
SeaRNN: training RNNs with global-local losses

Rémi Leblond*, Jean-Baptiste Alayrac*, Anton Osokin, Simon Lacoste-Julien

INRIA / Ecole Normale Supérieure MILA/DIRO UdeM

*equal contribution

Produce a sequence of hidden states by repeatedly applying a cell or unit on the input.

Can predict based on their previous outputs.

RNNs: models for sequential data

From Goodfellow et al, 2016

Encoder-decoder architecture

The encoder RNN maps the input sequence into a compact representation that is fed to
the decoder RNN. The decoder outputs a sequence by taking sequential decisions given
the past information.

State of the art for translation and other tasks.

[Sutskever et al, NIPS 2014
Cho et al, EMNLP 2014]

Encoder (RNN)

Input sequence

Output sequence

Decoder (RNN)

Probabilistic interpretation:

Chain rule:

Training with MLE (teacher forcing):

Known problems of MLE:
* different from the test loss,
* all-or-nothing loss (bad for structured losses),
* exposure bias leading to compounding error.

Existing approaches: Bahdanau et al (ICLR 2017), Ranzato et al (ICLR 2016), Bengio
et al (NIPS 2015), Norouzi et al (NIPS 2016)

Standard training

Structured prediction
Goal: learn a prediction mapping f between inputs X and structured outputs Y, i.e. outputs
that are made of interrelated parts often subject to constraints.

Examples: OCR, translation, tagging, segmentation...

Difficulty: there is an exponential number (with respect to the input size) of possible
outputs (K^L possibilities if K is the alphabet size and L the number of letters).

Standard approaches: SVM struct, CRFs...

X : Y : dlssf

Learning to Search, a close relative?
[SEARN, Daumé et al 2009]

Makes predictions one by one: each Yi is predicted sequentially, conditioned on X and the
previous Yj (instead of predicting Y in one shot).

Enables reduction: instead of learning a global classifier for Y, we learn a shared
classifier for the Yi.

Reduces SP down to a cost-sensitive classification problem, with theoretical guarantees
on the solution quality.

Bonus: it addresses the problem mentioned before with MLE!

L2S, roll-in/roll-out

Trained with an iterative procedure: we create intermediate datasets for our shared cost
sensitive classifier using roll-in/roll-out strategies.

Links to RNNs

Both rely on decomposing structured tasks into
sequential predictions, conditioned on the past.

Both use a unique shared classifier for every
decision, using previous decisions.

What ideas can we share between the two?

While RNNs have built-in roll-ins, they don’t have
roll-outs. Can we train RNNs using the
iterative procedure of learning to search? From Goodfellow et al, 2016

Our approach: SeaRNN

Idea: use concepts from learning to search in order to train the decoder RNN.

Integrate roll-outs in the decoder to compute the cost of every possible action at every
step.

Leverage these costs to enable better training losses.

Algorithm:
1) Compute costs with roll-in/outs
2) Derive a loss from the costs
3) Use the loss to take a gradient step
4) Rinse and repeat

Roll-outs in RNNs

Roll-in: reference (teacher forcing)? learned?

Roll-out: reference? learned? mixed?

We can leverage L2S theoretical results!

Cost sensitive losses: since RNNs are tuned to be trained with MLE, can we find a
structurally similar loss that leverages our cost information?

Scaling: compared to MLE, our approach is very costly. Can we use subsampling to
mitigate this? What sampling strategy should we use?

The devil in the details
roll-out →

Reference Mixed Learned
↓ roll-in

Reference MLE (with TL) Inconsistent

Learned Not locally opt. Good RL

From Chang et al, 2015

Expected benefits

Make direct use of the test error.

Leverage structured information by comparing costs, contrary to MLE.

Global-local losses, with global information at each local cell, whereas alternatives either
use local information (MLE) or only work at the global level (RL approaches).

Sampling: reduced computational costs while maintaining improvements.

Experimental results

SeaRNN (full algorithm) on OCR, text chunking and spelling correction:

Sampling results:

Experimental takeaways

Significant improvements over MLE on all 3 tasks.

The harder the task, the bigger the improvement.

Learned/mixed is the best performing strategy for roll-in/out.

The best performing losses are those structurally close to MLE.

No need for warm start.

Sampling works, maintaining improvements at a fraction of the cost.

Future work

Large vocabulary problems (e.g. machine translation)

Smarter sampling strategies
hierarchical sampling
curriculum sampling
trainable sampling?

Cheaper approximation of costs: actor-critic model?

Thank you! Questions?

Come to our poster to discuss!

See our paper on arxiv: https://arxiv.org/abs/1706.04499

