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• Learning by trial-and-error, in real-time.

• Improves with experience

• Inspired by psychology
– Agent + Environment
– Agent selects actions to maximize 

utility function.

observation,
reward action

Agent

Environment

Reinforcement learning



RL system circa 1990’s: TD-Gammon

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the 
best human player.
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2016:  World Go Champion 
Beaten by Deep Learning
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RL applications at RLDM 2017

• Robotics
• Video games
• Conversational systems
• Medical intervention
• Algorithm improvement
• Improvisational theatre
• Autonomous driving
• Prosthetic arm control
• Financial trading
• Query completion
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When to use RL?

• Data in the form of trajectories.

• Need to make a sequence of (related) decisions.

• Observe (partial, noisy) feedback to choice of actions.

• Tasks that require both learning and planning.
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RL vs supervised learning

Supervised 
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Outputs
(“actions”)

Training signal = “rewards”
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RL vs supervised learning

Supervised 
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs
(“states”)

Training signal = “rewards”
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Outputs
(“actions”)

Environment

Practical & technical 
challenges:

1. Need access to the 
environment.

2. Jointly learning
AND planning from 
correlated
samples.

3. Data distribution 
changes with action 
choice.



Markov Decision Process (MDP)
Defined by:
S: = {s1, s2, …, sn },  the set of states (can be infinite/continuous)
A: = {a1, a2, …, am }, the set of actions (can be infinite/continuous)
T(s,a,s’) := Pr(s’|s,a), the dynamics of the environment 
R(s,a): Reward function
μ(s) : Initial state distribution 

MDPs as Decision Graphs
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• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference
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The Markov property

The distribution over future states depends only on the present 
state and action, not on any other previous event.

Pr(st+1 | s0, …, st, a0, … at) = Pr(st+1 | st, at)
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MDPs as Decision Graphs
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• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference
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• Traffic lights?

• Chess?

The Markov property
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• Traffic lights?

• Chess?

• Poker?

The Markov property
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Tip:  Incorporate past 
observations in the
state to have sufficient 
information to predict 
next state.



The goal of RL?  Maximize return! 

• Return, Ut of a trajectory, is the sum of rewards starting from step t.
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The goal of RL?  Maximize return! 

• Return, Ut of a trajectory, is the sum of rewards starting from step t.

• Episodic task: consider return over finite horizon (e.g. games, maze).

Ut = rt + rt+1 + rt+2 + … + rT

• Continuing task: consider return over infinite horizon (e.g. juggling, 
balancing).

Ut = rt + grt+1 + g2rt+2 + g3rt+3 … = ∑k=0: ∞ gkrt+k
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The discount factor, g

• Discount factor, g ∊ [0, 1)   (usually close to 1).

• Intuition:

– Receiving $80 today is worth the same as $100 tomorrow 
(assuming a discount factor of factor of g = 0.8).

– At each time step, there is a 1- g chance that the agent dies, 
and does not receive rewards afterwards.
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Defining behavior:  The policy

• Policy, p defines the action-selection strategy at every state:

p(s,a) = P(at=a | st=s)
p :  S→A

Goal:  Find the policy that maximizes expected total reward.
(But there are many policies!)

argmaxp Ep [ r0 + r1 + … + rT | s0 ]
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Example:  Career Options

Example: Career Options

a = Apply to academia

Grad School

  (G)

Academia

    (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

   (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?
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Unemployed
R(s) = -1

Industry
R(s) = +10

Grad School 
R(s) = 0

Academia
R(s) = +5

i

g

n,a

a

n,i

a

g
i

g,n n,g,a

i

0.5

0.2

0.5

0.8

0.1 0.9

0.4
0.6

0.4 0.7
0.6

What is the best policy?
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Value functions

The expected return of a policy (for every state) is called the 
value function:Vp(s) = Ep [rt + rt+t + … + rT | st = s ]

Simple strategy to find the best policy:
1. Enumerate the space of all possible policies.
2. Estimate the expected return of each one.
3. Keep the policy that has maximum expected return.
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Getting confused with terminology?

• Reward?

• Return?

• Value?

• Utility?
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Getting confused with terminology?

• Reward:  1 step numerical feedback

• Return:  Sum of rewards over the agent’s trajectory.

• Value:  Expected sum of rewards over the agent’s trajector.

• Utility:  Numerical function representing preferences.

• In RL, we assume Utility = Return.
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The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s ]

Vp(s) = Ep [rt ] + Ep [ rt+1 + … + rT | st = s ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [ rt+1 + … + rT | st = s ]

Immediate reward Future expected sum of rewards
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The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s ]

Vp(s) = Ep [rt ] + Ep [ rt+1 + … + rT | st = s ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [ rt+1 + … + rT | st = s ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’)Ep [rt+1+…+ rT | st+1=s’ ]

Expectation over 1-step transition
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The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s ]

Vp(s) = Ep [rt ] + Ep [ rt+1 + … + rT | st = s ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [ rt+1 + … + rT | st = s ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’)Ep [rt+1+…+ rT | st+1=s’ ]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’) Vp(s’)

By definition

This is a dynamic programming algorithm.
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The value of a policy

State value function (for a fixed policy):

Vp(s) = ∑aÎA p(s,a) [ R(s,a) + g ∑s’ÎS T(s,a,s’)Vp(s’) ]

Immediate Future expected sum of rewards

State-action value function:

Qp(s,a) =  R(s,a) + γ ∑s’T(s,a,s’)[∑a’ÎA p(s’,a’)Qp(s’,a’)]

These are two forms of  Bellman’s equation.
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The value of a policy

State value function:

Vp(s) = ∑aÎA p(s,a) ( R(s,a) + g ∑s’ÎS T(s,a,s’)Vp(s’) )

When S is a finite set of states, this is a system of linear equations 
(one per state) with a unique solution Vp.

Bellman’s equation in matrix form: Vp = Rp + g Tp Vp

Which can solved exactly: Vp = ( I - g Tp )-1 Rp
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Iterative Policy Evaluation:  Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s.   (Can be 0, or r(s,·).)
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Iterative Policy Evaluation:  Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s.   (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ¬ ( R(s, p(s)) + g ∑s’ÎS T(s, p(s), s’)Vk(s’) )
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Iterative Policy Evaluation:  Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s.   (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ¬ ( R(s, p(s)) + g ∑s’ÎS T(s, p(s), s’)Vk(s’) )

3. Stop when the maximum changes between two iterations is smaller 

than a desired threshold (the values stop changing.)

This is a dynamic programming algorithm.  Guaranteed to converge!
31



Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate Vk+1(s):

• As long as g<1, the error contracts and eventually goes to 0.
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Optimal policies and optimal value functions

• Optimal value function, V* is the highest value that can be 

achieved for each state:

V*(s) = maxp Vp(s)

• Any policy that achieves V* is called an optimal policy, p*. 
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Optimal policies and optimal value functions

• Optimal value function, V* is the highest value that can be 

achieved for each state:

V*(s) = maxp Vp(s)

• Any policy that achieves V* is called an optimal policy, p*. 

• For each MDP there is a unique optimal value function

(Bellman, 1957).

• The optimal policy is not necessarily unique.
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Optimal policies and optimal value functions

• If we know V* (and R, T, g), then we can compute p* easily.
p*(s) =  argmaxaÎA ( R(s,a) + g ∑s’ÎS T(s,a,s’)V*(s’) )

• If we know p* (and R, T, g), then we can compute V* easily.
V*(s) = ∑aÎA p*(s,a) ( R(s,a) + g ∑s’ÎS T(s,a,s’)V*(s’) )

V*(s) = R(s, p(s)) + g ∑s’ÎS T(s, p(s),s’)V*(s’)

Take-home:  Both V* and p* are “solutions” to the MDP.
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Finding a good policy:  Policy Iteration

• Start with an initial policy p0 (e.g. random)

• Repeat:
– Compute Vp, using iterative policy evaluation.
– Compute a new policy p’ that is greedy with respect to Vp

• Terminate when p = p’
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Finding a good policy:  Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update 
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V0(s)

2. On each iteration, update the value function estimate:
Vk(s) =  maxaÎA ( R(s,a) + g ∑s’ÎS T(s,a,s’)Vk-1(s’) )

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.
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Three related algorithms

1. Policy evaluation:  Fix the policy, estimate its value.

2. Policy iteration:  Find the best policy at each state.
» Policy evaluation + greedy improvement.

3. Value iteration:  Find the optimal value function.
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Three related algorithms

1. Policy evaluation:  Fix the policy, estimate its value.
– O(S3)

2. Policy iteration:  Find the best policy at each state.
» Policy evaluation + greedy improvement.

– O(S3+S2A) per iteration

3. Value iteration:  Find the optimal value function.
– O(S2A) per iteration
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A 4x3 gridworld example

• 11 discrete states, 4 motion actions (N, S, E, W) in each state.

• Transitions are mildly stochastic. 

• Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.

• Episode terminates when the agent reaches +1 or -10 state.

• Discount factor g = 0.99.

S +1

-10

0.1

0.1

0.10.7
Intended
direction
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Value Iteration (1)

0 0 0 +1

0 0 -10

0 0 0 0
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Value Iteration (2)

0 0 0.69 +1

0 -0.99 -10

0 0 0 -0.99

Bellman residual:  |V2(s) - V1(s)| = 0.99

42



Value Iteration (5)

0.48 0.70 0.76 +1

0.23 -0.55 -10

0 -0.20 -0.23 -1.40

Bellman residual:  |V5(s) - V4(s)| = 0.23
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Value Iteration (20)

0.78 0.80 0.81 +1

0.77 -0.44 -10

0.75 0.69 0.37 -0.92

Bellman residual:  |V5(s) - V4(s)| = 0.008
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Another example: Four Rooms

• Four actions, fail 30% of the time.
• No rewards until the goal is reached, g = 0.9.
• Values propagate backwards from the goal.
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Asynchronous value iteration

• Instead of updating all states on every iteration, focus on 
important states.
– E.g., board positions that occur on every game, rather than 

just once in 100 games.

• Asynchronous dynamic programming algorithm:
– Generate trajectories through the MDP.
– Update states whenever they appear on such a trajectory.

• Focuses the updates on states that are actually possible.
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Generalized Policy Iteration

• Any combination of policy evaluation and policy improvement steps.
e.g. only update value of one state and improve policy at that state.
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Key challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions
– Time-delayed cost/reward signal 

• Function approximation 

• Validation / confidence measures
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Learning online from trial & error

st =>a rt, st+1

Q, p
at
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Online reinforcement learning

• Monte-Carlo value estimate:  Use the empirical return, U(st) as 
a target estimate for the actual value function:

– Here 𝛼 is the learning rate (a parameter).

– Need to wait until the end of the trajectory to compute U(st).

V (st )←V (st )+α U(st )−V (st )( )

50

* Not a Bellman 
equation. More like 
a gradient equation.



Temporal-Difference (TD) learning

• Monte-Carlo learning: 

• TD-learning:

Temporal-Di↵erence (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its
change, i.e. temporal di↵erence from one moment to the next

• Tabular TD(0):

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) 8t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator, e..g a
neural network, with parameter ✓:

✓  ✓ + ↵ (rt+1 + �V (st+1)� V (st))r✓V (st), 8t = 0, 1, 2, . . .

In other words, we used the TD-error instead of the “supervised” error

COMP-652 and ECSE-608, March 29, 2016 69
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TD-error

V (st )←V (st )+α U(st )−V (st )( )

learning
rate



TD-Gammon (Tesauro, 1992)
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Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the 
best human player.



Several challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions

• Time-delayed cost/reward signal 

• Function approximation 

• Validation / confidence measures
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Tabular / Function approximation

• Tabular:   Can store in memory a list of the states and their value.

• Function approximation: Too many states, continuous state spaces.

0.1

0.1

0.10.7
Intended
direction
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* Can prove many more
theoretical properties
in this case, about
convergence, sample 
complexity.



In large state spaces:  Need approximation
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Learning representations for RL

s

Original state

Q𝛳(s,a)
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Linear function



Deep Reinforcement Learning

Q𝛳(s,a)

s

Original state
Convolutional Neural Net

[DeepMind: Mnih et al., 2015].

Deep Q-Network trained with stochastic gradient descent.
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Deep RL in Minecraft

[U.Michigan: Oh et al., 2016].

Many possible architectures,
incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft
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The RL lingo
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• Episodic / Continuing task

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods



On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!
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On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.
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On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

• Use importance sampling to reweigh data samples to compute 
unbiased estimates of a new policy.
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Exploration / Exploitation
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Exploration / Exploitation

Exploitation:  Leverage current knowledge
to maximize short-term gain

Exploration:  Increase knowledge 
for long-term gain, possibly at the 
expense of short-term gain
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Model-based vs Model-free RL

• Option #1:   Collect large amounts of observed trajectories.  
Learn an approximate model of the dynamics (e.g. with 
supervised learning).  Pretend the model is correct and apply 
value iteration.

• Option #2:  Use data to directly learn the value function or 
optimal policy.  
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Policy Optimization / Value FunctionApproaches to RL

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic 
Methods

modified 
policy iteration

Q-Learning
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TD-Learning



Quick summary

• RL problems are everywhere!
– Games, text, robotics, medicine, …

• Need access to the “environment” to generate samples.
– Most recent results make extensive use of a simulator.

• Feasible methods for large, complex tasks.

• Intuition about what is “easy”, “hard” is different than supervised 
learning.

67

Learning     PlanningRL



RL resources

Comprehensive list of resources:
• https://github.com/aikorea/awesome-rl

Environments & algorithms:
• http://glue.rl-community.org/wiki/Main_Page
• https://gym.openai.com
• https://github.com/deepmind/lab
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