

# WHAT WOULD SHANNON DO? BAYESIAN COMPRESSION FOR DL

KAREN ULLRICH UNIVERSITY OF AMSTERDAM

DEEP LEARNING AND REINFORCEMENT LEARNING SUMMER SCHOOL MONTREAL 2017

KAREN ULLRICH, JUN 2017 <

# Motivation



<

2

>

# Motivation

- 1 Wh costs 0.0225 cent
- running a Titan X for 1h: 5.625 cent
- facebook has 1.86 billion active users
- VGG takes ~147ms/16 predictions
- making one prediction for all users costs
   20 k€

# Motivation - Summary

- mobile devices have **limited hardware**
- energy costs for predictions
- bandwidth transmitting models
- speeding up inference for real time processing
- relation to **privacy**

# Practical view on compression A : Sparsity learning



- (Unstructured) Pruning
- CR:  $\approx \frac{|\mathbf{w}|}{2|\mathbf{w}_{\neq 0}|}$

• Structured Pruning:

• CR: 
$$\frac{|\mathbf{w}|}{|\mathbf{w}_{\neq 0}|}$$



# Practical view on compression B : Bit per weight reduction



- precision quantisation
- CR: 32/10 = 3
- PRO: fast inference
- CON: savings is not too big



- Set quantisation by clustering
- CR: 32/4 = 8
- PRO: extreme compressible with e.g. further Hoffman encoding
- CON: inference?



# Practical view on compression Summary - Properties

|                         | Set quantisation                                                                           | Bit quantisation                                                                                                        |
|-------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Unstructured<br>pruning | <ul> <li>highest compression</li> <li>flop and energy savings</li> <li>moderate</li> </ul> |                                                                                                                         |
| Structured<br>pruning   |                                                                                            | <ul> <li>lowest expected compression</li> <li>BUT will save considerable<br/>amount of flops and thus energy</li> </ul> |



# Practical view on compression Summary - Applications

|                         | Set quantisation                                                                                   | Bit quantisation                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Unstructured<br>pruning | -"ZIP"-format for NN<br>- transmitting via limited channels<br>- save millions of nets efficiently |                                                                                                         |
| Structured pruning      |                                                                                                    | <ul> <li>inference at scale</li> <li>real time predictions</li> <li>hardware limited devices</li> </ul> |



# Variational lower bound

$$\log p(\mathcal{D}) \ge \mathcal{L}(q(\mathbf{w}), \mathbf{w})) = \mathbf{E}_{q(\mathbf{w})} [\log \frac{p(\mathcal{D}, \mathbf{w})}{q(\mathbf{w})}]$$
$$= \mathbf{E}_{q(\mathbf{w})} [\log p(\mathcal{D}|\mathbf{w})]] - KL(q(\mathbf{w})||p(\mathbf{w}))$$

Hinton, Geoffrey E., and Drew Van Camp. "Keeping the neural networks simple by minimizing the description length of the weights." *Proceedings of the sixth annual conference on Computational learning theory*. ACM, 1993.

<

9

>

### MDL principle and Variational Learning

### The best model is the one that compresses the data best. There are two costs, one for **transmitting a model** and one for reporting the **data misfit**.

Jorma Rissanen, 1978

10



# Variational lower bound

$$\log p(\mathcal{D}) \ge \mathcal{L}(q(\mathbf{w}), \mathbf{w})) = \mathbf{E}_{q(\mathbf{w})} [\log \frac{p(\mathcal{D}, \mathbf{w})}{q(\mathbf{w})}]$$
$$= \mathbf{E}_{q(\mathbf{w})} [\log p(\mathcal{D}|\mathbf{w})] - KL(q(\mathbf{w})||p(\mathbf{w}))$$

transmitting data misfit transmitting the model

Hinton, Geoffrey E., and Drew Van Camp. "Keeping the neural networks simple by minimizing the description length of the weights." *Proceedings of the sixth annual conference on Computational learning theory*. ACM, 1993.



# Variational lower bound

$$\log p(\mathcal{D}) \geq \mathcal{L}(q(\mathbf{w}), \mathbf{w})) = \mathbf{E}_{q(\mathbf{w})} [\log \frac{p(\mathcal{D}, \mathbf{w})}{q(\mathbf{w})}]$$
$$= \mathbf{E}_{q(\mathbf{w})} [\log p(\mathcal{D}|\mathbf{w})]] - KL(q(\mathbf{w})||p(\mathbf{w}))$$
$$p(\mathcal{D}|\mathbf{w}) = p(\mathbf{T}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{t}_{n}|\mathbf{x}_{n}, \mathbf{w}) \qquad \text{KL}(q(\mathbf{w})||p(\mathbf{w})) = \mathbb{E}_{q(\mathbf{w})} [-\log p(\mathbf{w})] - H(q(\mathbf{w}))$$
$$H(q(\mathbf{w})) = -\int_{\Omega} q(\mathbf{w}) \log q(\mathbf{w}) \, d\mathbf{w} = -\int_{\mathbb{R}^{I}} \mathcal{N}(\mathbf{w}|\mathbf{0}, \sigma \mathbf{I}) \log \mathcal{N}(\mathbf{w}|\mathbf{0}, \sigma \mathbf{I}) = [\log(2\pi\epsilon\sigma^{2})]^{I}.$$

Hinton, Geoffrey E., and Drew Van Camp. "Keeping the neural networks simple by minimizing the description length of the weights." *Proceedings of the sixth annual conference on Computational learning theory*. ACM, 1993.

<

12

(>)

# Practical view on compression Summary - Properties



13

# Soft weight-sharing for NN compression KAREN ULLRICH, EDWARD MEED & MAX WELLING



Solution: train a neural network with gaussian mixture model prior

$$q(\mathbf{w}) = \prod q(w_i) = \delta(w_i | \mu_i)$$

$$p(\mathbf{w}) = \prod_{i=1}^{I} \sum_{j=0}^{J} \pi_j \mathcal{N}(w_i | \mu_j, \sigma_j^2).$$

 Pruning by setting one component to zero with high mixing proportion

Nowlan, Steven J., and Geoffrey E. Hinton. "Simplifying neural networks by soft weight-sharing." Neural computation 4.4 (1992): 473-493.



# Soft weight-sharing for NN compression karen ullrich, edward meed & max welling

ICLR 2017

| Model          | Method             | Top-1 Error[%]          | $\Delta$ [%] | $ \mathbf{W} [10^{6}]$ | $\frac{ \mathbf{W}_{\neq 0} }{ \mathbf{W} }$ [%] | CR    |
|----------------|--------------------|-------------------------|--------------|------------------------|--------------------------------------------------|-------|
| LeNet-300-100  | Han et al. (2015a) | $1.64 \rightarrow 1.58$ | 0.06         | 0.2                    | 8.0                                              | 40    |
|                | Guo et al. (2016)  | $2.28 \rightarrow 1.99$ | -0.29        |                        | 1.8                                              | 56    |
|                | Ours               | $1.89 \rightarrow 1.94$ | -0.05        |                        | 4.3                                              | 64    |
| LeNet-5-Caffe  | Han et al. (2015a) | 0.80  ightarrow 0.74    | -0.06        | 0.4                    | 8.0                                              | 39    |
|                | Guo et al. (2016)  | 0.91  ightarrow 0.91    | 0.00         |                        | 0.9                                              | 108   |
|                | Ours               | 0.88  ightarrow 0.97    | 0.09         |                        | 0.5                                              | (162) |
| ResNet (light) | Ours               | 6.48  ightarrow 8.50    | 2.02         | 2.7                    | 6.6                                              | 45    |



# Practical view on compression Summary - Properties

|                         | Set quantisation                                                                           | Bit quantisation                                                                                                        |
|-------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Unstructured<br>pruning | <ul> <li>highest compression</li> <li>flop and energy savings</li> <li>moderate</li> </ul> |                                                                                                                         |
| Structured<br>pruning   |                                                                                            | <ul> <li>lowest expected compression</li> <li>BUT will save considerable<br/>amount of flops and thus energy</li> </ul> |
| Structured<br>pruning   |                                                                                            | <ul> <li>lowest expected compression</li> <li>BUT will save considerable amount of flops and thus energy</li> </ul>     |

16 >

<)

#### CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING UNDER SUBMISSION NIPS 2017

- Idea: use dropout to learn architecture
- the variational version of dropout learns the dropout rate
- Solution: Learn dropout rate for each weight structure, when weights have a high dropout rate we can safely ignore them
- uncertainty in left over weights to compute bit precision

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." *NIPS*. 2015. Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. "Variational Dropout Sparsifies Deep Neural Networks." *arXiv preprint arXiv:1701.05369* (2017).



CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING

**UNDER SUBMISSION NIPS 2017** 

 $q(z) = \prod q(z_i) = \mathcal{N}(z_i | \mu_i^z, \alpha_i)$  $q(\mathbf{w}|z) = \prod q(w_i|z_i) = \mathcal{N}(w_i|z_i\mu_i, z_i^2\sigma_i^2)$ force high dropout rates

push to zero for high dropout rates



CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING UNDER SUBMISSION NIPS 2017

$$q(z) = \prod q(z_i) = \mathcal{N}(z_i | \mu_i^z, \alpha_i)$$
$$q(\mathbf{w}|z) = \prod q(w_i | z_i) = \mathcal{N}(w_i | z_i \mu_i, z_i^2 \sigma_i^2)$$

$$p(w) = \int p(z)p(w|z)dz$$
$$p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w|0, z^2)dz = \frac{1}{|w|}$$

<

19

 $\left| \right\rangle$ 

CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING

**UNDER SUBMISSION NIPS 2017** 

| Network & size                       | Method    | Pruned architecture       | Bit-precision      |
|--------------------------------------|-----------|---------------------------|--------------------|
| LeNet-300-100                        | Sparse VD | 512-114-72                | 8-11-14            |
| 784-300-100                          | BC-GNJ    | 278-98-13                 | 8-9-14             |
|                                      | BC-GHS    | 311-86-14                 | 13-11-10           |
| LeNet-5-Caffe                        | Sparse VD | 14-19-242-131             | 13-10-8-12         |
|                                      | GD        | 7-13-208-16               | -                  |
| 20-50-800-500                        | GL        | 3-12-192-500              | -                  |
|                                      | BC-GNJ    | 8-13-88-13                | 18-10-7-9          |
|                                      | BC-GHS    | 5-10-76-16                | 10-10-14-13        |
| VGG                                  | BC-GNJ    | 63-64-128-128-245-155-63- | 10-10-10-10-8-8-8- |
|                                      |           | -26-24-20-14-12-11-11-15  | -5-5-5-5-6-7-11    |
| $(2 \times 64)$ - $(2 \times 128)$ - | BC-GHS    | 51-62-125-128-228-129-38- | 11-12-9-14-10-8-5- |
| -(3×256)-(8× 512)                    |           | -13-9-6-5-6-6-20          | -5-6-6-8-11-17-10  |
|                                      |           |                           |                    |

20

<)

(>)

### CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING

|                  |               |                                             | Compression Rates (Error %) |            |             |
|------------------|---------------|---------------------------------------------|-----------------------------|------------|-------------|
| Model            |               |                                             |                             | Fast       | Maximum     |
| Original Error % | Method        | $\frac{ \mathbf{w}\neq 0 }{ \mathbf{w} }\%$ | Pruning                     | Prediction | Compression |
| LeNet-300-100    | DC            | 8.0                                         | 6 (1.6)                     | -          | 40 (1.6)    |
|                  | DNS           | 1.8                                         | 28* (2.0)                   | -          | -           |
| 1.6              | SWS           | 4.3                                         | 12* (1.9)                   | -          | 64(1.9)     |
|                  | Sparse VD     | 2.2                                         | 21(1.8)                     | 84(1.8)    | 113 (1.8)   |
|                  | BC-GNJ        | 10.8                                        | 9(1.8)                      | 36(1.8)    | 58(1.8)     |
|                  | BC-GHS        | 10.6                                        | 9(1.8)                      | 23(1.9)    | 59(2.0)     |
| LeNet-5-Caffe    | DC            | 8.0                                         | 6*(0.7)                     | -          | 39(0.7)     |
|                  | DNS           | 0.9                                         | 55*(0.9)                    | -          | 108(0.9)    |
| 0.9              | SWS           | 0.5                                         | 100*(1.0)                   | -          | 162(1.0)    |
|                  | Sparse VD     | 0.7                                         | 63(1.0)                     | 228(1.0)   | 365(1.0)    |
|                  | BC-GNJ        | 0.9                                         | 108(1.0)                    | 361(1.0)   | 573(1.0)    |
|                  | <b>BC-GHS</b> | 0.6                                         | 156(1.0)                    | 419(1.0)   | 771(1.0)    |
| VGG              | BC-GNJ        | 6.7                                         | 14(8.6)                     | 56(8.8)    | 95(8.6)     |
| 8.4              | BC-GHS        | 5.5                                         | 18(9.0)                     | 59(9.0)    | 116(9.2)    |

UNDER SUBMISSION NIPS 2017

< 21 >

#### CHRISTOS LOUIZOS, KAREN ULLRICH & MAX WELLING

UNDER SUBMISSION NIPS 2017



<

22

(>)

# Warning: Don't be too enthusiastic!

These algorithms are merely proposals, little can be realised by common frameworks today.

- Architecture pruning
- Sparse matrix support 🥐 (partially in big frameworks)
- Reduced bit precision
- Clustering

(NVIDIA is starting)



# Thank you for your attention. Any questions?



24

<

(>)

