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Produce a sequence of hidden states by repeatedly applying a cell or unit on the input.

Can predict based on their previous outputs.

RNNs: models for sequential data

From Goodfellow et al, 2016



Encoder-decoder architecture

The encoder RNN maps the input sequence into a compact representation that is fed to 
the decoder RNN. The decoder outputs a sequence by taking sequential decisions given 
the past information. 

State of the art for translation and other tasks.

[Sutskever et al, NIPS 2014
Cho et al, EMNLP 2014]
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Probabilistic interpretation: 

Chain rule: 

Training with MLE (teacher forcing): 

Known problems of MLE: 
* different from the test loss,
* all-or-nothing loss (bad for structured losses),
* exposure bias leading to compounding error.

Existing approaches: Bahdanau et al (ICLR 2017), Ranzato et al (ICLR 2016), Bengio 
et al (NIPS 2015), Norouzi et al (NIPS 2016)

Standard training



Structured prediction
Goal: learn a prediction mapping f between inputs X and structured outputs Y, i.e. outputs 
that are made of interrelated parts often subject to constraints.

Examples: OCR, translation, tagging, segmentation...

Difficulty: there is an exponential number (with respect to the input size) of possible 
outputs (K^L possibilities if K is the alphabet size and L the number of letters). 

Standard approaches: SVM struct, CRFs...

X : Y : dlssf



Learning to Search, a close relative? 
[SEARN, Daumé et al 2009]

Makes predictions one by one: each Yi is predicted sequentially, conditioned on X and the 
previous Yj (instead of predicting Y in one shot).

Enables reduction: instead of learning a global classifier for Y, we learn a shared 
classifier for the Yi.

Reduces SP down to a cost-sensitive classification problem, with theoretical guarantees
on the solution quality.

Bonus: it addresses the problem mentioned before with MLE! 



L2S, roll-in/roll-out

Trained with an iterative procedure: we create intermediate datasets for our shared cost 
sensitive classifier using roll-in/roll-out strategies.



Links to RNNs

Both rely on decomposing structured tasks into 
sequential predictions, conditioned on the past.

Both use a unique shared classifier for every 
decision, using previous decisions.

What ideas can we share between the two?

While RNNs have built-in roll-ins, they don’t have 
roll-outs. Can we train RNNs using the 
iterative procedure of learning to search? From Goodfellow et al, 2016



Our approach: SeaRNN

Idea: use concepts from learning to search in order to train the decoder RNN.

Integrate roll-outs in the decoder to compute the cost of every possible action at every 
step.

Leverage these costs to enable better training losses.

Algorithm:
1) Compute costs with roll-in/outs
2) Derive a loss from the costs
3) Use the loss to take a gradient step 
4) Rinse and repeat



Roll-outs in RNNs



Roll-in: reference (teacher forcing)? learned? 

Roll-out: reference? learned? mixed? 

We can leverage L2S theoretical results!

Cost sensitive losses: since RNNs are tuned to be trained with MLE, can we find a 
structurally similar loss that leverages our cost information?

Scaling: compared to MLE, our approach is very costly. Can we use subsampling to 
mitigate this? What sampling strategy should we use?

The devil in the details
roll-out → 

Reference Mixed Learned
↓ roll-in

Reference MLE (with TL) Inconsistent

Learned Not locally opt. Good RL

From Chang et al, 2015



Expected benefits

Make direct use of the test error.

Leverage structured information by comparing costs, contrary to MLE.

Global-local losses, with global information at each local cell, whereas alternatives either 
use local information (MLE) or only work at the global level (RL approaches).

Sampling: reduced computational costs while maintaining improvements.



Experimental results

SeaRNN (full algorithm) on OCR, text chunking and spelling correction:

Sampling results:



Experimental takeaways

Significant improvements over MLE on all 3 tasks.

The harder the task, the bigger the improvement.

Learned/mixed is the best performing strategy for roll-in/out.

The best performing losses are those structurally close to MLE.

No need for warm start.

Sampling works, maintaining improvements at a fraction of the cost.



Future work

Large vocabulary problems (e.g. machine translation)

Smarter sampling strategies
hierarchical sampling
curriculum sampling
trainable sampling?

Cheaper approximation of costs: actor-critic model?



Thank you! Questions?

Come to our poster to discuss!

See our paper on arxiv: https://arxiv.org/abs/1706.04499


