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What's a Bayesian Hypernet?

Hypernet: a DNN that generates params
of another DNN (the “primary net”) Task: predict y from x

z ~ N(0, 1) y = fo(z)

Hypernet h Primary Net

/@, 0 = h(z)

Think GAN / VAE / Real NVP




What is a Bayesian Neural Net?

Bayes Rule: 9|D OC p D|9
Predlct using ensemble:

n/ \ pule) = | plylz.Op(6ID)ds
o

AN 0.3 1. | . WelghtUncertalntyln Neural
M Networks” - Blundell et al 2015




What's special about Bayesian Neural Nets?

Bayes Rule: 9 ‘D OC D 9
| p | “Knows what it knows”

“That's my hest guess I'm 99% sure!”
/ \ “Calibrated confidence”

Welght Uncertainty in Neural

% Networks” - Blundell et al 2015




Example: self-driving cars

Q: Is there a person in the road?
Car: No, and.... — “'m 51% sure!”

“That's my best guess” “§— “I'm 99.999999% sure!”
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Concrete Problems in Al Safety

Dario Amodei* Chris Olah* Jacob Steinhardt Paul Christiano

Google Brain Google Brain Stanford University UC Berkeley
John Schulman Dan Mané
OpenAl Google Brain

e Five “concrete problems”, calibrated confidence helps in 4/5



Avoiding Negative Side Effects: How can we ensure that our cleaning robot will not
disturb the environment in negative ways while pursuing its goals, e.g. by knocking over a
vase because it can clean faster by doing so? Can we do this without manually specifying
everything the robot should not disturb?

Avoiding Reward Hacking: How can we ensure that the cleaning robot won’t game its
reward function? For example, if we reward the robot for achieving an environment free of
messes, it might disable its vision so that it won’t find any messes, or cover over messes with
materials it can’t see through, or simply hide when humans are around so they can’t tell it
about new types of messes.

Scalable Oversight: How can we efficiently ensure that the cleaning robot respects aspects of
the objective that are too expensive to be frequently evaluated during training? For instance, it
should throw out things that are unlikely to belong to anyone, but put aside things that might
belong to someone (it should handle stray candy wrappers differently from stray cellphones).
Asking the humans involved whether they lost anything can serve as a check on this, but this
check might have to be relatively infrequent — can the robot find a way to do the right thing
despite limited information?

Safe Exploration: How do we ensure that the cleaning robot doesn’t make exploratory
moves with very bad repercussions? For example, the robot should experiment with mopping
strategies, but putting a wet mop in an electrical outlet is a very bad idea.

Robustness to Distributional Shift: How do we ensure that the cleaning robot recognizes,
and behaves robustly, when in an environment different from its training environment? For
example, heuristics it learned for cleaning factory workfloors may be outright dangerous in an
office.

«— Reward uncertainty

«— | don’t know, %
ask Tom Everrit @

< active learning

«— safe exploration

«— anomaly detection



Technique



Variational Inference for Bayesian DNNs
e ELBO:

L(¢) = Ey,|log p(D]0)+log p(8)—log q4(6)]
log p(D) = L(6)+K L(ge(8)||p(6|D)) \

constant maximize minimize Encourages stochasticity!

e Examples:
Weight Uncertainty
Variational Dropout / MC dropout



Problem with Variational Inference: KL divergence

Variational inference can underestimate uncertainty!

KL(p(0|D)lgs(9))

K L(q4(0)|p(0|D))

P = true posterior
(mixture of Gaussians)

Q = variational approx
(Gaussian)



Are Bayesian Hypernets the solution?

e Previous work: approximate posterior is factorial:
e Use a DNN! q¢(0|D) = | | a(6;|D)
o = ¢q(f|D) can be dependent, multimodal  ;

2~ N(0,1) y = fo(x)

Hypernet Primary Net Note: h must be invertible!
Z > f — h(z) ...but the image of h can be a
subset of RM|thetal, unlike
with NICE (generative model)




Some Qualitative Results:

Multimodality Correlation
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Background: Hypernetworks

input
— Wiz Wizg) — - -
r r r r “‘Dynamic Filter Networks”
- Brabandere et al. 2016
Zy Z3 ZN-1 ZN
“Learning feed-forward
one-shot learners” -
Static Hyper Network Bertinetto et al. 2016

W “‘HyperNetworks” -
Ny x 1 i) > N X Moyt Ha et al. 2016




Background: Weight Normalization

Reparameterization

* Express weights as function of new parameters

“Weight Normalization” -
g : )
W=—YV Salimans and Kingma
|[v]] (slide from NIPS 2016 talk)

« Minimize loss with respect to new parameters Vv, b, g

* Decouples direction and length of weight vector

Ly, we )




Background:

Inference X
I~ DPx

2= f(z)

Generation
Zr Dz

z=f"(2)

Invertible Deep Generative Models

Data space &' Latent space Z
‘,e*"""ﬁ'*'"i Key property: tractable
§ E % 3 N 5 likelihood (via change
L " 4 of variable):
T

99(2)\ |
px(z) = pz(2) de‘?( 82T )‘
(figure and equation:

= “Density Estimation via

Real NVP” - Dinh et al.
2016)




Some results (5000 examples of MNIST):

MNIST 5000 (A) MNIST 5000 (B)
No. of No. of
Coupling Layers Test Accuracy Coupling Layers Test Acouracy
0 92.06% 0 90.91%
8 94.25% 8 96.27%
12 96.16% 12 96.51%
dropout 95.58% dropout 95.52%

Table 2: Generalization results on subset (5000 training data) of MNIST. (A) MLP with 800 hidden
nodes. (B) MLP with 1200 hidden nodes.



QUESTIONS?




