinforcement learning”, Williams (1992)



Practical Deep Policy Gradient

e How can policy-based methods be implemented efficiently with neural networks?
e DQN uses replay, but standard PG methods are on-policy:
o  Require samples from the current policy.

o  Good off-policy PG methods have since been developed:
m  See ACER (Wang et al,, 2016) and PGQL (O'Donoghue et al., 2016).

o ldea: sample from replay, but adapt the updates so that expected gradient looks

as if we use the current policy

@ DeepMind



AsyncRL

e Asynchronous training of RL agents:
o Parallel actor-learners implemented using CPU threads and shared parameters.
o  Online Hogwild!-style asynchronous updates (Recht et al, 2011, Lian et al., 2015).
o No replay? Parallel actor-learners have a similar stabilizing effect.

o  Choice of RL algorithm: on-policy or off-policy, value-based or policy-based.

Shared m A:u ons
model - Thread |

Rewards

Parameters

A:tl ons
Thread K
Gradients Rewa rds

b DeepMind “Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)




Asynchronous 1-step Q-Learning

e Parallel actor-learners compute online 1-step update

y < r+ymaxQ(s',a’;07)

. 2

e Gradients accumulated over minibatch before update

@ DeepMind



Asynchronous N-step Q-Learning

e Q-learning with a uniform mixture of backups of length 1 through N.

re et Fao ren  maxaQ(a, Sten+1)
N-1
k N r g
y e > Vrnt+y max Q(ss+n,0';67)
k=0

. 2

e Variation of “Incremental multi-step Q-learning” (Peng & Williams, 1995).

@ DeepMind



Async Advantage Actor-Critic (A3C)

e The agent learns a policy and a state value function
e Uses bootstrapped n-step returns to reduce variance

e The policy gradient multiplied by an estimate of the advantage.
o  Similar to Generalized Advantage Estimation (Schulman et al, 2015).

N
mag) Vi) mals) V(s)  mials.o) Vs, ) Vo logm(a|s:, 6) (Z Yerew + YV TV (44 n51) — V(st))

o

St

e Train value with n-step TD learning
e You can think of this as minimizing:

N 2
(Z Vkrt—l-k + 7N+1V(38t+N+1 3 9_) - V(St; 0)>

k=0

& DeepMind

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)



Score

AsyncRL - Learning Speed

e Asynchronous methods trained on 16 CPU cores compared to DQN (blue)
trained on a K40 GPU.

e n-step methods can be much faster than single step methods.

e Async advantage actor-critic tends to dominate the value-based methods.

i +
16000 Beamrider §00 Breakout 20 Pong 12000 O*bert 1600 Space Invaders
— DQN — DON — DOM — DON
14000 — 1-step g sop — lstepQ 20 oogn — LstepQ 1400 — 1-stepQ
12000 1-step SARSA — l-step SARSA — 1-step SARSA 17200 1-step SARSA
— n-step O — n-step O — n-step Q — n-step Q
10000  A3C g 400 g 10 8000 == a3 1000  A3C
£ £
8000 E 300 0 6000 & BOD
i [
6000 200 -10 —?2:‘ 5 4000
4000 / il Gl
— l-step SARSA
100 -20 2000 .
2000 — n-stepQ m
A3C )
0 0= =30 1]
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 D 2 4 & 8 10 12 14 0o 2 4 6 8 10 12 14 0 2 4 B 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time {(hours) Training time (hours)

@ DeepMind “Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)



AsyncRL - Scalability

e Average speedup from using K threads to reach a reference score
averaged over 7 Atari games.

e Super-linear speed-up for 1-step methods.

25

B 1-Step Q

Bl SARSA

M n-Step Q
A3C

20

15

Speedup

10

5

0
2 4 8 16

Number of Threads
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Score

Data Efficiency of 1-Step Q-learning

e Better data efficiency from more threads + speedup from parallel training
o 1thread (B 16 threads (yellow)

10000 Beamrider 150 Breakout 20 Pong 4500 Q*bert
— 1-step Q, 1 threads — 1-step Q, 1 threads
300 — 1-step 0, 2 threads 15 4000 _ 1.step Q, 2 threads
8000 — 1-step Q, 4 threads Y 10 3500 — l-step Q, 4 threads
250 — 1l1-step Q, B threads — 1l-step Q, 8 threads
1-step Q, 16 threa 3 3000
5000 o 200 s 0 @ 2500
2 o b
4000 N \ Wi 150 W =5 vy 2000
; | -10 — l-step O, 1 threads 1500
— l-stepq, I.Hhreads 100 — 1l-step (), 2 threads
2000 — 1-step Q, 4 threads -13 — 1-step O, 4 threads 1000
—— 1-step Q, 8 threads 50 —ap —— 1-step ), 8 threads 500
0" 1-step Q. 16 threads o - 1-step 3, 16 threads 0
0 10 20 30 40 4] 10 20 30 40 0 10 20 30 40 V] 10 20 30 40

Training epochs Training epochs Training epochs Training epochs
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Score

Data Efficiency of A3C

e No data-efficiency gains. Sub-linear speedup from parallel training.
o 1thread (B 16 threads (yellow)

Beamrider

— A3C, 1 threads

14000 — A3C, 2 threads

— A3C, 4 threads

— A3C, 8 threads
A3C, 16 threads

1} 10 20 30
Training epochs

@ DeepMind

40

800 Breakout a0
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A3C - ATARI Results

Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorilla 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU | 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

b DeepMind

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)




A3C - Procedural Maze Navigation in 3D

E2fps

b DeepMind “Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)


http://www.youtube.com/watch?v=nMR5mjCFZCw

A3C - Continuous Control

@ DeepMind “Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)


http://www.youtube.com/watch?v=Ajjc08-iPx8

Unsupervised Reinforcement Learning

e The best deep RL methods are still very data
hungry. Especially with sparse rewards.

- T"‘O A

e Obvious solution - Learn about the environment.

e Augment an RL agent with auxiliary prediction
and control tasks to improve data efficiency.

e The UNREAL agent - UNsupervised

REinforcement and Auxiliary Learning.
o “Reinforcement Learning with Unsupervised Auxiliary
Tasks", (Jaderberg et al. 2017)

Agent  +1 Apple  +10 Goal

b DeepMind



UNREAL augments an

The UNREAL Architecture

Base A3C Agent

LSTM A3C agent with 3 o

auxiliary tasks.

Can beusedontopof ™

<4 ¢t
-ﬁﬂa} @

Enwronment

DQN, DDPG, TRPO or w2t

other agents.
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The UNREAL Architecture Qe

./ Aux DeConvNet
D Aux FC net

e Base A3CLSTM agent

Base A3C Agent

learns from the vroovE o ovr vr
environment’s scalar {? @ g ?
reward signal. o ronment ﬁ olay Buffer —0—O—C
gl 11 [ RS R
. Tt o 0 0 +1 g i ] el et
e UNREAL acts using the bt tra b Value Function Replay
base A3C agent’s rr
. g S
policy. . Skewed  (
-, sampling ] N

T = ‘ 2 | B
AN PTG

lr—g  tro2  tr_q
Reward Prediction
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Augment A3C with many
auxiliary control tasks.

Pixel control - learn to
maximally change parts
of the screen.

Feature control (not
used by UNREAL) - learn
to control the internal
representations.

@ DeepMind

O Agent LSTM

A Agent ConvNet
v Aux DeConvNet
D Aux FC net

Unsupervised RL

Base A3C Agent
i S I o S
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Focusing on rewards:

The UNREAL Architecture

Base A3C Agent

Rebalanced reward : M
pre diction. A A A A Replay Buffer

Shape the agent’s CNN

) i .
Environment | | 1
| ()f - | : 8 | } @
Tt 0 0 0 +1 T,
7 7 2 743 i

by classifying whether
a sequence of frames
will lead to reward.

No need to worry about
off-policy learning.
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The UNREAL Architecture Qe

v Aux DeConvNet
D Aux FC net

Focusing on rewards: Base A3C Agent
R<—H<—R
e Value function replay. . ‘\

. _ % ' %7 % 77 %7 Replay Buffer Q—gf
e Fasterlearning of the ~ =rormen, e Dl | } @
value function. Feooo 0 e ﬁ“
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Average human-
normalized performance
on 13 3D environments
from DeepMind Lab.

Tasks include random
maze navigation and
laser tag.

Roughly a 10x
improvement in data
efficiency over A3C.

60% improvement in
final performance.

@ DeepMind

ZAS DeepMind Lab Results

Human Normalised Performance
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®37% UNREAL
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Baduk in numbers




Why is Baduk hard for computers to play?

Game tree complexity = b9
Brute force search intractable:

1. Search space is huge

2. 'Impossible” for computers %
to evaluate who is winning F!“E“'“!E"—*‘ e
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Exhaustive search
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Reducing depth with value network
2
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Reducing depth with value network
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Value network

Evaluation
=

V()

Position
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Convolutional neural network
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Reducing breadth with policy network
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@ DeepMind

Move probabili
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Position

Policy network
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Monte-Carlo rollouts

Deep reinforcement learnin




Neural network training pipeline

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

@ — o @ @
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AlphaGo (May 2017)
AlphaGo (Mar 2016)

AlphaGo (Oct 2015)

Internal Testing Calibration External Testing

Wins 3/3 Matches

Wins 4/5 Matches

Wins 5/5 Matches

Ke Jie (9p)
World number 1

)

|

P )3 Lee Sedol (9p)

e

LS Top player of
J\‘ past decade

— Fan Hui (2p)
< 3-times reigning
Jy /4 Euro Champion




Planning with learned models
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Learning models

Motivation

e \Xe discussed learning policies and values
e \What about models?

@ DeepMind Deep reinforcement learning — Hado van Hasselt



Learning models

Motivation

e \Xe discussed learning policies and values

e \Xhat about models?

e Models would allow us to plan
o Planning is useful in combinatorial and compositional domains
o Trade off local compute to trying to store everything
o Would allow us to use great planning algorithms

@ DeepMind Deep reinforcement learning — Hado van Hasselt



Example

Random Mazes

not connected connected

’;_" : _5:-!-’”
-'.'r! .-.
" |..:.'.
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Example

Pool

‘v
7]
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Learning models

Complexities

e | earning models from raw inputs is hard
o What should our model capture - pixels?
o Objectives do not match: potentially focus on irrelevant details

@ DeepMind Deep reinforcement learning — Hado van Hasselt



Learning models

Complexities

e | earning models from raw inputs is hard
o What should our model capture - pixels?
o Objectives do not match: potentially focus on irrelevant details

e \Xhat to do with an imprecise model?
o Many planning algorithms assume model is perfect

@ DeepMind Deep reinforcement learning — Hado van Hasselt



The Predictron

(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

e Main idea: learn an abstract model
e The model should be good for planning

e But it does not have to match the real dynamics
o See also "Value iteration networks” (Tamar et al., 2016)

6 DeepMind Deep reinforcement learning — Hado van Hasselt



The Predictron

(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

I i a) k_slep predictmn ................................................... 1 I b) A_predic[rm |
2
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The Predictron

Learning abstract models

e |dea: compute looks like planning, but we do not have a separate
model-learning objective

e |Instead, the goalis to optimize the outcome of planning with the learnt
model

e Then, learn all components end-to-end

e A modelis learnt, because by construction a model exists

e But model-semantics (e.g., what does each state mean?) is not prefixed

6 DeepMind Deep reinforcement learning — Hado van Hasselt



The Predictron

Learning abstract models

Shared core Unshared cores

0.01

— deep net
= = geep net with skips
0.0001 |00 iy, +. A-predictron

- = [, A-predictron with skips

RMSE on random mazes
{log scale)
[an]
[=]
[=]
-

0 1M M 3mM 4mM 5M

RMSE on pool

0 500K 1M 0 500K M
Updates Updates
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The Predictron

Trajectory prediction with the abstract model

o Left: o | '
Random maze +start position " M | p— S— S——— o E"—I

e Right: ‘ ;
Trajectory for some policy: = o | e s _—— - o T . e
this is the target ot E

e Middle: Internal  “&. ™ l 8 ' i : I.._.
N o R i s s E .............
predictron representation ot ! - L EI_I

e Partial trajectories were notin oy e T TR T B D i
the data ﬁle. 1 1 ) e i E 1|_I

e Internal plans compose e O o |
sequentially into full i I
trajectories - :
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