SeaRNN: training RNNs with global-local losses

Rémi Leblond*,

Jean-Baptiste Alayrac*,

INRIA / Ecole Normale Supérieure

Anton Osokin,

Simon Lacoste-Julien

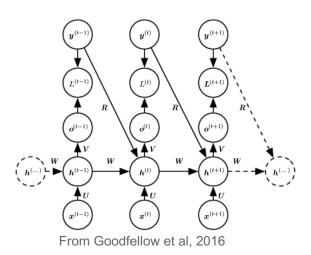
MILA/DIRO UdeM

*equal contribution

RNNs: models for sequential data

Produce a sequence of hidden states by repeatedly applying a **cell** or **unit** on the input.

Can predict based on their **previous outputs**.

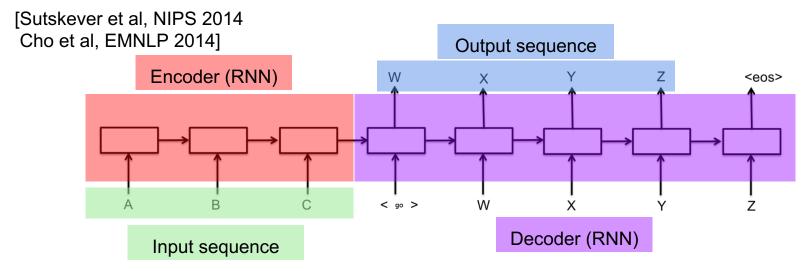


$$h_t = f(h_{t-1}, y_{t-1})$$

$$s_t = \text{proj}(h_t)$$

$$o_t = \text{softmax}(s_t)$$

Encoder-decoder architecture



The **encoder** RNN maps the input sequence into a **compact representation** that is fed to the **decoder** RNN. The decoder outputs a sequence by taking **sequential decisions** given the past information.

State of the art for translation and other tasks.

Standard training

Probabilistic interpretation:

$$o_t = P(Y_t|X, Y_1, ..., Y_{t-1})$$

Chain rule:

$$\prod_{t=1}^{T} o_t = P(Y_1, ..., Y_T | X)$$

Training with MLE (teacher forcing): ma

$$\max_{\theta} \sum_{i=1}^{n} \log(P_{\theta}(Y = Y_X | X))$$

Known problems of MLE:

- * different from the test loss,
- * *all-or-nothing loss* (bad for structured losses),
- * exposure bias leading to compounding error.

Existing approaches: Bahdanau et al (ICLR 2017), Ranzato et al (ICLR 2016), Bengio et al (NIPS 2015), Norouzi et al (NIPS 2016)

Structured prediction

Goal: learn a prediction mapping f between inputs X and structured outputs Y, i.e. outputs that are made of interrelated parts often subject to constraints.

Examples: OCR, translation, tagging, segmentation...

Difficulty: there is an exponential number (with respect to the input size) of possible outputs (K^L possibilities if K is the alphabet size and L the number of letters).

Standard approaches: SVM struct, CRFs...

Learning to Search, a close relative?

[SEARN, Daumé et al 2009]

Makes predictions **one by one**: each Yi is predicted sequentially, conditioned on X and the previous Yj (instead of predicting Y in one shot).

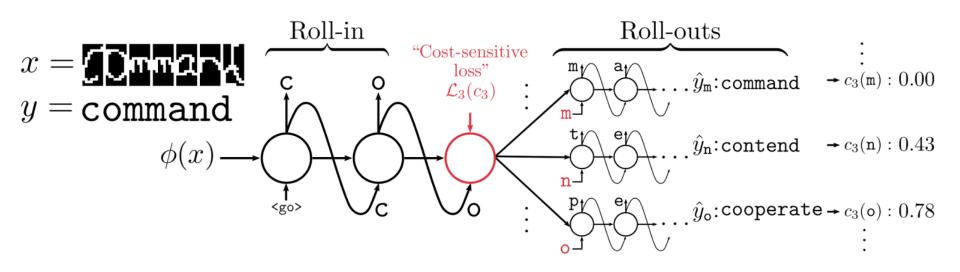
Enables **reduction**: instead of learning a global classifier for Y, we learn a **shared classifier** for the Yi.

Reduces SP down to a **cost-sensitive classification** problem, with **theoretical guarantees** on the solution quality.

Bonus: it addresses the problem mentioned before with MLE!

L2S, roll-in/roll-out

Trained with an **iterative procedure**: we create **intermediate datasets** for our shared cost sensitive classifier using **roll-in/roll-out** strategies.



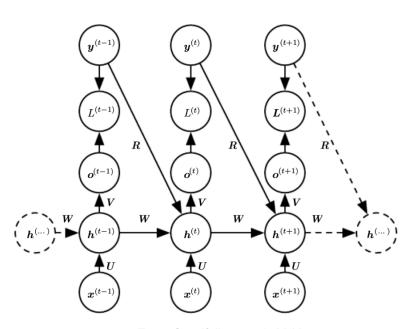
Links to RNNs

Both rely on decomposing structured tasks into **sequential predictions**, conditioned on the past.

Both use a **unique shared classifier** for every decision, using previous decisions.

What ideas can we share between the two?

While RNNs have built-in roll-ins, they don't have roll-outs. Can we train RNNs using the iterative procedure of learning to search?



From Goodfellow et al, 2016

Our approach: SeaRNN

Idea: use concepts from **learning to search** in order to train the **decoder** RNN.

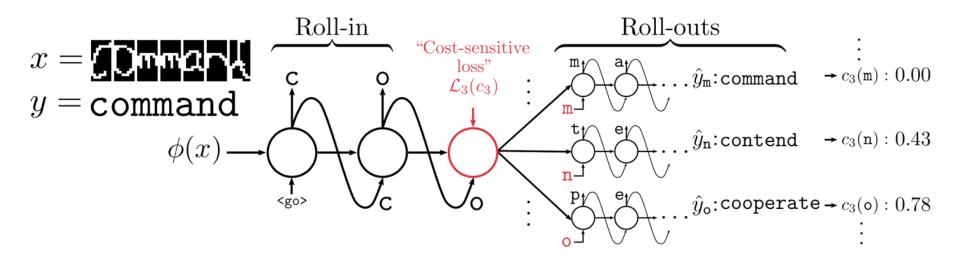
Integrate roll-outs in the decoder to compute the cost of every possible action at every step.

Leverage these costs to enable better training losses.

Algorithm:

- 1) Compute costs with roll-in/outs
- 2) Derive a loss from the costs
- 3) Use the loss to take a gradient step
- 4) Rinse and repeat

Roll-outs in RNNs



The devil in the details

Roll-in: reference (teacher forcing)? learned?

Roll-out: reference? learned? mixed?

We can leverage L2S theoretical results!

roll-out →	Reference	Mixed	Learned				
↓ roll-in	Reference	Wiixeu	Learned				
Reference	MLE (with TL)	Inconsistent					
Learned	Not locally opt.	Good	RL				

From Chang et al, 2015

Cost sensitive losses: since RNNs are tuned to be trained with MLE, can we find a structurally similar loss that leverages our cost information?

Scaling: compared to MLE, our approach is very costly. Can we use subsampling to mitigate this? What sampling strategy should we use?

Expected benefits

Make **direct use** of the test error.

Leverage structured information by comparing costs, contrary to MLE.

Global-local losses, with **global** information at each **local** cell, whereas alternatives either use local information (MLE) or only work at the global level (RL approaches).

Sampling: reduced computational costs while maintaining improvements.

Experimental results

SeaRNN (full algorithm) on OCR, text chunking and spelling correction:

Dataset	A	T	Cost N	MLE	LL				LLCAS				
						learned mixed	reference learned	learned learned	learned mixed	reference learned	learned learned		
OCR	{	26	15	Hamming	2.8		1.9	2.5	1.8	1.9	2.4	1.9	
CoNL	L	22	70	norm. Hamming	4.2		3.7	6.1	5.6	5.8	5.3	5.1	
Spelling	0.3 0.5	43	10	edit	$19.6 \\ 43.0$		$17.8 \\ 37.3$	$19.5 \\ 43.3$	$17.9 \\ 37.5$	17.7 37.1	$19.6 \\ 43.3$	17.7 38.2	

Sampling results:

Dataset	set	MLE	LL				\mathbf{sLL}					sLLCAS					
Dataset			uni.	stat.	pol.	top-k	bias.	uni.	stat.	pol.	top-k	bias.	uni.	stat.	pol.	top-k	bias.
OCR		2.84	1.94	1.50	1.96	2.13	1.84	1.82	1.91	1.86	2.69	2.25	2.03	2.33	1.50	1.94	-2.37
Spelling	0.3	19.6	17.7	17.8	17.9	17.8	18.0	18.8	18.9	18.3	18.4	$18.39 \\ 37.6$	18.8	18.7	17.7	18.2	17.7
	0.5	43.0	37.0	36.9	37.3	36.6	37.0	37.4	37.5	37.3	41.7	37.6	37.6	37.7	37.0	40.5	37.8

Experimental takeaways

Significant improvements over MLE on all 3 tasks.

The **harder** the task, the **bigger** the improvement.

Learned/mixed is the best performing strategy for roll-in/out.

The best performing losses are those structurally close to MLE.

No need for warm start.

Sampling works, maintaining improvements at a **fraction of the cost**.

Future work

Large vocabulary problems (e.g. machine translation)

Smarter sampling strategies

hierarchical sampling curriculum sampling trainable sampling?

Cheaper approximation of costs: actor-critic model?

Thank you! Questions?

Come to our poster to discuss!

See our paper on arxiv: https://arxiv.org/abs/1706.04499

