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*Part 1: Why and what?

*Part 2: Batch learning

*Part 3: When you have a simulator

*Part 4: No simulator; learning “out there”
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What we will not cover

*95% of what exist out there

*We will only cover
*Simplest tasks
*Principles

e |llustrate hurdles to overcome




(13 slides)

What and why?

..no slinking yet!




What and why?

*What do you mean by “theory”?

.!Alhat EIE !ls|| HﬁEaH IS” IIRLII?
*Who needs theory?

*How does learning theory work?




What is a “theory” (for us)?

*Models
e Mathematical

*Predictions

e .. about how things will turn out to be; aka
performance “bounds”




Who do you want to be?? vx=--%
\k- VVX.EZ,Z&: OB
070 ¢

Guglielmo Marconi (1874—1937) James Clerk Maxwell (1831-1879)




| won’t do theory. Should | care?

*Yes! (W' ®
. O\/

*Predictions/theory

help you to.. 7 Hls
*Design algorithms

* Understand their behavior
* Quantify knowledge/uncertainty
*|dentify new/refine old challenges

z:.;,;. £ §> »:a. &
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Theory and

practice




Statistical learning theory:
ingredients

*Distributions F&ZF
°i.i.d. samples S.~ P AT
*Learning algorithms A: S}Mu Q\MM‘
*Predictors t &5

e oss functions




What to predict?

*A priori analysis:
How well a learning alg. will perform on
new data

*A posteriori analysis:
How well is a learning alg. doing on some
data? Quantify uncertainty left




A priori analysis
* Problem #1.:

* Can we compete with best hypothesis from a given set
of “hypotheses”?

* Vapnik’s learning theory

° Problem #2:

* Can we match the best possible loss assuming the data
generating distribution belongs to a known family?

* [non-]parametric statistics
* Problem #3:

* Does algorithm X achieve Y?




A posteriori analysis

*Quantify uncertainty of prediction loss

* Analyze methods like cross-validation (how
big should the error bars be!?)

*Design “self-bounded” algorithms (ala Yoav
Freund)




Two fundamental results in SLT

Fundamental theorem of SLT

*The computational complexity of Iearnmg
linear classifiers




(Problem #4)
The fundamental theorem of SLT

. In binary classification, to match

the loss of best hypothesis in class H up to

accuracy €, one needs @(VC(}[) )

~observations.

('o"\ . .
*Pure information theory, “ERM”

| https//wwwcs.0xac.uk/people/varun kanade/teaching/AML-HT2017/lectures/lecture09.pdf
- A@h\y"ﬂ E\\ [ - E’\\y-ﬁ E\\ 17 - %\\g}"ﬂ E\\ 1 w— /@h\}?@"ﬁ



Computational complexity P

: Unless NP=RP, linear classifiers

(hyperplanes!) cannot be learned in

~ polynomial-time.

& *\WWhat now?
*Hah, we can change the problem!

| https//wwwcs.0xac.uk/people/varun kanade/teaching/AML-HT2017/lectures/lecture09.pdf
- E’\\y"ﬁ E\\ [ - E’\\y-ﬂ E\\ 17 - %\\y"ﬂ E\\ 1 w— A@%\\)ﬁ”m



Questions?




(6 slides)

Batch learning

..can we copy supervised learning?




Batch RL: The learning problem

* Data:
* (X, Ay, Yy, R)Y . iid where
Xt ~ U Ap ~ 7T(' ‘Xt): Yi ~ PAt("Xt):
Ry = r(Xe, Ae, V),
* H: horizon

e [1: class of policies
*Goal: Find e-optimal policy in II.




Batch RL and supervised learning

*Recall the value of Markov policy m:
— \'H t
Ve(x) = t=0 P -
Here, P, is Markov transition matrix (“kernel”) under m,
while 7;; is the reward vector (“function”).

*Corollary 1: For H = 0, batch RL is “cost

sensitive classification” with cost —r(x, a) at
input x and “label” a and “hypothesis class” II.




Batch RL and supervised learning

* Corollary 1: For H = 0, batch RL is “cost sensitive
classification” (CSS) with cost —r(x, a) at input
x and “label” a and “hypothesis class” II.

* Corollary 2: The “Batch RL” learning problem is at
least as hard as CSS

* CSS: cost is typically uniform (no dependence on
input), and is known.

e CSS with unknown cost function: SLT does not
consider this




*Theorem: For H = 2, the sample complexity
of batch RL is “infinite”.




What is the problem?

*Critical decision at 0.5, but in the data, 0.5
does not appear!

*\What’s next?

* “Better sampling distributions”; e.g. 0.5 should
be in the data!

* But in fact all “keyhole states” should be in the
data!? Too much?




A “generic” recipe for positive result

*Write approximate value iteration as
Qev1 = T0Q: + €

*|f all the errors €; are “small”, then the

greedy policy w.r.t. 0+ will not be “too bad”

*How to control errors? e B

*How many iterations (7'=7?)? s e




Questions?

..are you ready for the next run..?




(11 mins)

.when you have a simulator

..anyone wants to play Atari games?




Planning problem

*Given a huge MDP, goal is to compute a:
*Good policy (from II); or

* A good action of a good policy from II at a
given state x.

*Which one is easier?

Computational problem!




Working with large MDPs

e Deterministic access:

* Can ask for transition probabilities/densities p(y|x, a),
rewards r(x, a) for any (x,a,y).

* Stochastic access/ “generative model”/simulator access:

e Can as
e Can as
e Can as

< for simulating transitions/rewards at any (x, a).
K to generate states from u

< for simulating transitions/rewards at any (x, a) for

x reached earlier.




Fitted Value Iteration

Sampling based fitted value iteration — multi-sample variant

1: function SFVI-MULTI(N. M. K., u, F, P, S)
2: V «— 0// approximate value function
3: fork=1to Kdo
4. fori=1to Ndo
5. Draw X; ~ p, /"% ~ P(-|X;. @), RB"% ~ S(|X;. a),
j=1,....M,ac A
6: end for
7 U — maxaeq {1m M, (Rj?(i,a LV iji,a))}
8: V — argmin,_r SN (F(X;) — V;)2 // fitting
9: end for
10: return V




New problem: Instability

@ Bellman operator:

@ Tsitsiklis & Van Roy (1996) (TV)(X1) = 0+~V(x%)
@ State space: X = {xq, X2} (TV)(x2) = 0+~V(x).
@ Dynamics:
0 @ Function-space:
p F={0¢0|0 R},
0
S B0xn) =1, Blxe) = 2.

lteration:

Otr1 = argming|0¢ — T(6:9)]|2
= argming(f — 7260;)% + (20 — 726;)? = (6/57)0; — +o0




Learning: Safely Approximating the Value Function”, NIPS-7,
Continuous Gridworld

From: Boyan & Moore: “Generalization in Reinforcement
1995.

Disaster strikes

J*(x,Y)

g

0.20.40.6 0.8 1

1
0.8
0.6

'With thanks to Justin Boyan




..and with neural nets

Car-on-the-Hill J*(pos,vel)

Iteration 11 Iteration 201




Conclusions..?

@ ’In light of these experiments, we conclude that the
straightforward combination of DP and function
approximation is not robust.” (Boyan & Moore, NIPS-7,
1995)

@ Unfortunately, many popular functions approximators, such
as neural nets and linear regression, do not fall in this?

class (and in fact can diverge). (G. Gordon, ICML, 1995).




Pushing it harder

V' =Vrp, <

/

2§ O P dTFF) +

—)

\

1/2p
e (5 (os() + log(ic/a)) )+

¢ (i (log(N|A|) + log(K/5)>) 1/2} ™




Fully cgnnected

4

Fully connected

Convolution
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Convolution
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* Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu!, Joel Veness', Marc G. Bellemare!, Alex Graves!,

Martin Riedmiller', Andreas K. Fidjeland!, Georg Ostrovskil, Stig Petersen’, Charles Beattie', Amir Sadik’, Ioannis Antonoglou?,

Helen Kingl, Dharshan Kumaran', Daan Wierstra', Shane Legg1 & Demis Hassabis'

From FVI to DQN

Human-level control through deep reinforcement

learning

Volodymyr M:



Convolution

From FVI to DQN -

K}
oE] E/
H-oeni:-0iiciEg
R
* How did this happen?? -
* i is not fixed, but is slowly(!) changed (“experience

replay”)
* “Right” bias through convolutional neural nets

 Better fit of data and better bias both explained by
theory

*..it'd be good to see some data published on the
relative importance of the individua

III

tricks” used




Map of planning methods

* Forward methods:
* Lookahead tree building

* Global methods:
e Approximate dynamic programming
* Policy search
* Hybrids

* Hybrid forward and global methods




Questions?

..are you ready for the next run..?




(12 slides)

..no simulator, no pain..? Uh..no..

When things became “real”




Defining online learning

*Interact with “real” system
*Collect as much reward as possible!

* Performance metric:
* Total reward collected, or..
*Regret: Difference to baseline (normalizing)

e PAC-MDP: not covered




Why should you care?

* Alternative: Model-based RL
* Learn a model & use planning (see
previous part)
* Problems with model-based RL:
* Models can be too expensive to build
* Uncontrolled model inaccuracies may lead
to poor behavior
* Opportunity: Online learning can be cheaper

* ..but.. online learning can and often does use model
learning..




The challenge ALA
¢ )

105 L — Swim'mer ’,/’4
- - Random ’,«’ @ ‘
10° | ’,»’/
2 10* /'/ :
3 * Problem #1:
E Random behavior is often ineffective in exploring the
S environment
* Problem #2:
102 Biasing towards best policy found makes things much
worse!
10 L . . ‘ . . |
8 10 S e 18 * Need: Principled way of trading off reward and
uncertainty
# time steps before bounty found using random “explore or exploit”?

and “swimmer” policies




meow:a:%f. com T}
Warmup: Bandits/terminology

* Bandits = RL problem with a single state

* Contextual bandits: RL problem when next

state is chosen at random independently of the
action chosen

Linear bandits: (Contextual) bandits when
reward is linear in features of state-action pairs




The key result on (stochastic) bandits

*Simple e-greedy, 100 ‘ —EIC(m=23
. ETC (m =175
Boltzmann/Gibbs, " —gggm_ﬂ?&)
3 —_— optimal m
explore-then-commit £ — U
(ETC) fail to adapt L
* Optimistic algorithms 2%

(e.g., UCB) adapt
optimally

0.2 0.4 0.6 0.8 1
A

-}

2 arms, unit variance Gaussian rewards with
means 0 and —A, horizon 1000




Optimism in the face of uncertainty

The optimism 1n the face of uncertainty principle states that one should choose their
ot | actions as if the environment is as nice as plausibly possible.

21og(1/96)
T(t—1)

UCB;(t —1,9) = ;(t — 1) + J

1: Input K and o
2: Choose each action once
3: For rounds ¢t > K choose action

A; = argmax; UCB;(t — 1, 6)




An instance-dependent result

: Assume rewards are Gaussian
with unit variance or less, and unknown
means. Set § = 1/n*. Then, the expected
regret R,, of UCB satisfies:




An instance-independent result

: Using § = 1/n* as before, on any
Gaussian unit variance environment, the
expected regret of UCB satisfies




Lower bounds

: The upper bounds shown above are
optimal up to a constant factor.

Further, by better tuning, UCB can be made
strictly optimal in an asymptotic sense.

- E’\\y‘m g\\ [ - AQ—TV\\;?-P? %\\ 17 - A@iﬂ\\g}}"ﬂ E\\ 1 w— %\\y"ﬂ



How about MDPs?

S states, A actions, rewards in [0,1].

Definition: Diameter := maximum of best travel times
between pairs of states. River swim: D =S

 Theorem: The regret of an OFU learner satisfies
Rr = O(DSVAT)
« Theorem: For any algorithm,

@
fmﬂ”ff Lt

Ry = Q(VDSAT)




Principled methods for exploration

*Optimistic methods

*Posterior sampling
* Follow-the-perturbed-leader

*Optimal sampling




Frontiers

30 Jun 2017

venture

Noisy Networks for Exploration

Meire Fortunato®* Mohammad Gheshlaghi Azar* Bilal Piot *

Jacob Menick Ian Osband Alex Graves Vlad Mnih
Remi Munos Demis Hassabis Olivier Pietquin Charles Blundell
Shane Legg
DeepMind

{meirefortunato,mazar,piot,
jmenick,iosband,gravesa,vmnih,
munos,dhcontact,pietquin,cblundell,
legg}@google.com
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(a) Improvement in percentage of NoisyNet-DQN over DQN [21]]

Count-Based Exploration with Neural Density Models

Georg Ostrovski! Marc G. Bellemare! Aiiron van den Oord! Rémi Munos '

% Improvement DQN-CTS over DQN (by AUC)

200%
Bl Easy exploration (40) 150
B Hard exploration, dense reward (10) ’
Bl Hard exploration, sparse reward (7) 100%
6 - o
0%
-50%
-100%
% Improvement DQN-PixelCNN over DQN (by AUC) 00%
Bl Easy exploration (40) L50%
B Hard exploration, dense reward (10) ’
El Hard exploration, sparse reward (7) 100%
50%
3
X O X wn 00/0
) 253 -50%
© -100%




Questions?

..are you ready for the next run..?




Conclusions/summary

..we deserve that break, don’t we?




* Mathematical Model+Predictions = Theory

*Theory can help practice, empirical work
inspires/ignites theory work

*RL # Supervised Learning
* Information mismatch ﬂ
* Computation
* Batch, simulation, online

*Not touched: mixing & uncertainty
guantification, beyond MDPs, why probabilities
and many others




*The unique distinguishing feature of theory:
* Negative results (aka lower bounds)

*What to do with negative results?

*Remember them!

« Twist problem to be solved Q p
*“Bad theory”

snecorrectproofs

*Bad modeling assumptions




Questions?




