
Deep reinforcement learning

Hado van Hasselt

Big picture

Deep reinforcement learning — Hado van Hasselt

● Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
○ Implement repetitive manual solutions with machines

History
Big picture

Deep reinforcement learning — Hado van Hasselt

● Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
○ Implement repetitive manual solutions with machines

● Digital revolution (1960 - now) and Information Age
○ Implement repetitive mental solutions with machines

History
Big picture

Deep reinforcement learning — Hado van Hasselt

● Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
○ Implement repetitive manual solutions with machines

● Digital revolution (1960 - now) and Information Age
○ Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

History
Big picture

Deep reinforcement learning — Hado van Hasselt

History
Big picture

● Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)
○ Implement repetitive manual solutions with machines

● Digital revolution (1960 - now) and Information Age
○ Implement repetitive mental solutions with machines

In both cases: have to come up with solution first

● AI revolution
○ We only specify the goal, solutions are found autonomously

Deep reinforcement learning — Hado van Hasselt

Artificial intelligence
Big picture

● Symbolic GOFAI
○ Conclusions are derived, but rules are programmed and static
○ Hand-picked knowledge formalism & level of abstraction
○ Hard to deal with messy data and uncertainty

Deep reinforcement learning — Hado van Hasselt

Artificial intelligence
Big picture

● Symbolic GOFAI
○ Conclusions are derived, but rules are programmed and static
○ Hand-picked knowledge formalism & level of abstraction
○ Hard to deal with messy data and uncertainty

● Classic statistics
○ Analyse data
○ We make decisions based on analysis

Deep reinforcement learning — Hado van Hasselt

Artificial intelligence
Big picture

● Symbolic GOFAI
○ Conclusions are derived, but rules are programmed and static
○ Hand-picked knowledge formalism & level of abstraction
○ Hard to deal with messy data and uncertainty

● Classic statistics
○ Analyse data
○ We make decisions based on analysis

● True AI should learn to make decisions autonomously

Deep reinforcement learning — Hado van Hasselt

Reinforcement learning

Deep reinforcement learning — Hado van Hasselt

Reinforcement learning
A framework for making decisions

● RL provides a general-purpose framework for making decisions

Image credits - AIGA Collection, Martin Vanco

action

observation

Deep reinforcement learning — Hado van Hasselt

Reinforcement learning
A framework for making decisions

● RL provides a general-purpose framework for making decisions
○ RL is about learning to act
○ Each action can alter the state of the world, and can result in reward
○ Goal: optimize future rewards (which may be internal to the agent)

Image credits - AIGA Collection, Martin Vanco

action

observation

Deep reinforcement learning — Hado van Hasselt

● Examples of reinforcement learning domains:
○ Video games (including Atari)
○ Board games (including the game of Go)
○ Robotics
○ Recommender systems
○ …

Reinforcement learning
Examples

Deep reinforcement learning — Hado van Hasselt

● Examples of reinforcement learning domains:
○ Video games (including Atari)
○ Board games (including the game of Go)
○ Robotics
○ Recommender systems
○ …

● Essentially, problems that involves making decisions and/or making
predictions about the future

Reinforcement learning
Examples

Deep reinforcement learning — Hado van Hasselt

● The goal is to learn a policy of behaviour

● (At least) three possibilities:

○ Learn policy directly

○ Learn values of each action - infer policy by inspection

○ Learn a model - infer policy by planning

Approaches to reinforcement learning

Deep reinforcement learning — Hado van Hasselt

● The goal is to learn a policy of behaviour

● (At least) three possibilities:

○ Learn policy directly

○ Learn values of each action - infer policy by inspection

○ Learn a model - infer policy by planning

● Agents therefore typically have at least one of these components:

○ Policy - maps current state to action

○ Value function - prediction of value for each state and action

○ Model - agent’s representation of the environment.

Approaches to reinforcement learning

Deep reinforcement learning — Hado van Hasselt

● Policy :

● Value :

● Model :

Reinforcement learning
Components

Deep reinforcement learning — Hado van Hasselt

● Policy :

● Value :

● Model :

● All components are functions

● We need to represent and learn these functions

Reinforcement learning
Components

Deep reinforcement learning — Hado van Hasselt

Deep reinforcement learning

Deep reinforcement learning — Hado van Hasselt

Use deep learning to learn

policies, values, and/or models

to use in a reinforcement learning domain

Deep reinforcement learning

Deep reinforcement learning — Hado van Hasselt

● Reinforcement learning provides: a framework for making decisions
● Deep learning provides: tools to learn components

Deep reinforcement learning

Deep reinforcement learning — Hado van Hasselt

● Reinforcement learning provides: a framework for making decisions
● Deep learning provides: tools to learn components

AI = RL + DL ?

● Concretely, we implement RL components with deep neural networks

Deep reinforcement learning

Deep reinforcement learning — Hado van Hasselt

Deep Q Networks

Deep reinforcement learning — Hado van Hasselt

● The optimal value function fulfills:

 (Bellman, 1957)

Q-learning
An algorithm to learn values

Deep reinforcement learning — Hado van Hasselt

● The optimal value function fulfills:

 (Bellman, 1957)

● We can turn this into a TD algorithm:

(Watkins 1989)

Q-learning
An algorithm to learn values

Deep reinforcement learning — Hado van Hasselt

● By learning off-policy about the policy that is currently greedy,

Q-learning can approximate the optimal value function Q*

● With Q*, we have an optimal policy:

ᶢ*(s) = argmax Q*(s, .)

Q-learning
An algorithm to learn values

Deep reinforcement learning — Hado van Hasselt

● Learns to play video games simply by playing
● Can learn Q function by Q-learning

DQN
(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

Deep reinforcement learning — Hado van Hasselt

● Aside: we can phrase the update as a loss

● Typically, we consider the target y as constant, and ignore the
dependence on the parameters
○ E.g., in TensorFlow you might use placeholders, or a stop_gradient
○ Interpretation: y is an estimate for (off-policy) expected return E[Gt | ᶢ, a]
○ Then just update towards this estimate

DQN

Deep reinforcement learning — Hado van Hasselt

● Learns to play video games simply by playing
● Can learn Q function by Q-learning

● Core components of DQN include:
○ Target networks (Mnih et al. 2015)

○ Experience replay (Lin 1992): replay previous tuples (s, a, r, s’)

DQN
(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

Target Network Intuition
(Slide credit: Vlad Mnih)

s s’

● Changing the value of one action

will change the value of other

actions and similar states.

● The network can end up chasing its

own tail because of bootstrapping.

● Somewhat surprising fact - bigger

networks are less prone to this

because they alias less.

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Deep reinforcement learning — Hado van Hasselt

● Idea: store experiences, learn from them more than once
○ In Nature DQN, sample uniformly, see each sample 4 times on average

● Benefits:
○ More data efficient
○ Learning resembles supervised learning more (deep learning likes this)

Experience replay

Deep reinforcement learning — Hado van Hasselt

● Many later improvements to DQN
○ Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
○ Prioritized replay (Schaul et al. 2016)
○ Dueling networks (Wang et al. 2016)
○ Asynchronous learning (Mnih et al. 2016)
○ Adaptive normalization of values (van Hasselt et al. 2016)
○ Better exploration (Bellemare et al. 2016, Ostrovski et al., 2017, Fortunato, Azar,

Piot et al. 2017)
○ … many more …

DQN
(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

Deep reinforcement learning — Hado van Hasselt

● We can view the replay as an empirical (non-parametric) model
● Can we query this model more cleverly?
● Yes:

○ Sample non-uniformly: prioritized replay really helps! (Schaul et al. 2016)

○ Can even ‘plan’ - episodic control (Blundell, et al. 2016, Pritzel et al. 2017)

Experience replay

Prioritized Experience Replay

● Replaying all transitions with equal probability is highly suboptimal.

● Replay transitions in proportion to absolute Bellman error:

● Leads to much faster learning.

“Prioritized Experience Replay”, Schaul et al. (2016)

(Slide credit: Vlad Mnih)

Deep reinforcement learning — Hado van Hasselt

DQN:

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

DQN:

=

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

DQN:

=

Double DQN:

Idea: decorrelate selection and evaluation to mitigate overestimation

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

Double DQN
(van Hasselt, Guez, Silver, AAAI 2015)

Deep reinforcement learning — Hado van Hasselt

● The take-home message is:
○ Be aware of the properties of your learning algorithms
○ Track and analyse statistics
○ If you understand what the problem is, a solution is sometimes very simple

Insights

Deep reinforcement learning — Hado van Hasselt

● The take-home message is:
○ Be aware of the properties of your learning algorithms
○ Track and analyse statistics
○ If you understand what the problem is, a solution is sometimes very simple

● RL-aware DL and DL-aware RL
○ Target networks, experience replay: DL-aware RL
○ Next up, dueling networks: RL-aware DL

Insights

● Value-Advantage decomposition of Q:

● Dueling DQN (Wang et al., 2015):

Dueling DQN

Q(s,a)

Q(s,a)

A(s,a)

V(s)

DQN

Dueling
DQN

Atari Results

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)

(Slide credit: Vlad Mnih)

http://www.youtube.com/watch?v=Ks-9we2QNUc

Deep reinforcement learning — Hado van Hasselt

● A task is defined by its rewards
○ Atari: change in score
○ Go: win (+1) or lose (-1)

Rewards
Defining optimality

Deep reinforcement learning — Hado van Hasselt

● A task is defined by its rewards
○ Atari: change in score
○ Go: win (+1) or lose (-1)

● In DQN, all rewards were clipped to [-1, 1]
○ This helps learning
○ But it also changes the objective

Rewards
Defining optimality

Deep reinforcement learning — Hado van Hasselt

● Optimization algorithms like
normalized updates

● Clipping rewards is one solution,
but we can do better

● We tried adaptive target
normalization (algorithm is called
Pop-Art)

Adaptive normalization
(van Hasselt et al. NIPS 2016)

Deep reinforcement learning — Hado van Hasselt

Adaptive normalization
(van Hasselt et al. NIPS 2016)

Deep reinforcement learning — Hado van Hasselt

Unclipping rewards
Videos at: hadovanhasselt.com/2016/08/17/atari-videos/

http://hadovanhasselt.com/2016/08/17/atari-videos/
http://www.youtube.com/watch?v=OJYRcogPcfY

Deep reinforcement learning — Hado van Hasselt

Policy gradients and actor-critic methods

Several slides adapted from Vlad Mnih

Policy Gradient
● We can often do better if the policy is differentiable.

○ Optimize the performance with gradient descent.

● The goal is to compute the gradient of the objective:

● How can we compute this when rewards aren’t differentiable?

● It turns out that there is a simple unbiased estimate of this gradient.

Contextual Bandit Policy Gradient
● Consider the simple one-step MDP (contextual bandit) setting.

● Start states are distributed according to d and episodes are one step long.

Likelihood ratio trick

Contextual Bandit Policy Gradient
● The gradient of the expected reward is given by:

● We can approximate this with samples and update the policy using SGD:

Policy Gradient Theorem
● A more general result applies to full multi-step MDPs.

● For all differentiable policies:

where expectation is over states and actions.

● There is an easy sample-based approximation (REINFORCE):

where

“Policy gradient methods for reinforcement learning
with function approximation”, Sutton et al. (2000)

“Simple statistical gradient-following algorithms for
connectionist reinforcement learning“, Williams (1992)

Variance Reduction
● The REINFORCE gradient suffers from high variance.

● Subtracting a baseline keeps the gradient unbiased and reduces the variance:

● The state value function V(s) is a good choice for a baseline.

● Leads to a very intuitive form of update:

● → Increase probability when action was better than expected

“Simple statistical gradient-following algorithms for connectionist reinforcement learning“, Williams (1992)

● How can policy-based methods be implemented efficiently with neural networks?

● DQN uses replay, but standard PG methods are on-policy:

○ Require samples from the current policy.

○ Good off-policy PG methods have since been developed:

■ See ACER (Wang et al., 2016) and PGQL (O’Donoghue et al., 2016).

○ Idea: sample from replay, but adapt the updates so that expected gradient looks

as if we use the current policy

Practical Deep Policy Gradient

● Asynchronous training of RL agents:

○ Parallel actor-learners implemented using CPU threads and shared parameters.

○ Online Hogwild!-style asynchronous updates (Recht et al., 2011, Lian et al., 2015).

○ No replay? Parallel actor-learners have a similar stabilizing effect.

○ Choice of RL algorithm: on-policy or off-policy, value-based or policy-based.

AsyncRL

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

● Parallel actor-learners compute online 1-step update

● Gradients accumulated over minibatch before update

Asynchronous 1-step Q-Learning

● Q-learning with a uniform mixture of backups of length 1 through N.

● Variation of “Incremental multi-step Q-learning” (Peng & Williams, 1995).

Asynchronous N-step Q-Learning

● The agent learns a policy and a state value function
● Uses bootstrapped n-step returns to reduce variance
● The policy gradient multiplied by an estimate of the advantage.

○ Similar to Generalized Advantage Estimation (Schulman et al, 2015).

Async Advantage Actor-Critic (A3C)

● Train value with n-step TD learning
● You can think of this as minimizing:

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

AsyncRL - Learning Speed

● Asynchronous methods trained on 16 CPU cores compared to DQN (blue)
trained on a K40 GPU.

● n-step methods can be much faster than single step methods.

● Async advantage actor-critic tends to dominate the value-based methods.

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

AsyncRL - Scalability

● Average speedup from using K threads to reach a reference score
averaged over 7 Atari games.

● Super-linear speed-up for 1-step methods.

Data Efficiency of 1-Step Q-learning

● Better data efficiency from more threads + speedup from parallel training

○ 1 thread (blue) 16 threads (yellow)

Data Efficiency of A3C

● No data-efficiency gains. Sub-linear speedup from parallel training.

○ 1 thread (blue) 16 threads (yellow)

A3C - ATARI Results

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

A3C - Procedural Maze Navigation in 3D

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

http://www.youtube.com/watch?v=nMR5mjCFZCw

A3C - Continuous Control

“Asynchronous Methods for Deep Reinforcement Learning”, Mnih et al. (2016)

http://www.youtube.com/watch?v=Ajjc08-iPx8

Unsupervised Reinforcement Learning

● The best deep RL methods are still very data
hungry. Especially with sparse rewards.

● Obvious solution - Learn about the environment.

● Augment an RL agent with auxiliary prediction
and control tasks to improve data efficiency.

● The UNREAL agent - UNsupervised
REinforcement and Auxiliary Learning.

○ “Reinforcement Learning with Unsupervised Auxiliary
Tasks”, (Jaderberg et al. 2017)

The UNREAL Architecture

● UNREAL augments an
LSTM A3C agent with 3
auxiliary tasks.

● Can be used on top of
DQN, DDPG, TRPO or
other agents.

The UNREAL Architecture

● Base A3C LSTM agent
learns from the
environment’s scalar
reward signal.

● UNREAL acts using the
base A3C agent’s
policy.

Unsupervised RL

● Augment A3C with many
auxiliary control tasks.

● Pixel control - learn to
maximally change parts
of the screen.

● Feature control (not
used by UNREAL) - learn
to control the internal
representations.

The UNREAL Architecture

Focusing on rewards:
● Rebalanced reward

prediction.

● Shape the agent’s CNN
by classifying whether
a sequence of frames
will lead to reward.

● No need to worry about
off-policy learning.

The UNREAL Architecture

Focusing on rewards:
● Value function replay.

● Faster learning of the
value function.

 Results

● Average human-
normalized performance
on 13 3D environments
from DeepMind Lab.

● Tasks include random
maze navigation and
laser tag.

● Roughly a 10x
improvement in data
efficiency over A3C.

● 60% improvement in
final performance.

Baduk in numbers

1017040M
Players Positions

3,000
Years Old

Game tree complexity = bd

Brute force search intractable:

1. Search space is huge

2. “Impossible” for computers
to evaluate who is winning

Why is Baduk hard for computers to play?

Deep reinforcement learning — Hado van Hasselt

Exhaustive search

Deep reinforcement learning — Hado van Hasselt

Reducing depth with value network

Deep reinforcement learning — Hado van Hasselt

Reducing depth with value network

Deep reinforcement learning — Hado van Hasselt

Value network
Evaluation

Position

s

v (s)ᶚ

ᶚ

Deep reinforcement learning — Hado van Hasselt

Convolutional neural network

Deep reinforcement learning — Hado van Hasselt

Reducing breadth with policy network

Deep reinforcement learning — Hado van Hasselt

Policy network
 Move probabilities

Position

s

 p (a|s)ᶥ

ᶥ

Deep reinforcement learning — Hado van Hasselt

Monte-Carlo rollouts

Deep reinforcement learning — Hado van Hasselt

Neural network training pipeline

Human expert
positions

Supervised Learning
policy network

Self-play data Value networkReinforcement Learning
policy network

AlphaGo (Mar 2016)

AlphaGo (Oct 2015)

Lee Sedol (9p)
Top player of
past decade

Fan Hui (2p)
3-times reigning
Euro Champion

Internal Testing Calibration External Testing

Wins 5/5 Matches

Wins 4/5 Matches

AlphaGo (May 2017) Ke Jie (9p)
World number 1

Wins 3/3 Matches

Deep reinforcement learning — Hado van Hasselt

Planning with learned models

Deep reinforcement learning — Hado van Hasselt

● We discussed learning policies and values
● What about models?

Learning models
Motivation

Deep reinforcement learning — Hado van Hasselt

● We discussed learning policies and values
● What about models?
● Models would allow us to plan

○ Planning is useful in combinatorial and compositional domains
○ Trade off local compute to trying to store everything
○ Would allow us to use great planning algorithms

Learning models
Motivation

Deep reinforcement learning — Hado van Hasselt

Example
Random Mazes

Deep reinforcement learning — Hado van Hasselt

Example
Pool

Deep reinforcement learning — Hado van Hasselt

● Learning models from raw inputs is hard
○ What should our model capture - pixels?
○ Objectives do not match: potentially focus on irrelevant details

Learning models
Complexities

Deep reinforcement learning — Hado van Hasselt

● Learning models from raw inputs is hard
○ What should our model capture - pixels?
○ Objectives do not match: potentially focus on irrelevant details

● What to do with an imprecise model?
○ Many planning algorithms assume model is perfect

Learning models
Complexities

Deep reinforcement learning — Hado van Hasselt

● Main idea: learn an abstract model
● The model should be good for planning
● But it does not have to match the real dynamics

○ See also “Value iteration networks” (Tamar et al., 2016)

The Predictron
(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

Deep reinforcement learning — Hado van Hasselt

The Predictron
(Silver, van Hasselt, Hessel, Schaul, Guez, et al., 2016)

Deep reinforcement learning — Hado van Hasselt

The Predictron
Learning abstract models

● Idea: compute looks like planning, but we do not have a separate
model-learning objective

● Instead, the goal is to optimize the outcome of planning with the learnt
model

● Then, learn all components end-to-end
● A model is learnt, because by construction a model exists
● But model-semantics (e.g., what does each state mean?) is not prefixed

Deep reinforcement learning — Hado van Hasselt

The Predictron
Learning abstract models

Grounded abstractions - DeepMind Retreat 2017 — Hado

● Left:
Random maze +start position

● Right:
Trajectory for some policy:
this is the target

● Middle: Internal
partial plans appear in the
predictron representation

● Partial trajectories were not in
the data

● Internal plans compose
sequentially into full
trajectories

Trajectory prediction with the abstract model

The Predictron

THANK YOU

