Reinforcement Learning:
Basic concepts

Joelle Pineau

School of Computer Science, McGill University
Facebook Al Research (FAIR)

CIFAR Reinforcement Learning Summer School
July 3 2017

| Reinforcement learning |

« Learning by trial-and-error, in real-time.

« Improves with experience

observation,
reward action

« Inspired by psychology
— Agent + Environment

— Agent selects actions to maximize
utility function.

RL system circa 1990’s: TD-Gammon

predicted probability
of winning, V,

!

D error, V= Vy =), Reward function:

+100 if win
Q, Q Q Q hidden units (40-80) - 100 if lose

FEF 0 for all other states
o0 O...7 0«0
backgammon position (198 input units)

\white pieces move Trained by playing 1.5x10°

=

ey

counterclockwise million games against itself.

Enough to beat the

i § I y "
8 : i / .

black pieces
move clockwise

2016: World Go Champion
Beaten by Deep Learning

A

>

b =~ B = -3
i

| P - o = o Tt [

i < < o o"w - 8,

1/ = ST T e 3

SNosy S $ - =

| & N =N

— et -, ==
¢ e a7 L ==
1 o~ ==
e oS
> N T =~ =
L
: 9

> 1 - SN
T =
i - == A —

S]J o &

II‘ > @

s -

At last — a computer program that -
can beat a champion Go player PAGE 484

ALL SYSTEMS G

RESEARCHETHICS POPULAR SCIENCE Dlmrwacas.on

[— Ty
~— -

SONGBIRDS SAFEGUARD WHEN GENES Vo S0 TS
A LA CARTE TRANSPARENCY GOT ‘SELFISH’

Megeand hervest of millions Don't let openness backfire Dawkins's culling

of Mediterranean binds on individuals

RL applications at RLDM 2017

 Robotics

* Video games
« Conversational systems
* Medical intervention

e Algorithm improvement
« Improvisational theatre

« Autonomous driving

* Prosthetic arm control

* Financial trading

Query completion

When to use RL?

Data in the form of trajectories.

Need to make a sequence of (related) decisions.

Observe (partial, noisy) feedback to choice of actions.

Tasks that require both learning and planning.

|RL VS supervised learning |

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Training signal = “rewards”

Inputs
(“states™)

Outputs
(“actions”)

|RL VS supervised learning |

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Training signal = “rewards”

Inputs
(“states™)

Outputs
(“actions”)

|RL VS supervised learning |

Training signal = desired (target outputs), e.g. class

Practical & technical
challenges:

Inputs Outputs 1. Need access to the

environment.

2. Jointly learning

AND planning from
correlated
samples.

Training signal = “rewards”

3. Data distribution
changes with action
choice.

Outputs
(“actions”)

Inputs
(“states™)

Markov Decision Process (MDP)

Defined by:
S:={s, s, ..., s}, the set of states (can be infinite/continuous)

A:={a, a,, ..., a,,}, the set of actions (can be infinite/continuous)
T(s,a,s’) := Pr(s’|s,a), the dynamics of the environment

R(s,a): Reward function
u(s) - Initial state distribution

11

The Markov property

The distribution over future states depends only on the present
state and action, not on any other previous event.

Pr(s;.; | Sgs --- Sp @gy --- @) = Pr(s;., | Sy @)

AO A1

SO

12

The Markov property

» Traffic lights?

IL_}I KLy
Chess? ™

13

The Markov property

« Traffic lights?

Tip: Incorporate past
observations in the
state to have sufficient
information to predict
next state.

The goal of RL? Maximize return!

Return, U, of a trajectory, is the sum of rewards starting from step .

15

The goal of RL? Maximize return!

« Return, U, of a trajectory, is the sum of rewards starting from step .

« Episodic task: consider return over finite horizon (e.g. games, maze).

U=r+r thot+t... tr7

« Continuing task: consider return over infinite horizon (e.g. juggling,
balancing).

Ut =ty T Vzrt+2 T 7/3rt+3 TR Zk=0:oo 7krt+k

16

The discount factor, y

« Discount factor, y € [0, 1) (usually close to 1).

e |ntuition:

— Receiving $80 today is worth the same as $100 tomorrow
(assuming a discount factor of factor of y = 0.8).

— At each time step, there is a 7- y chance that the agent dies,
and does not receive rewards afterwards.

17

Defining behavior: The policy

« Policy, 7 defines the action-selection strategy at every state:
n(s,a) = P(a;=a | s;=S)
. S—A

~

/Goal: Find the policy that maximizes expected total reward.
(But there are many policies!)

argmax_E [ro+r,+...+r;|s,]

_ J

18

Example: Career Options

n,a / ﬂn’i

Unemployed | ; Industry
n=Do Nothing
g g a 1 = Apply to industry
1 g = Apply to grad school
] = Apply to academi
Grad School { Academia] a = Apply to academia

Ug,n Un,g,a

What 1s the best policy?

19

Example: Career Options

0.2

n.a ‘/0 X 0.8\n,i

Unemployed | j Industry
R(s) =-1 R(s) = +10
0.9
0.4 &

Grad School
R(s) =0

Academia
R(s) =+5

Ug,n Un,g,a

What 1s the best policy?

20

n=Do Nothing

1 = Apply to industry

g = Apply to grad school
a = Apply to academia

Value functions

The expected return of a policy (for every state) is called the
value function: V7(s) = E _[r,+r,+ ... *+r; | s,=5s]

Simple strategy to find the best policy:

1. Enumerate the space of all possible policies.
2. Estimate the expected return of each one.

3. Keep the policy that has maximum expected return.

Getting confused with terminology?

Reward?

Return?

« Value?

Utility?

22

Getting confused with terminology?

« Reward: 1 step numerical feedback

 Return: Sum of rewards over the agent’s trajectory.

« Value: Expected sum of rewards over the agent’s trajector.

« Utility: Numerical function representing preferences.

 In RL, we assume Utility = Return.

The value of a policy

Vi) =E [+ + ... +rr| sp=8]
Vis) = E [l +E [t ...+ rp| 8 =8]

Vi(s) =2 aean(s,@)R(s,a) Y E [g+ ... ¥ 17| 8¢ = 8]

Immediate reward Future expected sum of rewards

24

The value of a policy

Vi) =E [+ + ... +rr| sp=8]
Vis) = E [l +E [t ...+ rp| 8 =8]
Vi(s) =2 acan(s,@)R(s,a) Y E [g+ ... ¥ 17| S¢= 8]

VA(S) = Yacan(s,8)R(s,a) +\ZaeA ﬂ(s’a)Zs’eST(S’a’S;’)En [Freqtt 1| Spy=S7]

|
Expectation over 1-step transition

25

The value of a policy

Vi) =E [+ + ... +rr| sp=8]
Vis) = E [l +E [t ...+ rp| 8 =8]
Vi(s) =2 acan(s,@)R(s,a) Y E [g+ ... ¥ 17| S¢= 8]

V(S) = Yocan(sa)R(s,8) + Y gen 71(5,8)Y g5 T(S,@,8)E , [F14q*...+ 11| S14q=S"]

Y

VE(S) = ZaeA ﬂ(S,a)R(S,a) + ZaeA ﬂ(sfa)ZS’eST(S!a!S’) Vﬂ(S’)

-
By definition

This is a dynamic programming algorithm.

26

The value of a policy

State value function (for a fixed policy):

VI(S) = 2acam(S,@) [R(S,@) + 7 2 s T(S,?,S’)V”(S’),]

Immediate Future expected sum of rewards

State-action value function:

Qﬂ(S,a) = R(S1a) Tty Zs’T(Siais’)[za’eA ﬂ(S’,a’)Qﬂ(S ’,a ’)]

These are two forms of Bellman’s equation.

27

The value of a policy

State value function:

VA(S) = 2 acai(S,8) (R(S,8) + ¥ 2 55 T(S,8,8)V*(S))

When S is a finite set of states, this is a system of linear equations
(one per state) with a unique solution V/~.

Bellman’s equation in matrix form: Vi=R*+y 7 V"

Which can solved exactly: Ve=(l-yT7)TR"

28

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V(s), Vs. (Can be 0, or r(s,-).)

29

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V(s), Vs. (Can be 0, or r(s,").)

2. During every iteration k, update the value function for all states:

Viar(s) « (R(s, () + ¥ Soes T(S, 7(S), S)Vi(s))

30

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V(s), Vs. (Can be 0, or r(s,").)

2. During every iteration k, update the value function for all states:
Vier(s) « (R(s, 2(s)) + y Syres T(s, 7(s), $)Vi(s))
3. Stop when the maximum changes between two iterations is smaller
than a desired threshold (the values stop changing.)

This is a dynamic programming algorithm. Guaranteed to converge!

31

Convergence of Iterative Policy Evaluation

« Consider the absolute error in our estimate V, ,,(S):

|Vie+1(s

Z’TI'(S a) S a) +’YZT(33 a, SI)Vk(SI))

/
S

- Z n(s,a)(R(s,a) +7) T(s,a,8")V"(5))

(Ve(s') = V7™ (s))

< 'yz (s, a) ZT(S, a,s')|Vi(s') = V7(s)|
 Aslong as y<1, the error contracts and eventually goes to 0.

32

Optimal policies and optimal value functions

« Optimal value function, /" is the highest value that can be

achieved for each state:

V*(s) = max, V*(s)

* Any policy that achieves V*is called an optimal policy, 7"

33

Optimal policies and optimal value functions

« Optimal value function, /" is the highest value that can be

achieved for each state:

V*(s) = max, V*(s)

* Any policy that achieves V*is called an optimal policy, 7"

 For each MDP there is a unique optimal value function
(Bellman, 1957).

 The optimal policy is not necessarily unique.

34

Optimal policies and optimal value functions

« |fwe know V*(and R, T, y), then we can compute 7 easily.

’(s) = argmax,.a(R(s,a) +y 2 s.s 1(s,a,5)V*(s))

 Ifwe know 7" (and R, T, y), then we can compute V" easily.

Vi(s) =Yacan(s,@) (R(s,@) +y ¥ses T(s,a,8)V(s))
Vi(s) =R(s, 7(s)) + y Xses T(S, 7(s),8)V'(S))

Take-home: Both V* and =* are “solutions” to the MDP.

35

Finding a good policy: Policy lteration

« Start with an initial policy 7, (e.g. random)

* Repeat:
— Compute V7, using iterative policy evaluation.
— Compute a new policy 7’ that is greedy with respect to V~

e Terminate when = =7’

36

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V/(s)

2. On each iteration, update the value function estimate:
Vk(S) - maxaeA (R(S7a) t 4 ZS’GS T(S,a,S’)Vk_»,(S’))

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.

37

Three related algorithms

1. Policy evaluation: Fix the policy, estimate its value.

2. Policy iteration: Find the best policy at each state.
» Policy evaluation + greedy improvement.

3. Value iteration: Find the optimal value function.

Three related algorithms

1. Policy evaluation: Fix the policy, estimate its value.
— 0O(S?

2. Policy iteration: Find the best policy at each state.
» Policy evaluation + greedy improvement.

— O(S3+S?A) per iteration

3. Value iteration: Find the optimal value function.
— O(S?A) per iteration

A 4x3 gridworld example

« 11 discrete states, 4 motion actions (N, S, E, W) in each state.

« Transitions are mildly stochastic.

« Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.
« Episode terminates when the agent reaches +1 or -10 state.

« Discount factor y = 0.99.

T 0.1 S +1

0.7 -10

Intended
direction

A

Value lteration (1)

Value lteration (2)

-10

0 0 0 |-0.99

Bellman residual: |V, (s) - V,(s)| = 0.99

42

Value lteration (5)

048 | 0.70 | 0.76 | +1

0.23 -0.55| -10

0 |-0.20]|-0.23 |-1.40

Bellman residual: |Vi(s) - V,(s)| = 0.23

Value lteration (20)

0.78 | 0.80 | 0.81 | +1

0.77 -0.44| -10

0.75 | 0.69 | 0.37 | -0.92

Bellman residual: |Vi(s) - V,(s)| = 0.008

44

Another example: Four Rooms

* Four actions, fail 30% of the time.
* No rewards until the goal is reached, y = 0.9.
« Values propagate backwards from the goal.

lteration #1 Iteration #2 lteration #3

45

Asynchronous value iteration

* Instead of updating all states on every iteration, focus on
important states.

— E.g., board positions that occur on every game, rather than
just once in 100 games.

 Asynchronous dynamic programming algorithm:
— Generate trajectories through the MDP.

— Update states whenever they appear on such a trajectory.

* Focuses the updates on states that are actually possible.

Generalized Policy Iteration

« Any combination of policy evaluation and policy improvement steps.
e.g. only update value of one state and improve policy at that state.

evaluation

n V
n—greedy(V)
Improvement starting V"
* V n e

> v::-:

47

Key challenges in RL

e Designing the problem domain
— State representation

— Action choice

— Cost/reward signal

« Acquiring data for training
— Exploration / exploitation
— High cost actions

— Time-delayed cost/reward signal

* Function approximation

 Validation / confidence measures

48

|Learning online from trial & error |

Act

O r

Adjust Q-function New transition

St =ZaVp Sprg

49

Online reinforcement learning

* Monte-Carlo value estimate: Use the empirical return, U(s,) as
a target estimate for the actual value function:

* Not a Bellman
V(St) < V(St) + O (U(SZ) — V(St)) equation. More like

a gradient equation.

— Here « is the learning rate (a parameter).

— Need to wait until the end of the trajectory to compute U(s,).

Temporal-Difference (TD) learning

Monte-Carlo learning: V(s,) < V(s,) + a(U(st) — V(St))

* TD-learning:

V(st) = Vi(s) + Q (Tt+1 + YV (st41) — V(St)}) vt=0,1,2,...
Y
TD-error

learning
rate

51

TD-Gammon (Tesauro, 1992)

predicted probability
of winning, V,

TD error, V, 1=V, —>g>

@ Q Q -7~ hidden units (40-80)

W
\v

50 o...o'---o

backgammon position (198 input units)

=

S:H_@

white pieces move
rc é 8 ’ counterclockwise

black pieces
move clockwise

52

Reward function:

+100 if win
- 100 if lose
O for all other states

Trained by playing 1.5x106
million games against itself.

Enough to beat the
best human player.

Several challenges in RL

e Designing the problem domain
— State representation

— Action choice

— Cost/reward signal

« Acquiring data for training
— Exploration / exploitation

— High cost actions

« Time-delayed cost/reward signal
 Function approximation

 Validation / confidence measures

53

Tabular / Function approximation

« Tabular: Can store in memory a list of the states and their value.

TO.I * Can prove many more
' theoretical properties
in this case, about
convergence, sample
complexity.

4 0.7

Intended
direction

l.1

* Function approximation: Too many states, continuous state spaces.

In large state spaces: Need approximation

feature vector

55

Learning representations for RL

Goal Position —i

——
e

«— Inelastic Wall

. Qofs.a)

i s » " . *
. » “p
- ’ . - . .
o » LIY > (T
‘ot B e
w Ve -
: . i
S — - *
. 2

Original state Linear function

56

Deep Reinforcement Learning

Qols,a)

©
©
CLEEEREREA A

Convolutional Neural Net

Original state

Deep Q-Network trained with stochastic gradient descent.

[DeepMind: Mnih et al., 2015].

First-Person
View

Top-Down
View

Deep RL in Minecraft

Q Q Q
Q Q [Memory | || Memory | || Memory |
[Context | | Context:D Context | Context:D Context:D
CNN CNN CNN CNN CNN
I
Xt—_M Xt Xt Xt Xt Xt
(a) DQN (b) DRQN (c) MQN (d) RMQN (e) FRMQN

(a) t=3 (b) t=10 (c) t=11 (d) =19

Many possible architectures,
incl. memory and context

Online videos: https.//sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft

[U.Michigan: Oh et al., 2016].
58

The RL lingo

Episodic / Continuing task

« Batch / Online

« On-policy / Off-policy

« Exploration / Exploitation

« Model-based / Model-free

« Policy optimization / Value function methods

59

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

60

On-policy / Off-policy

» Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:

— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.

61

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:
— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.
« Use importance sampling to reweigh data samples to compute
unbiased estimates of a new policy.

T(S¢,at)

’Ot — b(St ,CLt)

62

Exploration / Exploitation

=N
— | —

u

T |_"|—'I

B

Exploration / Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

64

Model-based vs Model-free RL

« Option #1: Collect large amounts of observed trajectories.
Learn an approximate model of the dynamics (e.g. with
supervised learning). Pretend the model is correct and apply
value iteration.

« Option #2: Use data to directly learn the value function or
optimal policy.

65

Policy Optimization / Value Function

Policy Optimization Dynamic Programming
DFO / Evolution Policy Gradients Policy lteration Value Iteration
\ / Q-Learning TD-Learning

Actor-Critic
Methods

66

IQuick summary |

 RL problems are everywhere!

— Games, text, robotics, medicine, ...

* Need access to the “environment” to generate samples.
— Most recent results make extensive use of a simulator.

* Feasible methods for large, complex tasks.

« Intuition about what is “easy”, “hard” is different than supervised
learning.

RL resources

Reinforcement ﬁ)
Learning

Comprehensive list of resources:
» https://github.com/aikorea/awesome-rl

Environments & algorithms:

« http://glue.rl-community.org/wiki/Main_Page
« https://gym.openai.com

* https://github.com/deepmind/lab

Algorithms for
Reinforcement
Learning

Csaba Szepesviri

68

