amil
Temporal-Difference Learning

Rich Sutton

Reinforcement Learning & Artificial Intelligence Laboratory

Alberta Machine Intelligence Institute
Dept. of Computing Science, University of Alberta
Canada

1Y Of
A‘&s\ &2
%
> ¢
Q> ¢ Ay
45¢UMQ UEQ“

We are entering an era of vastly increased computation

]015

10'°

alculations per Second per $1000

~
—

1900 10 20 30 40 50 60 ‘70 80 9%C 2000 ‘102017

from Kurzweil Al

Methods that scale with computation
are the future of Al

* €.9., learning and search

e general-purpose methods

* One of the oldest questions in Al has been answered!

 "weak” general-purpose methods are better
than “strong”™ methods (utilizing human insight)

* Supervised learning and model-free RL methods
are only weakly scalable

Prediction learning is scalable

* |t's the unsupervised supervised learning
 We have a target (just by waiting)

* Yet no human labeling is needed!

* Prediction learning is the scalable model-free learning

Real-life examples of action and prediction learning
Perception, action, and anticipations, as fast as possible

LY. M

| \

40x Slower

elandresmessi

Temporal-difference learning
'S a method for learning to predict

* Widely used in RL to predict future reward
(value functions)

« Key to Q-learning, Sarsa, TD(A), Deep Q network, TD-
Gammon, actor-critic methods, Samuel's checker player

e but not AlphaGo, helicopter autopilots, pure-
policy-based methods...

* Appears to be how brain reward systems work

 Can be used to predict any signal, not just reward

1D learning is learning a prediction
from another, later, learned prediction

e |.e., learning a guess from a guess

« The TD error is the difference between
the two predictions, the temporal difference

* Otherwise TD learning is the same as
supervised learning, backpropagating the error

Example: TD-Gammon Tesauro, 1992-1995

T E—
__—
L:>

) ——

Y v
A A

=

466000 estimated state value
R — . f . .
- (= prob of winning)

. se—

= Action selection

S = by a shallow search
=

Start with a random Network

Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

But do | need TD learning”
or can | use ordinary supervised learning?

RL + Deep Learning Performance on Atari Games

ESEE—SEE ESEEEEEE o449 = |

EEENNEN
aoeMe®

DR D R DR
el gane

2 29292 . |
ﬁlﬂﬂﬂﬂ / \
*:
Ny A A | w
0002k
e e {1 EIKD
S TSI0N

Space Invaders Breakout Enduro

RL + Deep Learning, applied to Classic Atari Games

Google Deepmind 2015, Bowling et al. 2012

o Learned to play 49 games for the Atari 2600 game console,
without labels or human input, from self-play and the score alone

Convolution Convolution ~ Fully connected Fully connect
v v v v

to predictions

of final score
for each of 18
joystick actions

mapping raw
screen pixels

Same learning

 Learned to play better than all previous algorithms Pty
and at human level for more than half the games bty

1D learning Is relevant only on
multi-step prediction problems

* Only when the thing predicted is
multiple steps in the future

e with information about it possibly revealed
on each step

* |n other words, everything other than the
classical supervised learning setup

Examples of multi-step prediction

Predicting the outcome of a game, like chess or backgammon

Predicting what a stock-market index will be at the end of the
year, or in six months

Predicting who will be the next US president
Predicting who the US will next go to war against
* or how many US soldiers will be killed during a president’s term

Predicting a sensory observation, in 10 steps, in roughly 10 steps,
or when something else happens

Predicting discounted cumulative reward conditional on behavior

Do we need to think about
multi-step predictions”

« Can’t we just think of the multi-step as one big step,
and then use one-step methods”

 Can’t we just learn one-step predictions, and then

iterate them (compose them) to produce multi-step
predictions when needed?

 No, we really can’t (and shouldn’t want to)

The one-step trap:
Thinking that one-step predictions are sufficient

 That is, at each step predict the state and observation one
step later

* Any long-term prediction can then be made by simulation
* In theory this works, but not in practice

 Making long-term predictions by simulation is
exponentially complex

e and amplifies even small errors in the one-step predictions

* Falling into this trap is very common: POMDPs, Bayesians,
control theory, compression enthusiasts

Can’'t we just use our familiar one-step
supervised learning methods?

(applied to RL, these are known as Monte Carlo methods)

e Can't we just wait until the target is known, then use a one-step
method? (reduce to input-output pairs)

 E.g., wait until the end of the game, then regress to the outcome
* No, not really; there are significant computational costs to this

e memory scales with the span (#steps) of the prediction

e computation is poorly distributed over time
* These can be avoided with learning methods specialized for multi-step
* Also, sometimes the target is never known (off-policy)

* \We should not ignore these things; they are not nuisances, they are
clues, hints from nature

New RL notation

e |ife: So, Ao, R1,51, A1, Ry, 59, ...

/1A

State Action Reward

Definition Discount rate, e.g., 0.9

. s 2 3
* Return: Gy =Riy1 +VYRip2 + 7V Reys + 7V Reya + -+

= Riy1 +v(Ripo + YRi3 + 7 Reya+)
= Ri11 + Gy

e state-value tunction: vx(s) =E;[G: | St=s]
4 = Ex|Ri+1 +7vGey1 | Se=5]

True value of state s
under policy w 1 i
Ko

Riy1+ 70 (Si41) | Se=s]

Estimated value function

v
e D error: Riy1 + ’YV(St—H)_‘V(St)

Monte Carlo (Supervised Learning) (MC)

V(S,) < V(S)+a|G, -V(S)]

Simplest TD Method

V(S,) < V(S)+a|R, +yV(S,)-V(S)]

N o

cf. Dynamic Programming

V()< E, R, +7V(S,,)]

TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ Dynamic Programming bootstraps
@ TD bootstraps
@ Sampling: update does not involve an expectation
@ MC samples
@ Dynamic Programming does not sample

@ TD samples

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S) V(S)) |G = V(S)

Step-size
parameter

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(St) < V(St) +a [’Rt—l—l + ’YV(StH)’ — V(St)]
|

target: an estimate of the return

Example: Driving Home

Elapsed Tvme Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 30 40
exiting highway 20 15 30
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
__actual outcome
A A
_ 40 -
Predicted

total

travel 35-
time

30

leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Predicted
total
travel
time

Changes recommended
by TD methods (a=1)

45
actual
outcome
40
35 4
30

1 I | | | |
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Advantages of TD Learning

@ TD, but not MC, methods can be fully incremental

@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation

@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster?

Random Walk Example

. 0 . 0 . 0 . 0 . 0 . 1 |:|

start

0.8 -

0.6 -
Estimated
value 0.4 -
Values learned by TD after 0.2 7
various numbers of episodes
0 , : I | |
A B C D E
State

TD and MC on the Random Walk

(0.25 =

0.2

RMS error, 0-15-
averaged
over states 0.1

0.05 7

0 | 1 I |
0 25 50 75 100

Walks / Episodes

Data averaged over
100 sequences of episodes

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small a.

Constant-oo MC also converges under these conditions, but to
a difference answer!

Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15+
averaged
over states .14

05 1D

0 i I I |
0 25 50 75 100

Walks / Episodes

After each new episode, all previous episodes were treated as a batch, and
algorithm was trained until convergence. All repeated 100 times.

You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0

B, 1

B, 1 V(B)? 0.75
B, 1

B, 1 V(A)? 07
B, 1

B, 1

B, 0

Assume Markov states, no discounting (y = 1)

You are the Predictor

V(A)? 0.5

@ The

@ T

You are the Predictor

prediction that

best matches the training data 1s V(A)=0

11S minimizes t

@ T

@ If we consic

@ T

Markov model

@ 1e,if wedoal

ne mean-square-error on the training set

n1s 1s what a batch Monte Carlo method gets

er the sequentiality of the problem, then we

would set V(A)=.75

1S 1S correct for the maximum likelihood estimate of a
| generating the data

best fit Markov model, and assume it 1s

exactly correct, and then compute what 1t predicts (how?)

@ T

n1s 1s called the

@ T

certainty-equivalence estimate

n1s 18 what TD gets

Summary so far

& Introduced one-step tabular model-free T'D methods

® These methods bootstrap and sample, combining aspects of

Dynamic Programming and MC methods

» TD methods are computationally congenial
& If the world 1s truly Markov, then TD methods will learn

faster than MC methods

& MC methods have lower error on past data, but higher error

on future data

Unified View

width : |
of backup Dynamlc

Temporal- _
programming

difference
learning

height
(depth)
of backup

@ .
) Exhaustive

Monte search

Carlo O 0

®

I

Learning An Action-Value Function

Estimate gr for the current policy m

—@ oRt”@ 0Rt+2@ QRH?’@ ®
St,At St+1;At+1 U St+2,At+2 U St+3)At+3

After every transition from a nonterminal state, S,, do this:

0(S,.A) < O(S,.A)+a| R, +70(S,,..A,) - Q(,.A)]
If §,,, 1s terminal, then define Q(S,,,,A,.,)=0

r+1

Sarsa: On-Policy TD Control

Turn this 1nto a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) « Q(5, A) + a[R+7Q(5", A7) — Q(S, A)]
S« S A A

until S is terminal

Windy Gridworld

Wind: 0 0 O 1 1 1 2 2 1 0O

undiscounted, episodic, reward = —1 until goal

Results of Sarsa on the Windy Gridworld

150 - | / |
e 1
100 -
Episodes 0001 11 2210
50 ~
0_

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

Q-Learning: Off-Policy TD Control

One-step Q-learning: I

Q(St, Ar) < Q(S, At) + @ [Rtﬂ + Y max Q(Si+1,a) — Q(St, At)} /8\

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) < Q(S, A) + a[R + ymax, Q(5', a) — Q(S, A)]
S+ S’

until S is terminal

Cliffwalking

R=-11) = | safe path

- optimal path

e—greedy, € =0.1

Sarsa
:Z:j‘ -
/n f’l f
\ A A | , « £\ o PN N A
Reward =501 [V M PNVAWR Y ":ﬁ \'\#'T L,{ NS \ f“.‘/\f \,_,Jf ku
per Q-learning
epsiode
75
=100 T T T T 1
0 100 200 300 400 500

Episodes

Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(Si, Ar) = Q(St, Ar) + | Ryt + VE[Q(St11, Ar) | i) = Q(Sh, Ar)|

— Q(St, Ar) + :Rt+1 + ”VZW(CL\StH)Q(StH, a) — Q(St, At)}

° °
v v

A /1N

y Y
® o © e o o

(Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)

van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task

0
| M v V—V—V— E x o o X > f)(X X
40 - Asymptotic Performance Expected Sarsa_.
—a—a8—8—8—8—8—8—F—F8—g—8—8—f— 1
_ Q-learning xxx *
Reward e A e R AN JA
per -80 | .~”x:~‘v““z:.--D"'DmIDI‘IEN '
episode XV
- v &
x @ Interim Performance
o0l -7 (after 100 episodes)
o
¥ i
il

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case 1t includes Q-learning as the special case in which
7t 1s the greedy policy

Q(St, Ar) + Q(S, Ar) + « :Rt—H +YE|Q(St+1, At41) | Sex1] — Q(St, At)}

— Q(S5t, At) + a :Rt+1 + ”VZW(CL!StH)Q(StHa a) — Q(St, At)}

Nothing
changes o o
here
—— A4 A4
A /N
® o o ® o o
(Q-learning Expected Sarsa

@ This 1dea seems to be new

Summary

Introduced one-step tabular model-free TD methods

These methods bootstrap and sample, combining aspects of
Dynamic Programming and MC methods

TD methods are computationally congenial

If the world 1s truly Markov, then TD methods will learn
taster than MC methods

MC methods have lower error on past data, but higher error
on future data

Extend

ing prediction to control

@ On-policy control: Sarsa, Expected Sarsa

@ Off-policy control: Q-learning, Expected Sarsa

Avoiding maximization bias with Double Q-learning

4 examples of the effect of bootstrapping

suggest that A=1 (no bootstrapping) is a very poor choice
(i.e., Monte Carlo has high variance)

MOUNTAIN CAR

700
A5 —
500 accumulating+
traces 2
Steps per .., =’
episode S $
500 T3 . /
sl
4507 replacing ¥
traces
400 T T T T
J 1.z a4 (LN .4 |
In all cases, A
lower is better
v o PUDDLE WORLD
0 ®
220 4
210-.
Cost per 20 o
episode o - replacing
1 races
1801 T - & .
170] i e :4;
160 i
150 T T T T
0 0.2 0.2 0.6 0.8 1
Pure A No
bootstrapping

RANDOM WALK

accumulating
traces

.

~
‘\“‘O—';‘,‘g,.ﬂ)

replacing

@' 0.5

a)

.:)]
54

T T T
{ 0.2 (.4 (0.6

A

.5

CART AND POLE

traces
I 1

O
A

Bl 2T

I

accumulating |
traces g
NPT
" g

18]
'
[3a]

9

T T T
0 12 0.4 .t

A

.8

bootstrapping

T
1

=0.4

- 0.3

- 0.2

I 300

=240

200

- 150

- 100

30

RMS error

Red points are
the cases of no
bootstrapping

Failures per
100,000 steps

With linear function approximation,
TD converges to the TD fixedpoint, Orp,
a blased but interesting answer

parameter feature
veetor transpose VeCLor - : :
TD(0) update: <We'fht8> Fi for S, Fixed-point analysis:
0111 =0, + Oz(Rt+1 +0, Pii1 — 9;@) Py b—A6rp =0
T = b=A601p
= 6; + Oé(Rt+1¢t — ¢t (Pr — YPei1) 9t> N 0, = A-lh
Guarantee:
Telak 1
In expectation: MSVE(0rp) < +—— min MSVE()
— 7

E[9t+1‘9t] — Ht —+ Oé(b — Agt),
where

b=E[Ri11¢; €R" and A=E [¢t<¢t — W¢t+1)T} c R" x R"

Frontiers of TD learning

Off-policy prediction with linear function approx

Non-linear function approximation

Convergence theory for TD control methods

Finite-time theory (beyond convergence)

Combining with deep learning

* e.0., Is areplay butter really necessary?

Predicting myriad signals other than reward,

as In

orde, Unreal, and option models

1D learning Is a uniquely important
Kind of learning, maybe ubiquitous

e |tis learning to predict, perhaps the only scalable kind of learning

* |tis learning specialized for general, multi-step prediction,
which may be key to perception, meaning, and modeling the world

e |t takes advantage of the state property
* which makes it fast, data efficient

* which also makes it asymptotically biased
* |t is computationally congenial

 We have just begun to use it for things other than reward

