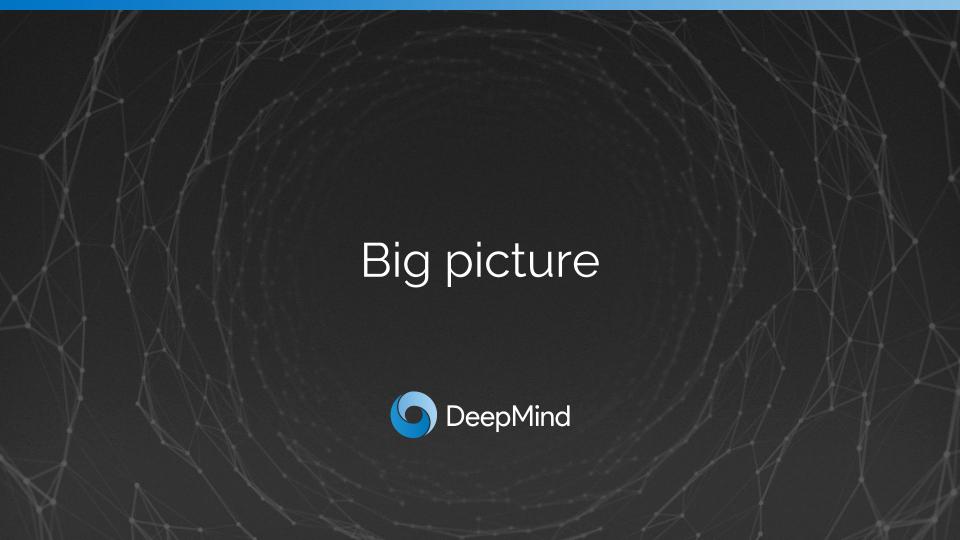
Hado van Hasselt





- Industrial revolution (1750 1850) and Machine Age (1870 1940)
  - Implement **repetitive manual solutions** with machines

- Industrial revolution (1750 1850) and Machine Age (1870 1940)
  - o Implement repetitive manual solutions with machines
- Digital revolution (1960 now) and Information Age
  - Implement repetitive mental solutions with machines

- Industrial revolution (1750 1850) and Machine Age (1870 1940)
  - o Implement repetitive manual solutions with machines
- Digital revolution (1960 now) and Information Age
  - o Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

- Industrial revolution (1750 1850) and Machine Age (1870 1940)
  - o Implement repetitive manual solutions with machines
- Digital revolution (1960 now) and Information Age
  - Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

- Al revolution
  - We only specify the goal, solutions are found autonomously

#### Artificial intelligence

Big picture

- Symbolic GOFAI
  - Conclusions are derived, but rules are programmed and static
  - Hand-picked knowledge formalism & level of abstraction
  - Hard to deal with messy data and uncertainty

#### Artificial intelligence

Big picture

- Symbolic GOFAI
  - o Conclusions are derived, but rules are programmed and static
  - Hand-picked knowledge formalism & level of abstraction
  - Hard to deal with messy data and uncertainty
- Classic statistics
  - Analyse data
  - We make decisions based on analysis

#### Artificial intelligence

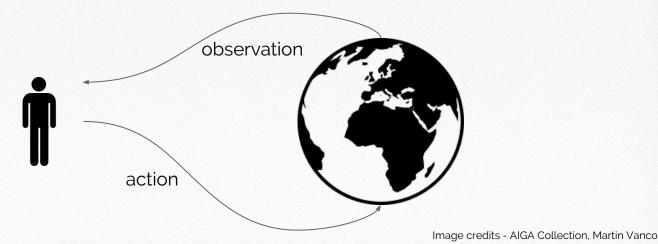
Big picture

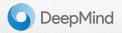
- Symbolic GOFAI
  - Conclusions are derived, but rules are programmed and static
  - Hand-picked knowledge formalism & level of abstraction
  - Hard to deal with messy data and uncertainty
- Classic statistics
  - Analyse data
  - We make decisions based on analysis
- True AI should learn to make decisions autonomously



A framework for making decisions

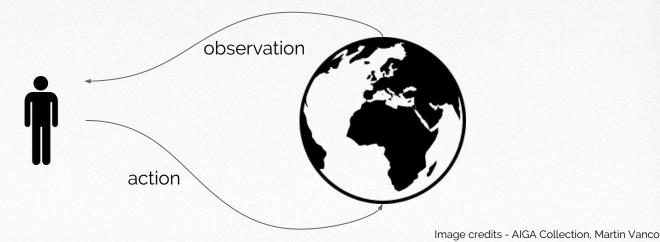
RL provides a general-purpose framework for making decisions





A framework for making decisions

- RL provides a general-purpose framework for making decisions
  - RL is about learning to act
  - Each action can alter the state of the world, and can result in reward
  - Goal: optimize future rewards (which may be internal to the agent)





#### Examples

- Examples of reinforcement learning domains:
  - Video games (including Atari)
  - Board games (including the game of Go)
  - Robotics
  - Recommender systems
  - 0 ..

#### Examples

- Examples of reinforcement learning domains:
  - Video games (including Atari)
  - Board games (including the game of Go)
  - Robotics
  - Recommender systems
  - 0 ...
- Essentially, problems that involves making decisions and/or making predictions about the future

## Approaches to reinforcement learning

- The goal is to learn a policy of behaviour
- (At least) three possibilities:
  - Learn policy directly
  - Learn values of each action infer policy by inspection
  - Learn a model infer policy by planning



## Approaches to reinforcement learning

- The goal is to learn a policy of behaviour
- (At least) three possibilities:
  - Learn policy directly
  - Learn values of each action infer policy by inspection
  - Learn a model infer policy by planning
- Agents therefore typically have at least one of these components:
  - Policy maps current state to action
  - Value function prediction of value for each state and action
  - Model agent's representation of the environment.

Components

- Policy:  $\pi(s) = a$
- ullet Value:  $Q(s,a)pprox \mathbb{E}\left[R_{t+1}+R_{t+2}+R_{t+3}+\dots\mid S_t=s, A_t=a
  ight]$
- ullet Model:  $m(s,a)pprox \mathbb{E}\left[S_{t+1}\mid S_t=s, A_t=a
  ight]$

Components

- Policy:  $\pi(s) = a$
- ullet Value:  $Q(s,a)pprox \mathbb{E}\left[R_{t+1}+R_{t+2}+R_{t+3}+\dots\mid S_t=s, A_t=a
  ight]$
- ullet Model:  $m(s,a)pprox \mathbb{E}\left[S_{t+1}\mid S_t=s, A_t=a
  ight]$

- All components are functions
- We need to represent and learn these functions



Use deep learning to learn
policies, values, and/or models
to use in a reinforcement learning domain



- Reinforcement learning provides: a framework for making decisions
- Deep learning provides: tools to learn components

- Reinforcement learning provides: a framework for making decisions
- Deep learning provides: tools to learn components

Concretely, we implement RL components with deep neural networks

### Deep Q Networks



#### Q-learning

An algorithm to learn values

The optimal value function fulfills:

$$Q^*(s,a) = \mathbb{E}\left[R_{t+1} + \max_b Q^*(S_{t+1},b) \mid S_t = s, A_t = a
ight]$$
 (Bellman, 1957)

## Q-learning

#### An algorithm to learn values

The optimal value function fulfills:

$$Q^*(s,a) = \mathbb{E}\left[R_{t+1} + \max_b Q^*(S_{t+1},b) \mid S_t = s, A_t = a
ight]$$
 (Bellman, 1957)

We can turn this into a TD algorithm:

$$Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha \left( R_{t+1} + \gamma \max_{a} Q_t(S_{t+1}, a) - Q_t(S_t, A_t) \right) \quad \text{(Watkins 1989)}$$

#### Q-learning

An algorithm to learn values

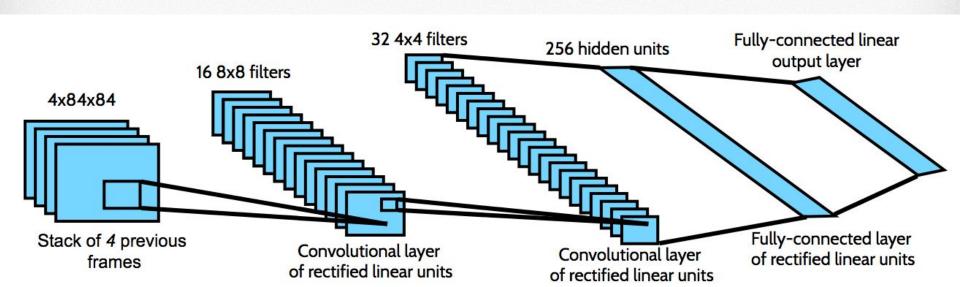
- By learning off-policy about the policy that is currently greedy,
   Q-learning can approximate the optimal value function Q\*
- With Q\*, we have an optimal policy:

$$\pi^*(s) = \operatorname{argmax} Q^*(s, .)$$

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Learns to play video games simply by playing
- Can learn Q function by Q-learning

$$\Delta \boldsymbol{w} = \alpha \left( R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{w}) - Q(S_{t}, A_{t}; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(S_{t}, A_{t}; \boldsymbol{w})$$



Aside: we can phrase the update as a loss

minimize 
$$\frac{1}{2} ||y - q(s, a; \theta)||_2$$
 where, e.g.,  $y = R_{t+1} + \gamma \max_{a} q(S_{t+1}, a; \theta)$ 

- Typically, we consider the target *y* as constant, and ignore the dependence on the parameters
  - E.g., in TensorFlow you might use placeholders, or a stop\_gradient
  - o Interpretation: y is an estimate for (off-policy) expected return E[ $G_t \mid \pi, \alpha$ ]
  - Then just update towards this estimate

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Learns to play video games simply by playing
- Can learn Q function by Q-learning

$$\Delta \boldsymbol{w} = \alpha \left( R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{w}) - Q(S_{t}, A_{t}; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(S_{t}, A_{t}; \boldsymbol{w})$$

- Core components of DQN include:
  - Target networks (Mnih et al. 2015)

$$\Delta \boldsymbol{w} = \alpha \left( R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{w}^{-}) - Q(S_{t}, A_{t}; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(S_{t}, A_{t}; \boldsymbol{w})$$

O Experience replay (Lin 1992): replay previous tuples (s, a, r, s')

#### Target Network Intuition

(Slide credit: Vlad Mnih)

- Changing the value of one action will change the value of other actions and similar states.
- The network can end up chasing its own tail because of bootstrapping.
- Somewhat surprising fact bigger networks are less prone to this because they alias less.

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r \sim D} \left( \underbrace{r + \gamma \, \max_{a'} Q(s', a'; \boldsymbol{\theta_i^-})}_{\text{target}} - Q(s, a; \theta_i) \right)^2$$





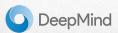
## Experience replay

- Idea: store experiences, learn from them more than once
  - In Nature DQN, sample uniformly, see each sample 4 times on average
- Benefits:
  - More data efficient
  - Learning resembles supervised learning more (deep learning likes this)



(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

- Many later improvements to DQN
  - Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
  - o Prioritized replay (Schaul et al. 2016)
  - Dueling networks (Wang et al. 2016)
  - Asynchronous learning (Mnih et al. 2016)
  - Adaptive normalization of values (van Hasselt et al. 2016)
  - O Better exploration (Bellemare et al. 2016, Ostrovski et al., 2017, Fortunato, Azar, Piot et al. 2017)
  - o ... many more ...



## Experience replay

- We can view the replay as an empirical (non-parametric) model
- Can we query this model more cleverly?
- Yes:
  - Sample non-uniformly: prioritized replay really helps! (Schaul et al. 2016)
  - Can even 'plan' episodic control (Blundell, et al. 2016, Pritzel et al. 2017)

## Prioritized Experience Replay

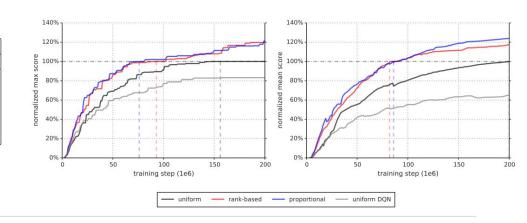
(Slide credit: Vlad Mnih)

- Replaying all transitions with equal probability is highly suboptimal.
- Replay transitions in proportion to absolute Bellman error:

$$\left| r + \gamma \max_{a'} Q(s', a'; \theta^{-}) - Q(s, a; \theta) \right|$$

Leads to much faster learning.

|            | DQN      |            | Double DQN (tuned) |            |              |
|------------|----------|------------|--------------------|------------|--------------|
|            | baseline | rank-based | baseline           | rank-based | proportional |
| Median     | 48%      | 106%       | 111%               | 113%       | 128%         |
| Mean       | 122%     | 355%       | 418%               | 454%       | 551%         |
| > baseline | _        | 41         | -                  | 38         | 42           |
| > human    | 15       | 25         | 30                 | 33         | 33           |
| # games    | 49       | 49         | 57                 | 57         | 57           |



#### Double DQN

(van Hasselt, Guez, Silver, AAAI 2015)

#### DQN:

$$\Delta oldsymbol{w} = lpha \left( r + \max_{a'} Q(s', a'; oldsymbol{w}^{-}) - Q(s, a; oldsymbol{w}) 
ight) 
abla_{oldsymbol{w}} Q(s, a; oldsymbol{w})$$

#### Double DQN

(van Hasselt, Guez, Silver, AAAI 2015)

#### DQN:

$$\Delta \boldsymbol{w} = \alpha \left( r + \max_{a'} Q(s', a'; \boldsymbol{w}^{-}) - Q(s, a; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(s, a; \boldsymbol{w})$$

=

$$\Delta \boldsymbol{w} = \alpha \left( r + Q(s', \argmax_{a'} Q(s', a'; \boldsymbol{w}^{-}); \boldsymbol{w}^{-}) - Q(s, a; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(s, a; \boldsymbol{w})$$

(van Hasselt, Guez, Silver, AAAI 2015)

#### DQN:

$$\Delta \boldsymbol{w} = \alpha \left( r + \max_{a'} Q(s', a'; \boldsymbol{w}^{-}) - Q(s, a; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(s, a; \boldsymbol{w})$$

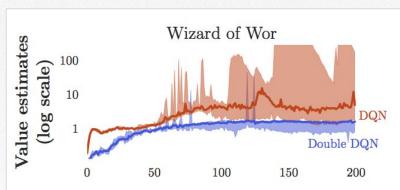
$$=$$

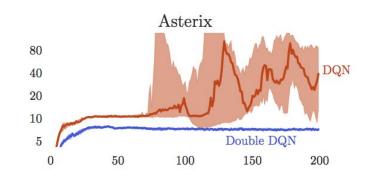
$$\Delta \boldsymbol{w} = \alpha \left( r + Q(s', \arg\max_{a'} Q(s', a'; \boldsymbol{w}^{-}); \boldsymbol{w}^{-}) - Q(s, a; \boldsymbol{w}) \right) \nabla_{\boldsymbol{w}} Q(s, a; \boldsymbol{w})$$

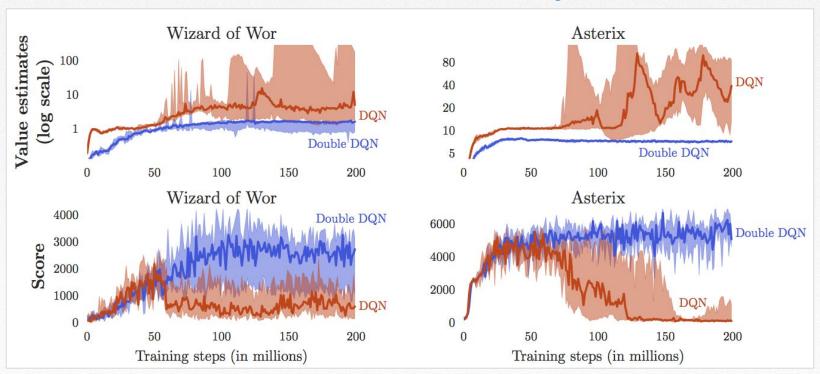
#### Double DQN:

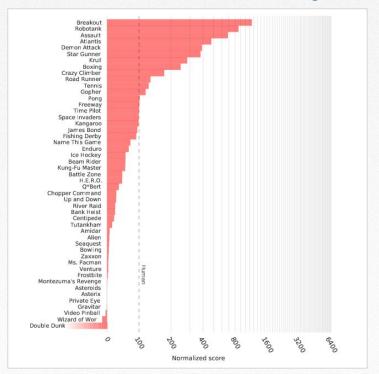
$$\Delta \mathbf{w} = \alpha(r + Q(s', \arg\max_{a'} Q(s', a'; \mathbf{w}); \mathbf{w}^{-}) - Q(s, a)) \nabla_{\mathbf{w}} Q(s, a; \mathbf{w})$$

Idea: decorrelate selection and evaluation to mitigate overestimation

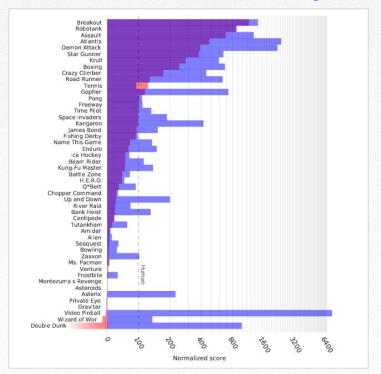












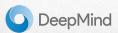


### Insights

- The take-home message is:
  - Be aware of the properties of your learning algorithms
  - Track and analyse statistics
  - o If you understand what the problem is, a solution is sometimes very simple

### Insights

- The take-home message is:
  - Be aware of the properties of your learning algorithms
  - Track and analyse statistics
  - o If you understand what the problem is, a solution is sometimes very simple
- RL-aware DL and DL-aware RL
  - Target networks, experience replay: DL-aware RL
  - Next up, dueling networks:
     RL-aware DL



### **Dueling DQN**

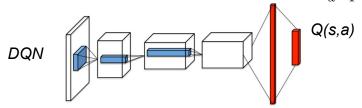
(Slide credit: Vlad Mnih)

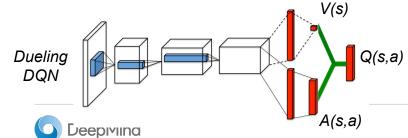
Value-Advantage decomposition of Q:

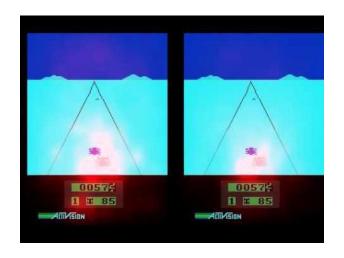
$$Q^{\pi}(s, a) = V^{\pi}(s) + A^{\pi}(s, a)$$

Dueling DQN (Wang et al., 2015):

$$Q(s,a) = V(s) + A(s,a) - \frac{1}{|A|} \sum_{a=1}^{|A|} A(s,a)$$







#### Atari Results

|                  | 30 no-ops |        | <b>Human Starts</b> |        |
|------------------|-----------|--------|---------------------|--------|
|                  | Mean      | Median | Mean                | Median |
| Prior. Duel Clip | 591.9%    | 172.1% | 567.0%              | 115.3% |
| Prior. Single    | 434.6%    | 123.7% | 386.7%              | 112.9% |
| Duel Clip        | 373.1%    | 151.5% | 343.8%              | 117.1% |
| Single Clip      | 341.2%    | 132.6% | 302.8%              | 114.1% |
| Single           | 307.3%    | 117.8% | 332.9%              | 110.9% |
| Nature DQN       | 227.9%    | 79.1%  | 219.6%              | 68.5%  |

"Dueling Network Architectures for Deep Reinforcement Learning", Wang et al. (2016)

#### Rewards

Defining optimality

- A task is defined by its rewards
  - Atari: change in score
  - o Go: win (+1) or lose (-1)

#### Rewards

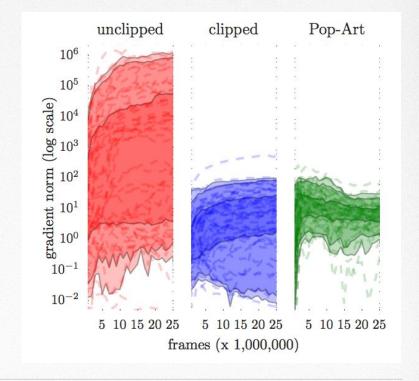
#### Defining optimality

- A task is defined by its rewards
  - Atari: change in score
  - Go: win (+1) or lose (-1)
- In DQN, all rewards were clipped to [-1, 1]
  - This helps learning
  - But it also changes the objective

### Adaptive normalization

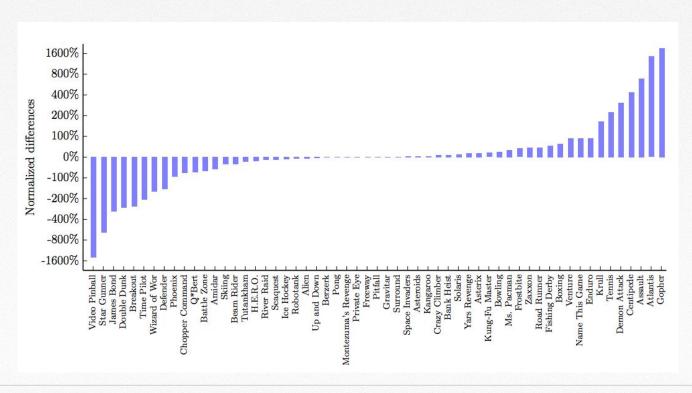
(van Hasselt et al. NIPS 2016)

- Optimization algorithms like normalized updates
- Clipping rewards is one solution, but we can do better
- We tried adaptive target normalization (algorithm is called Pop-Art)



### Adaptive normalization

(van Hasselt et al. NIPS 2016)

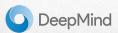




### Unclipping rewards

Videos at: hadovanhasselt.com/2016/08/17/atari-videos/





### Policy gradients and actor-critic methods

Several slides adapted from Vlad Mnih



# Policy Gradient

- We can often do better if the policy is differentiable.
  - o Optimize the performance with gradient descent.
- The goal is to compute the gradient of the objective:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E} \left[ r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots \right]$$

- How can we compute this when rewards aren't differentiable?
- It turns out that there is a simple unbiased estimate of this gradient.

### Contextual Bandit Policy Gradient

- Consider the simple one-step MDP (contextual bandit) setting.
- Start states are distributed according to d and episodes are one step long.

$$\nabla_{\theta} \mathbb{E}[R(S,A)] = \nabla_{\theta} \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) R(s,a)$$

$$= \sum_{s} d(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) R(s,a)$$

$$= \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} R(s,a)$$

$$= \sum_{s} d(s) \sum_{a} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) R(s,a)$$

$$= \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(A|S) R(S,A)]$$
Likelihood ratio trick
$$= \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(A|S) R(S,A)]$$

### Contextual Bandit Policy Gradient

The gradient of the expected reward is given by:

$$\nabla_{\theta} \mathbb{E}[R(S, A)] = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(A|S)R(S, A)]$$

• We can approximate this with samples and update the policy using SGD:

$$\theta_{t+1} = \theta_t + \alpha R_{t+1} \nabla_{\theta} \log \pi_{\theta_t} (A_t | S_t)$$

## Policy Gradient Theorem

- A more general result applies to full multi-step MDPs.
- For all differentiable policies:

$$\nabla_{\theta} J(\theta) = \mathbb{E} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right]$$
  
where expectation is over states and actions.

"Policy gradient methods for reinforcement learning with function approximation", Sutton et al. (2000)

There is an easy sample-based approximation (REINFORCE):

$$\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) G_t$$

where

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

"Simple statistical gradient-following algorithms for connectionist reinforcement learning", Williams (1992)

### Variance Reduction

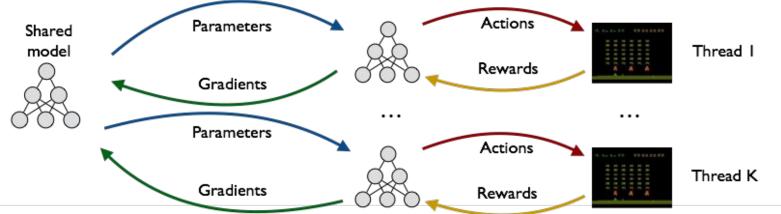
- The REINFORCE gradient suffers from high variance.
- Subtracting a **baseline** keeps the gradient unbiased and reduces the variance:  $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \left(G_t b(s_t)\right)$
- The state value function V(s) is a good choice for a baseline.
- Leads to a very intuitive form of update:  $abla_{ heta} \log \pi_{ heta}(a_t|s_t) \left(G_t v(s_t)
  ight)$
- ullet Increase probability when action was better than expected

### Practical Deep Policy Gradient

- How can policy-based methods be implemented efficiently with neural networks?
- DQN uses replay, but standard PG methods are on-policy:
  - Require samples from the current policy.
  - Good off-policy PG methods have since been developed:
    - See ACER (Wang et al., 2016) and PGQL (O'Donoghue et al., 2016).
  - o Idea: sample from replay, but adapt the updates so that expected gradient looks as if we use the current policy

### AsyncRL

- Asynchronous training of RL agents:
  - Parallel actor-learners implemented using CPU threads and shared parameters.
  - Online **Hogwild!**-style asynchronous updates (Recht et al., 2011, Lian et al., 2015).
  - No replay? Parallel actor-learners have a similar stabilizing effect.
  - Choice of RL algorithm: on-policy or off-policy, value-based or policy-based.





# Asynchronous 1-step Q-Learning

Parallel actor-learners compute online 1-step update

$$y \leftarrow r + \gamma \max_{a'} Q(s', a'; \theta^{-})$$
$$\Delta \theta \leftarrow \Delta \theta + \frac{\partial (y - Q(s, a; \theta))^{2}}{\partial \theta}$$

Gradients accumulated over minibatch before update

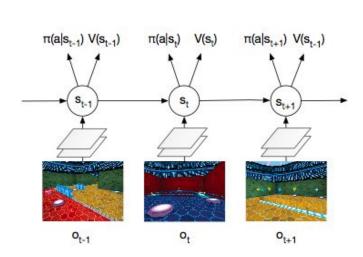
# Asynchronous N-step Q-Learning

Q-learning with a uniform mixture of backups of length 1 through N.

Variation of "Incremental multi-step Q-learning" (Peng & Williams, 1995).

### Async Advantage Actor-Critic (A3C)

- The agent learns a policy and a state value function
- Uses bootstrapped n-step returns to reduce variance
- The policy gradient multiplied by an estimate of the advantage.
  - Similar to Generalized Advantage Estimation (Schulman et al, 2015).



$$\nabla_{\theta} \log \pi(a_t|s_t, \theta) \left( \sum_{k=0}^{N} \gamma^k r_{t+k} + \gamma^{N+1} V(s_{t+N+1}) - V(s_t) \right)$$

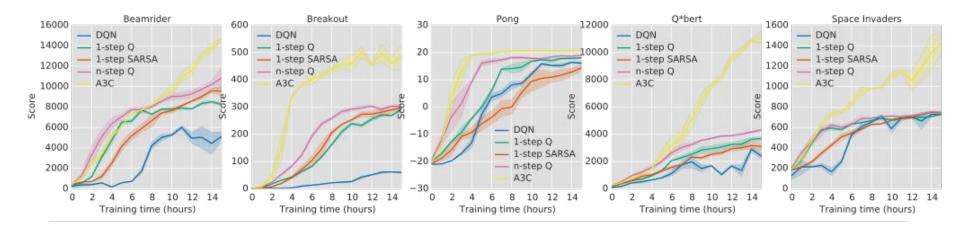
- Train value with n-step TD learning
- You can think of this as minimizing:

$$\left(\sum_{k=0}^{N} \gamma^{k} r_{t+k} + \gamma^{N+1} V(s_{s_{t+N+1}}; \theta^{-}) - V(s_{t}; \theta)\right)^{2}$$



### AsyncRL - Learning Speed

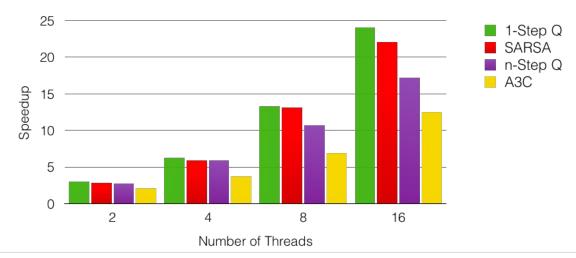
- Asynchronous methods trained on 16 CPU cores compared to DQN (blue) trained on a K40 GPU.
- n-step methods can be much faster than single step methods.
- Async advantage actor-critic tends to dominate the value-based methods.





### AsyncRL - Scalability

- Average speedup from using K threads to reach a reference score averaged over 7 Atari games.
- Super-linear speed-up for 1-step methods.





# Data Efficiency of 1-Step Q-learning

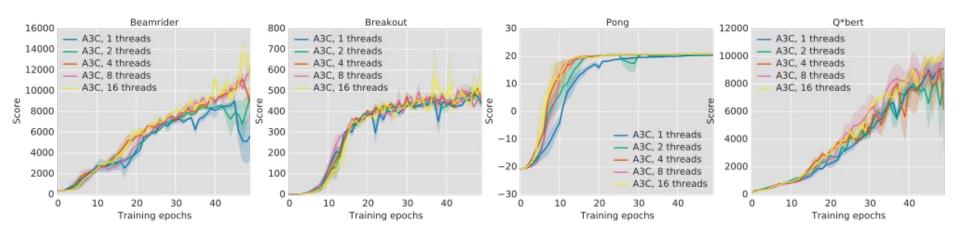
- Better data efficiency from more threads + speedup from parallel training
  - 1 thread (blue) 16 threads (yellow)





### Data Efficiency of A3C

- No data-efficiency gains. Sub-linear speedup from parallel training.
  - 1 thread (blue) 16 threads (yellow)





### A3C - ATARI Results

| Method          | Training Time        | Mean   | Median |
|-----------------|----------------------|--------|--------|
| DQN             | 8 days on GPU        | 121.9% | 47.5%  |
| Gorilla         | 4 days, 100 machines | 215.2% | 71.3%  |
| D-DQN           | 8 days on GPU        | 332.9% | 110.9% |
| Dueling D-DQN   | 8 days on GPU        | 343.8% | 117.1% |
| Prioritized DQN | 8 days on GPU        | 463.6% | 127.6% |
| A3C, FF         | 1 day on CPU         | 344.1% | 68.2%  |
| A3C, FF         | 4 days on CPU        | 496.8% | 116.6% |
| A3C, LSTM       | 4 days on CPU        | 623.0% | 112.6% |

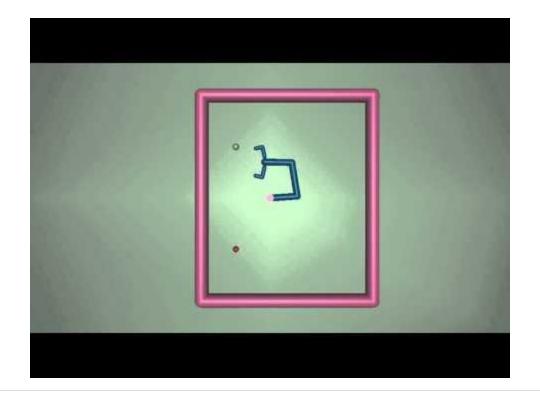


### A3C - Procedural Maze Navigation in 3D



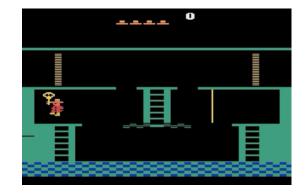


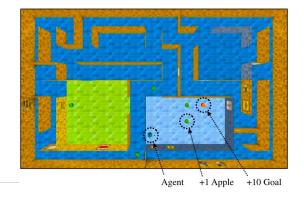
### A3C - Continuous Control



### Unsupervised Reinforcement Learning

- The best deep RL methods are still very data hungry. Especially with sparse rewards.
- Obvious solution Learn about the environment.
- Augment an RL agent with auxiliary prediction and control tasks to improve data efficiency.
- The UNREAL agent UNsupervised REinforcement and Auxiliary Learning.
  - "Reinforcement Learning with Unsupervised Auxiliary Tasks", (Jaderberg et al. 2017)



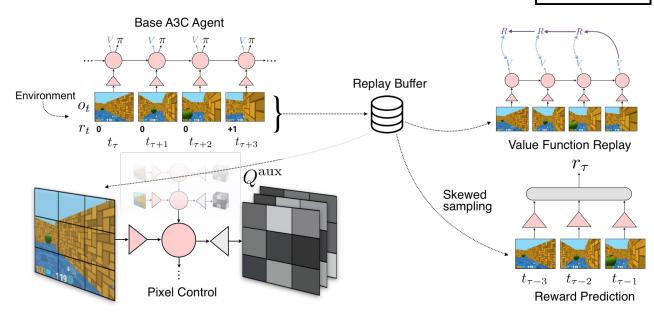




### The UNREAL Architecture

Agent LSTM
Agent ConvNet
Aux DeConvNet
Aux FC net

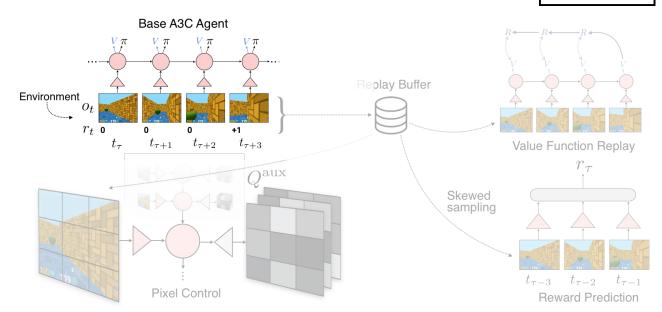
- UNREAL augments an LSTM A3C agent with 3 auxiliary tasks.
- Can be used on top of DQN, DDPG, TRPO or other agents.



### The UNREAL Architecture

Agent LSTM
Agent ConvNet
Aux DeConvNet
Aux FC net

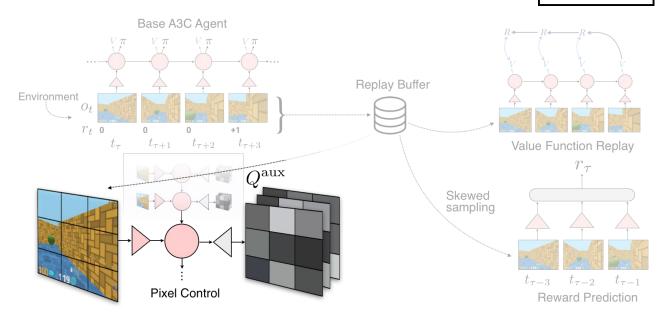
- Base A3C LSTM agent learns from the environment's scalar reward signal.
- UNREAL acts using the base A3C agent's policy.



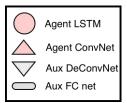
### Unsupervised RL

Agent LSTM
Agent ConvNet
Aux DeConvNet
Aux FC net

- Augment A3C with many auxiliary control tasks.
- Pixel control learn to maximally change parts of the screen.
- Feature control (not used by UNREAL) - learn to control the internal representations.

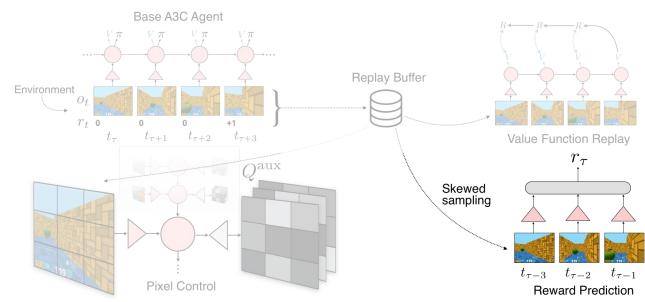


#### The UNREAL Architecture

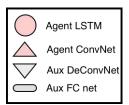


#### Focusing on rewards:

- Rebalanced reward prediction.
- Shape the agent's CNN by classifying whether a sequence of frames will lead to reward.
- No need to worry about off-policy learning.

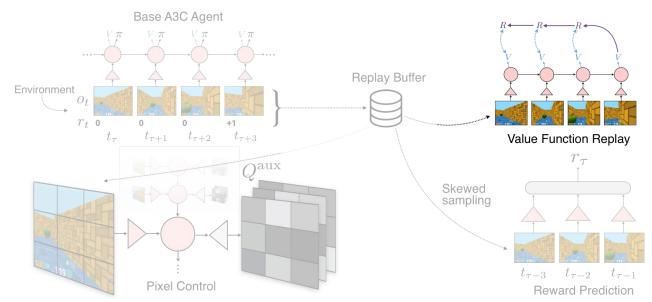


#### The UNREAL Architecture



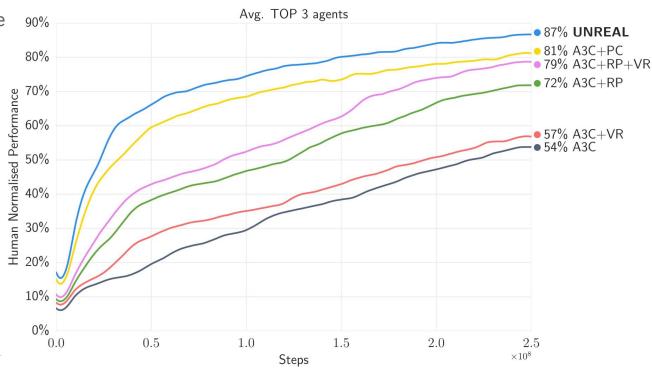
#### Focusing on rewards:

- Value function replay.
- Faster learning of the value function.





- Average humannormalized performance on 13 3D environments from DeepMind Lab.
- Tasks include random maze navigation and laser tag.
- Roughly a 10x improvement in data efficiency over A3C.
- 60% improvement in final performance.

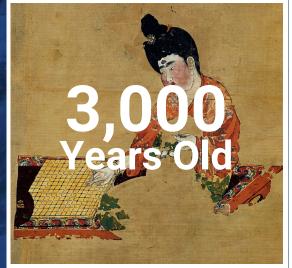






# • AlphaGo

## Baduk in numbers









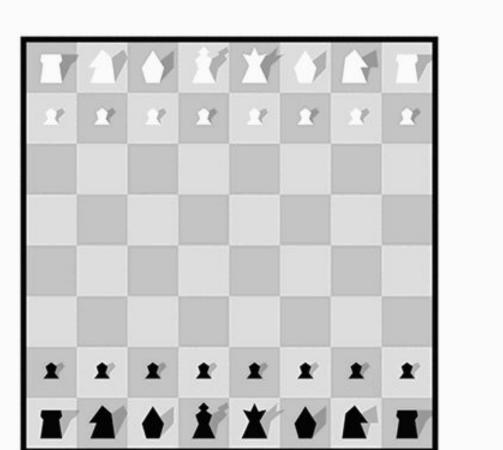
## Why is Baduk hard for computers to play?

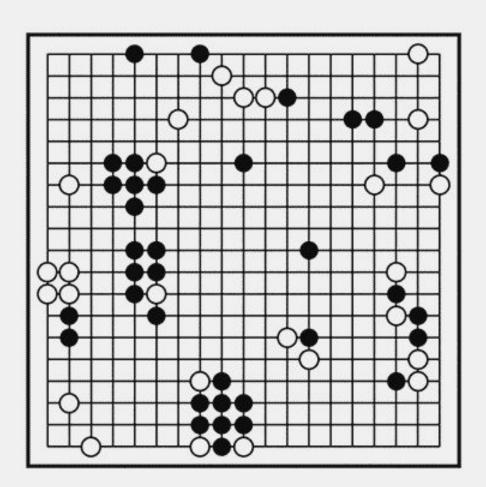
Game tree complexity =  $b^d$ 

Brute force search intractable:

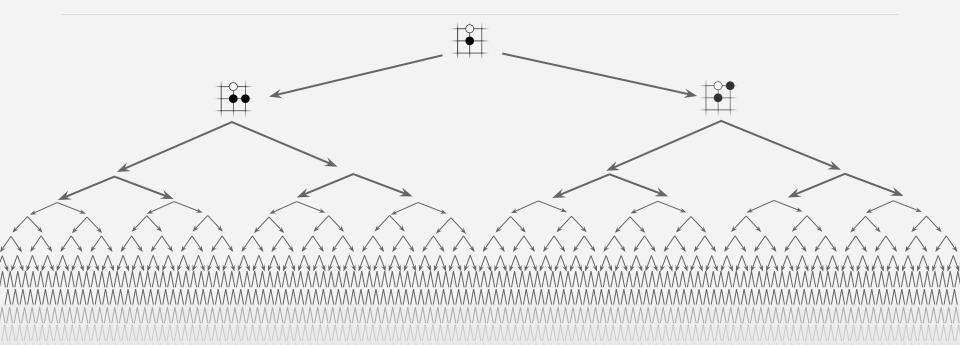
- 1. Search space is huge
- "Impossible" for computers to evaluate who is winning



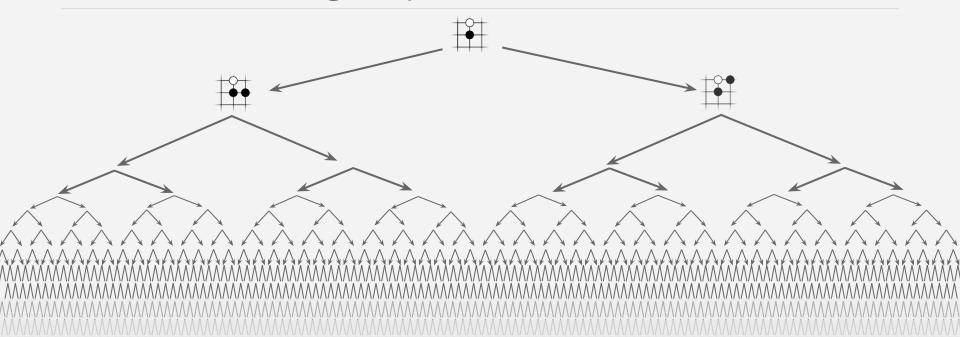




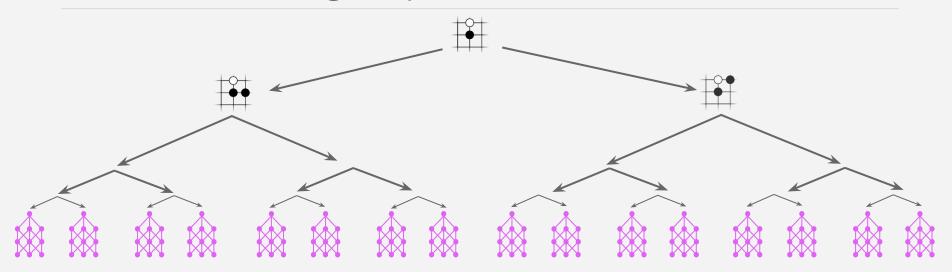
## Exhaustive search



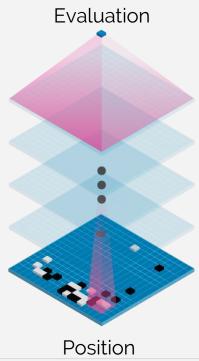
## Reducing depth with value network

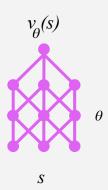


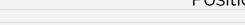
## Reducing depth with value network



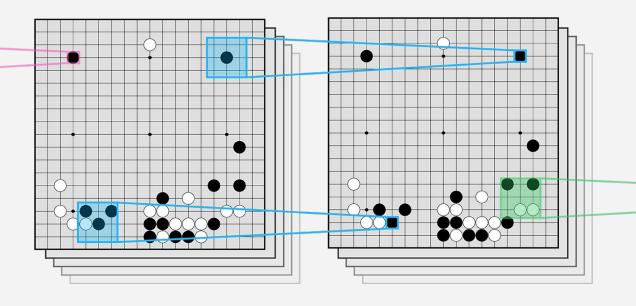
#### Value network





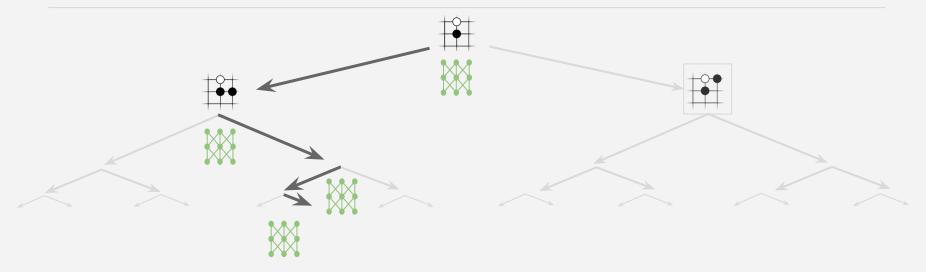


#### Convolutional neural network



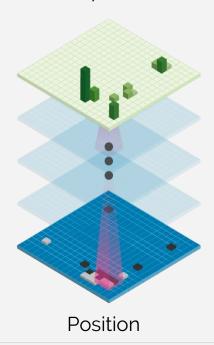


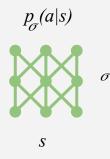
## Reducing breadth with policy network



## Policy network

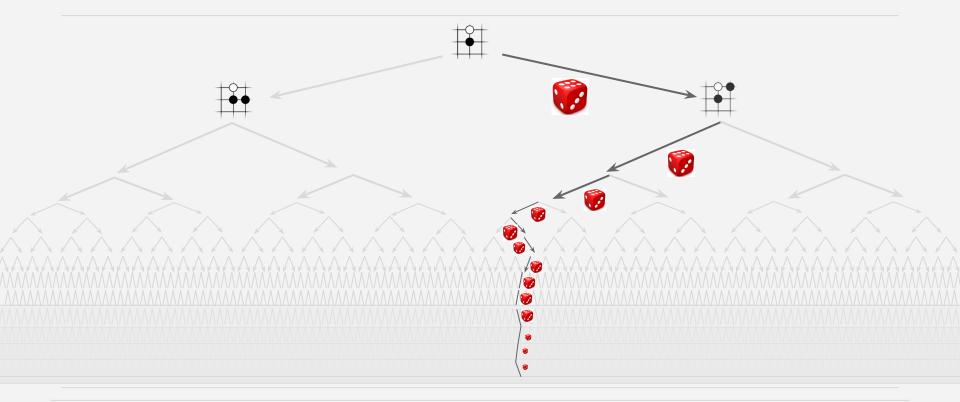
#### Move probabilities



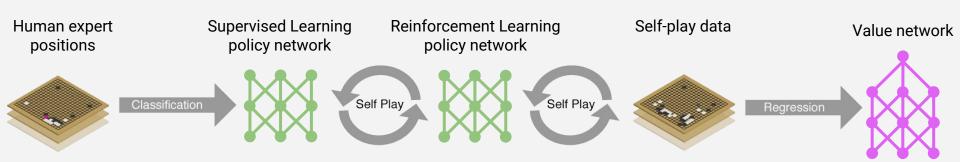




#### Monte-Carlo rollouts



## Neural network training pipeline





Planning with learned models



## Learning models

Motivation

- We discussed learning policies and values
- What about models?

### Learning models

Motivation

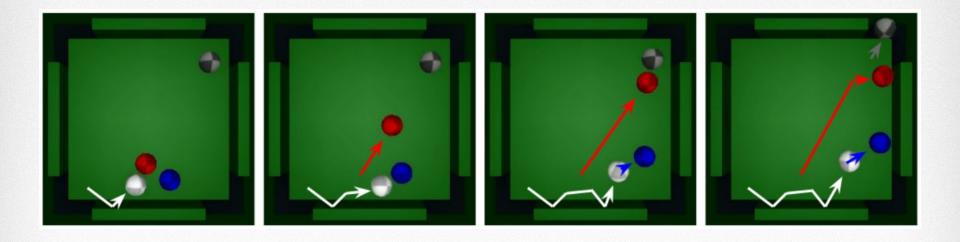
- We discussed learning policies and values
- What about models?
- Models would allow us to plan
  - Planning is useful in combinatorial and compositional domains
  - Trade off local compute to trying to store everything
  - Would allow us to use great planning algorithms

## Example Random Mazes

not connected connected



#### Example Pool



## Learning models

Complexities

- Learning models from raw inputs is hard
  - What should our model capture pixels?
  - Objectives do not match: potentially focus on irrelevant details

### Learning models

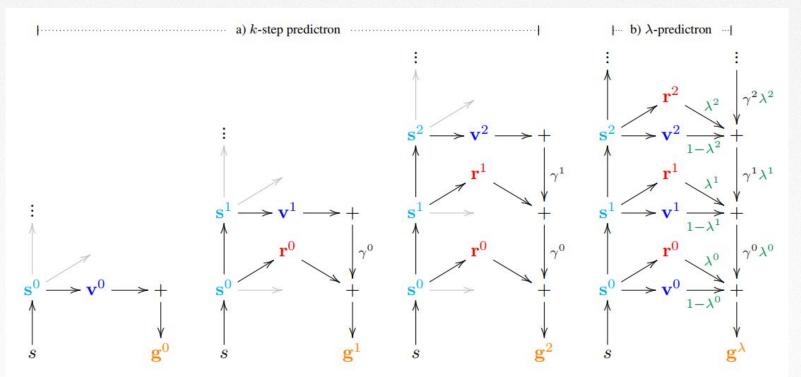
Complexities

- Learning models from raw inputs is hard
  - What should our model capture pixels?
  - Objectives do not match: potentially focus on irrelevant details
- What to do with an imprecise model?
  - Many planning algorithms assume model is perfect

(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

- Main idea: learn an abstract model
- The model should be good for planning
- But it does not have to match the real dynamics
  - See also "Value iteration networks" (Tamar et al., 2016)

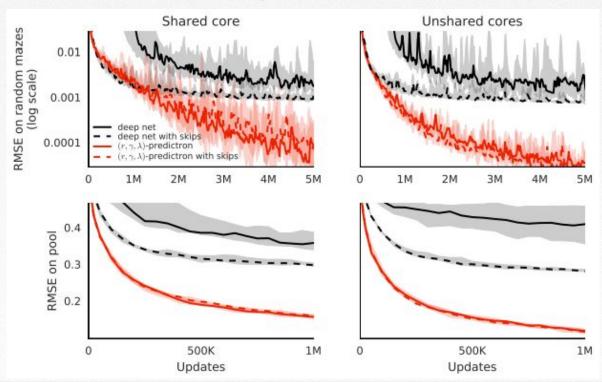
(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)



#### Learning abstract models

- Idea: compute looks like planning, but we do not have a separate model-learning objective
- Instead, the goal is to optimize the outcome of planning with the learnt model
- Then, learn all components end-to-end
- A model is learnt, because by construction a model exists
- But model-semantics (e.g., what does each state mean?) is not prefixed

#### Learning abstract models





Trajectory prediction with the abstract model

Left:

Random maze +start position

• Right:

Trajectory for some policy: this is the target

- Middle: Internal partial plans appear in the predictron representation
- Partial trajectories were **not** in the data
- Internal plans compose sequentially into full trajectories

