Reinforcement Learning: Basic concepts

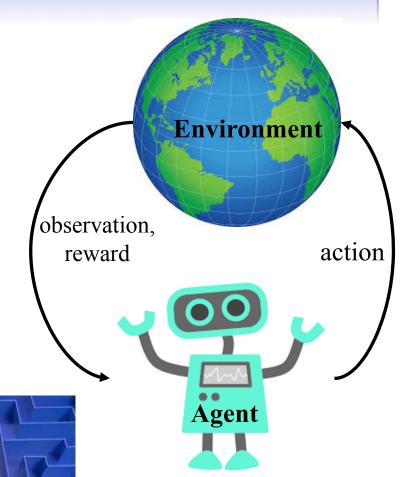
Joelle Pineau

School of Computer Science, McGill University Facebook Al Research (FAIR)

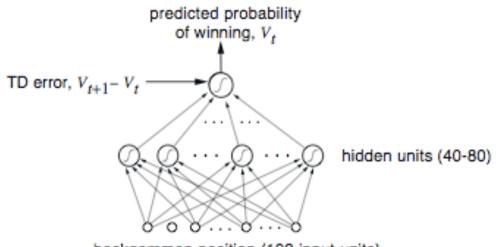
CIFAR Reinforcement Learning Summer School
July 3 2017

Reinforcement learning

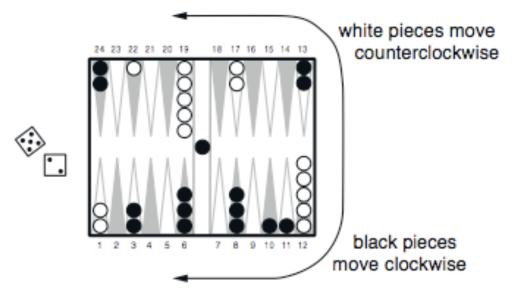
- Learning by trial-and-error, in real-time.
- Improves with experience
- Inspired by psychology
 - Agent + Environment
 - Agent selects actions to maximize utility function.



RL system circa 1990's: TD-Gammon



backgammon position (198 input units)



Reward function:

- +100 if win
- 100 if lose

0 for all other states

Trained by playing 1.5x10⁶ million games against itself.

Enough to beat the best human player.

RL applications at RLDM 2017

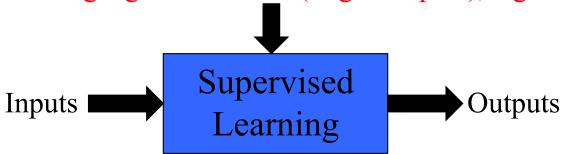
- Robotics
- Video games
- Conversational systems
- Medical intervention
- Algorithm improvement
- Improvisational theatre
- Autonomous driving
- Prosthetic arm control
- Financial trading
- Query completion

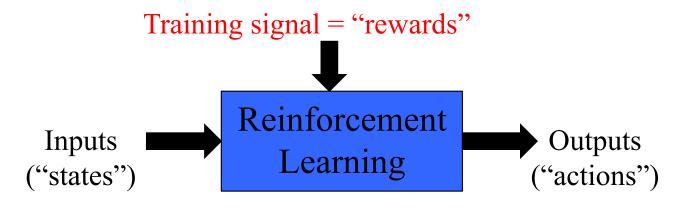
When to use RL?

- Data in the form of <u>trajectories</u>.
- Need to make a <u>sequence</u> of (related) decisions.
- Observe (partial, noisy) <u>feedback</u> to choice of actions.
- Tasks that require both learning and planning.

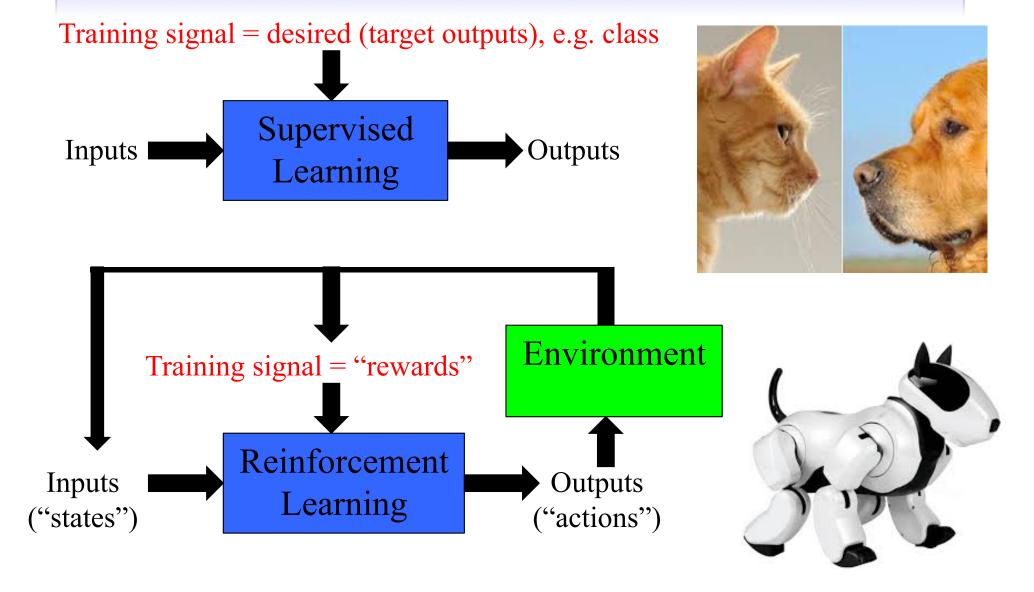
RL vs supervised learning

Training signal = desired (target outputs), e.g. class

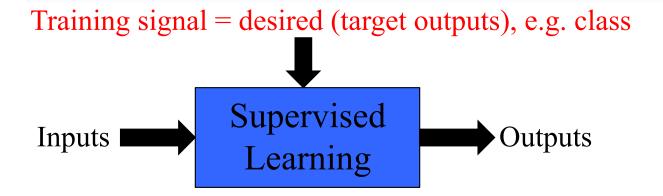


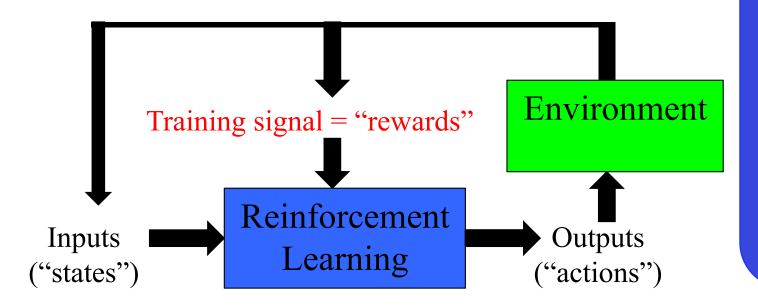


RL vs supervised learning



RL vs supervised learning





Practical & technical challenges:

- 1. Need access to the environment.
- 2. Jointly learning AND planning from **correlated** samples.
- 3. Data distribution changes with action choice.

Markov Decision Process (MDP)

Defined by:

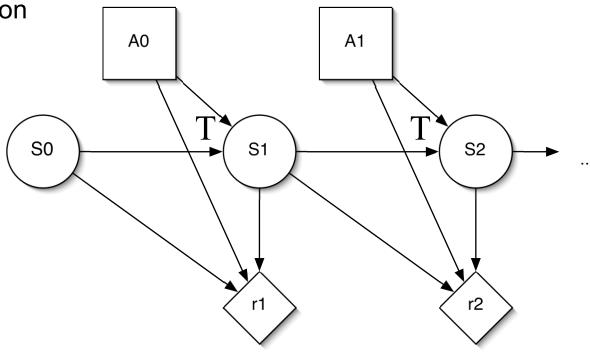
 $S: = \{s_1, s_2, ..., s_n\}$, the set of states (can be infinite/continuous)

 $A: = \{a_1, a_2, ..., a_m\}$, the set of actions (can be infinite/continuous)

T(s,a,s') := Pr(s'|s,a), the dynamics of the environment

R(s,a): Reward function

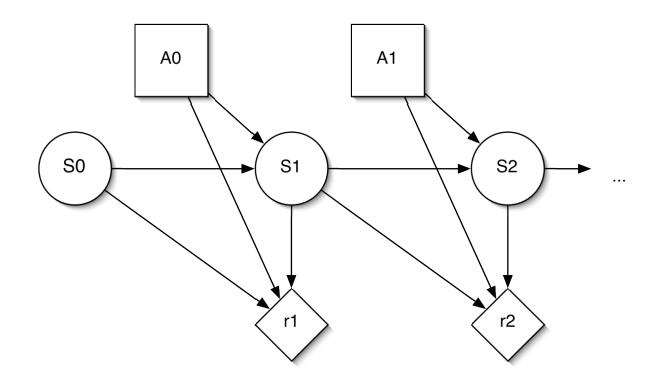
 $\mu(s)$: Initial state distribution



The **Markov** property

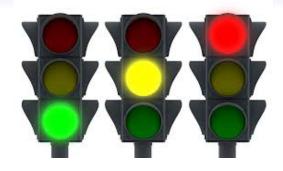
The distribution over future states **depends only on the present state and action**, not on any other previous event.

$$Pr(s_{t+1} | s_0, ..., s_t, a_0, ... a_t) = Pr(s_{t+1} | s_t, a_t)$$



The Markov property

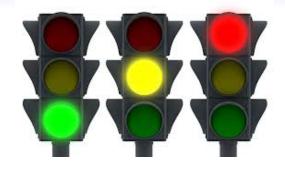
Traffic lights?



• Chess?

The **Markov** property

Traffic lights?



Chess?

Poker?

Tip: Incorporate <u>past</u> <u>observations</u> in the state to have sufficient information to predict next state.

The goal of RL? Maximize return!

• Return, U_t of a trajectory, is the sum of rewards starting from step t.

The goal of RL? Maximize return!

Return, U_t of a trajectory, is the sum of rewards starting from step t.

• Episodic task: consider return over finite horizon (e.g. games, maze).

$$U_t = r_t + r_{t+1} + r_{t+2} + \dots + r_T$$

 Continuing task: consider return over infinite horizon (e.g. juggling, balancing).

$$U_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} \dots = \sum_{k=0: \infty} \gamma^k r_{t+k}$$

The discount factor, γ

• Discount factor, $\gamma \in [0, 1)$ (usually close to 1).

- Intuition:
 - Receiving \$80 today is worth the same as \$100 tomorrow (assuming a discount factor of factor of $\gamma = 0.8$).
 - At each time step, there is a 1- γ chance that the agent dies, and does not receive rewards afterwards.

Defining behavior: The policy

• Policy, π defines the action-selection strategy at every state:

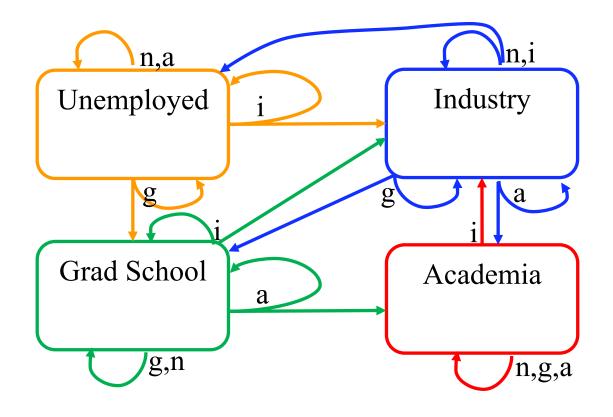
$$\pi(s,a) = P(a_t=a \mid s_t=s)$$

 $\pi: S \rightarrow A$

Goal: Find the policy that maximizes expected total reward. (But there are many policies!)

$$argmax_{\pi} E_{\pi} [r_0 + r_1 + ... + r_T | s_0]$$

Example: Career Options



n=Do Nothing

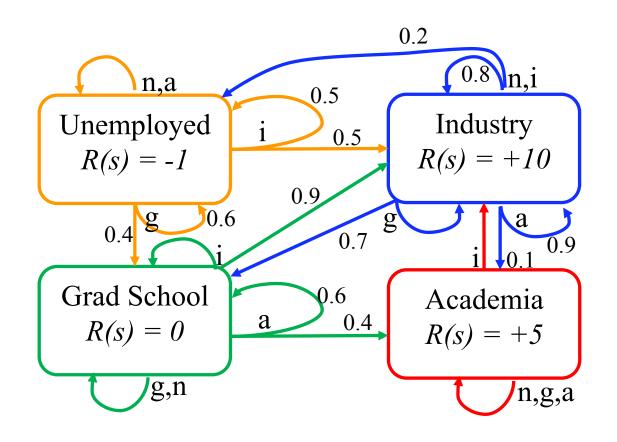
i = Apply to industry

g = Apply to grad school

a = Apply to academia

What is the best policy?

Example: Career Options



n=Do Nothing
i = Apply to industry

g = Apply to grad school

a = Apply to academia

What is the best policy?

Value functions

The **expected return of a policy** (for every state) is called the

value function:
$$V^{\pi}(s) = E_{\pi} [r_t + r_{t+t} + ... + r_T | s_t = s]$$

Simple strategy to find the best policy:

- 1. Enumerate the space of all possible policies.
- 2. Estimate the expected return of each one.
- 3. Keep the policy that has maximum expected return.

Getting confused with terminology?

- Reward?
- Return?
- Value?
- Utility?

Getting confused with terminology?

- Reward: 1 step numerical feedback
- Return: Sum of rewards over the agent's trajectory.
- Value: Expected sum of rewards over the agent's trajector.
- **Utility**: Numerical function representing preferences.

In RL, we assume Utility = Return.

Immediate reward

$$V^{\pi}(s) = E_{\pi} [r_{t} + r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi} [r_{t}] + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

Future expected sum of rewards

$$V^{\pi}(s) = E_{\pi} [r_{t} + r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi} [r_{t}] + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t+1} = s']$$

$$Expectation over 1-step transition$$

$$V^{\pi}(s) = E_{\pi} [r_{t} + r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi} [r_{t}] + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') E_{\pi} [r_{t+1} + \dots + r_{T} | s_{t+1} = s']$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') V^{\pi}(s')$$

$$E_{\pi}(s, a) R(s, a) R(s, a) + E_{\pi}(s, a) R(s, a) R(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) R(s, a) R(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) R(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a)$$

This is a **dynamic programming** algorithm.

State value function (for a **fixed** policy):

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left[R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right]$$

$$Immediate \quad Future \ expected \ sum \ of \ rewards$$

State-action value function:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s} T(s,a,s') [\sum_{a' \in A} \pi(s',a') Q^{\pi}(s',a')]$$

These are two forms of **Bellman's equation**.

State value function:

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) (R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s'))$$

When S is a **finite set of states**, this is a **system of linear equations** (one per state) with a unique solution V^{π} .

Bellman's equation in matrix form: $V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi}$

Which can solved exactly: $V^{\pi} = (I - \gamma T^{\pi})^{-1} R^{\pi}$

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess $V_0(s)$, $\forall s$. (Can be 0, or $r(s,\cdot)$.)

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

- 1. Start with some initial guess $V_0(s)$, $\forall s$. (Can be 0, or $r(s, \cdot)$.)
- 2. During every iteration k, update the value function for all states:

$$V_{k+1}(s) \leftarrow \left(R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_k(s') \right)$$

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

- 1. Start with some initial guess $V_0(s)$, $\forall s$. (Can be 0, or $r(s, \cdot)$.)
- 2. During every iteration k, update the value function for all states:

$$V_{k+1}(s) \leftarrow \left(R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_k(s') \right)$$

3. Stop when the maximum changes between two iterations is smaller than a desired threshold (the values stop changing.)

This is a dynamic programming algorithm. Guaranteed to converge!

Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate $V_{k+1}(s)$:

$$|V_{k+1}(s) - V^{\pi}(s)| = \left| \sum_{a} \pi(s, a) (R(s, a) + \gamma \sum_{s'} T(s, a, s') V_{k}(s')) \right|$$

$$- \sum_{a} \pi(s, a) (R(s, a) + \gamma \sum_{s'} T(s, a, s') V^{\pi}(s')) \right|$$

$$= \gamma \left| \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') (V_{k}(s') - V^{\pi}(s')) \right|$$

$$\leq \gamma \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') |V_{k}(s') - V^{\pi}(s')|$$

As long as γ<1, the error contracts and eventually goes to 0.

Optimal policies and optimal value functions

 Optimal value function, V* is the highest value that can be achieved for each state:

$$V^*(s) = max_{\pi} V^{\pi}(s)$$

• Any policy that achieves V^* is called an **optimal policy**, π^* .

Optimal policies and optimal value functions

 Optimal value function, V* is the highest value that can be achieved for each state:

$$V^*(s) = max_{\pi} V^{\pi}(s)$$

Any policy that achieves V* is called an optimal policy, π*.

- For each MDP there is a unique optimal value function (Bellman, 1957).
- The optimal policy is not necessarily unique.

Optimal policies and optimal value functions

• If we know V^* (and R, T, γ), then we can compute π^* easily.

$$\pi^*(s) = \operatorname{argmax}_{a \in A} (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^*(s'))$$

• If we know π^* (and R, T, γ), then we can compute V^* easily.

$$V^{*}(s) = \sum_{a \in A} \pi^{*}(s,a) (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^{*}(s'))$$

$$V^{*}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s),s') V^{*}(s')$$

Take-home: Both V^* and π^* are "solutions" to the MDP.

Finding a good policy: Policy Iteration

- Start with an initial policy π_0 (e.g. random)
- Repeat:
 - Compute V^{π} , using iterative policy evaluation.
 - Compute a new policy π' that is greedy with respect to V^{π}
- Terminate when $\pi = \pi'$

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update rule (same as done in policy evaluation):

- 1. Start with an arbitrary initial approximation $V_0(s)$
- 2. On each iteration, update the value function estimate:

$$V_k(s) = \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{k-1}(s') \right)$$

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V^* .

Three related algorithms

1. Policy evaluation: Fix the policy, estimate its value.

2. Policy iteration: Find the best policy at each state.

» Policy evaluation + greedy improvement.

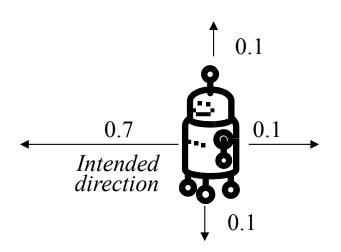
3. Value iteration: Find the optimal value function.

Three related algorithms

- 1. Policy evaluation: Fix the policy, estimate its value.
 - $O(S^3)$
- 2. Policy iteration: Find the best policy at each state.
 - » Policy evaluation + greedy improvement.
 - $O(S^3+S^2A)$ per iteration
- 3. Value iteration: Find the optimal value function.
 - $O(S^2A)$ per iteration

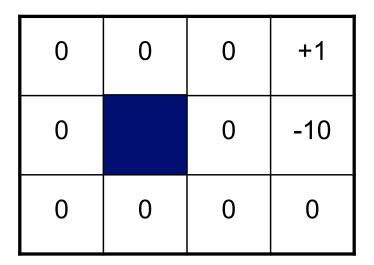
A 4x3 gridworld example

- 11 discrete states, 4 motion actions (N, S, E, W) in each state.
- Transitions are mildly stochastic.
- Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.
- Episode terminates when the agent reaches +1 or -10 state.
- Discount factor $\gamma = 0.99$.



S		+1
		-10

Value Iteration (1)



Value Iteration (2)

0	0	0.69	+1
0		-0.99	-10
0	0	0	-0.99

Bellman residual: $|V_2(s) - V_1(s)| = 0.99$

Value Iteration (5)

0.48	0.70	0.76	+1
0.23		-0.55	-10
0	-0.20	-0.23	-1.40

Bellman residual: $|V_5(s) - V_4(s)| = 0.23$

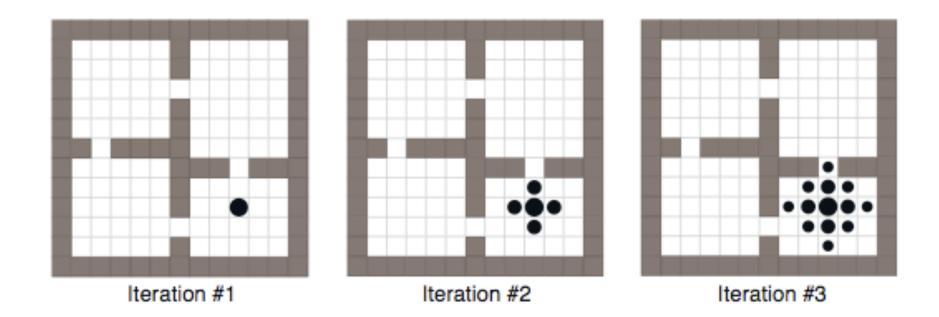
Value Iteration (20)

0.78	0.80	0.81	+1
0.77		-0.44	-10
0.75	0.69	0.37	-0.92

Bellman residual: $|V_5(s) - V_4(s)| = 0.008$

Another example: Four Rooms

- Four actions, fail 30% of the time.
- No rewards until the goal is reached, $\gamma = 0.9$.
- Values propagate backwards from the goal.



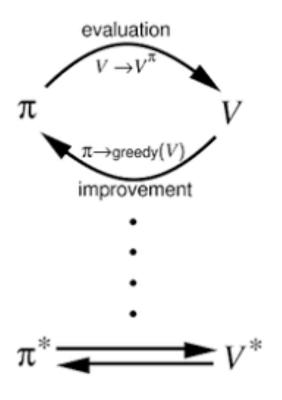
Asynchronous value iteration

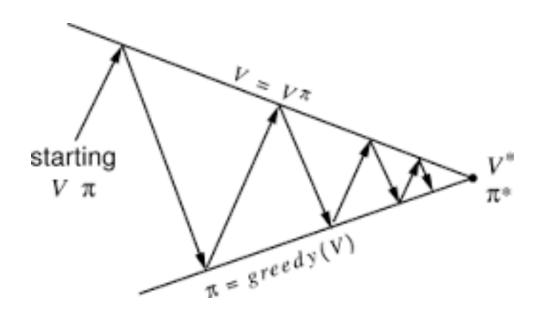
- Instead of updating all states on every iteration, focus on important states.
 - E.g., board positions that occur on every game, rather than just once in 100 games.
- Asynchronous dynamic programming algorithm:
 - Generate trajectories through the MDP.
 - Update states whenever they appear on such a trajectory.

Focuses the updates on states that are actually possible.

Generalized Policy Iteration

Any combination of policy evaluation and policy improvement steps.
 e.g. only update value of one state and improve policy at that state.

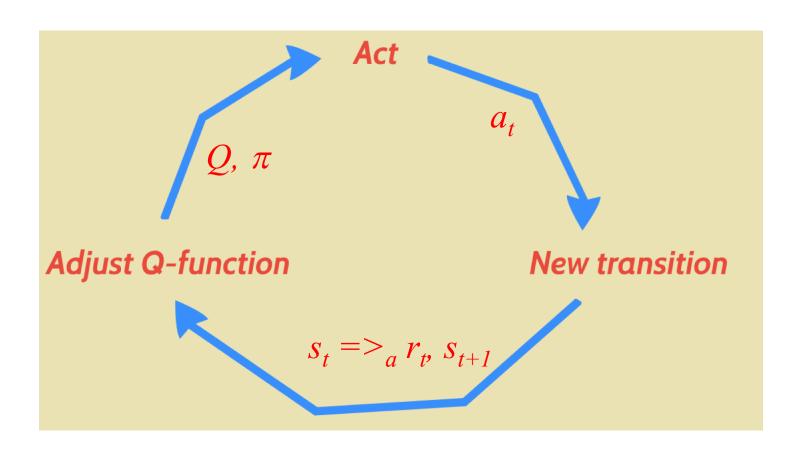




Key challenges in RL

- Designing the problem domain
 - State representation
 - Action choice
 - Cost/reward signal
- Acquiring data for training
 - Exploration / exploitation
 - High cost actions
 - Time-delayed cost/reward signal
- Function approximation
- Validation / confidence measures

Learning online from trial & error



Online reinforcement learning

• Monte-Carlo value estimate: Use the empirical return, $U(s_t)$ as a target estimate for the actual value function:

$$V(s_t) \leftarrow V(s_t) + \alpha \left(U(s_t) - V(s_t) \right)$$
*Not a Bellman equation. More like a gradient equation.

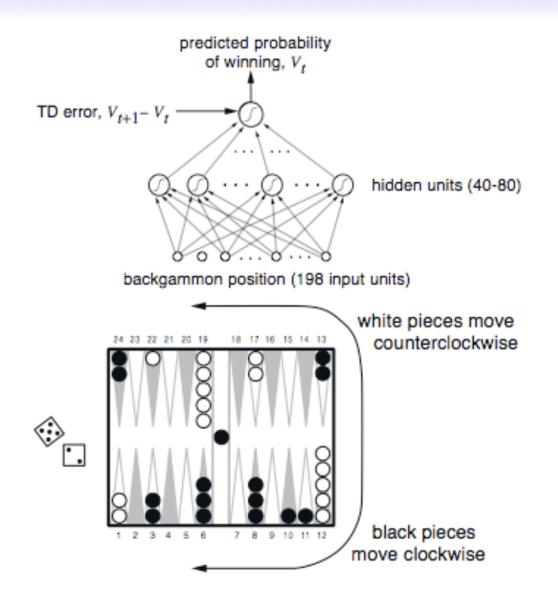
- Here α is the learning rate (a parameter).
- Need to wait until the end of the trajectory to compute $U(s_t)$.

Temporal-Difference (TD) learning

• Monte-Carlo learning: $V(s_t) \leftarrow V(s_t) + \alpha (U(s_t) - V(s_t))$

TD-learning:

TD-Gammon (Tesauro, 1992)



Reward function:

- +100 if win
- 100 if lose

0 for all other states

Trained by playing 1.5x10⁶ million games against itself.

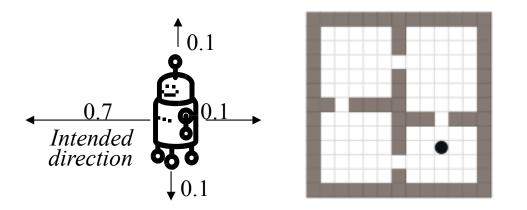
Enough to beat the best human player.

Several challenges in RL

- Designing the problem domain
 - State representation
 - Action choice
 - Cost/reward signal
- Acquiring data for training
 - Exploration / exploitation
 - High cost actions
- Time-delayed cost/reward signal
- Function approximation
- Validation / confidence measures

Tabular / Function approximation

• Tabular: Can store in memory a list of the states and their value.



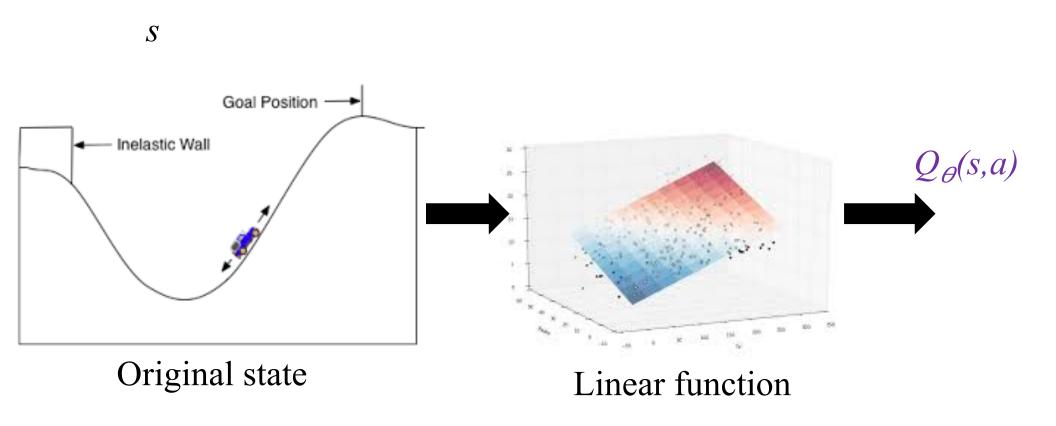
* Can prove many more theoretical properties in this case, about convergence, sample complexity.

Function approximation: Too many states, continuous state spaces.

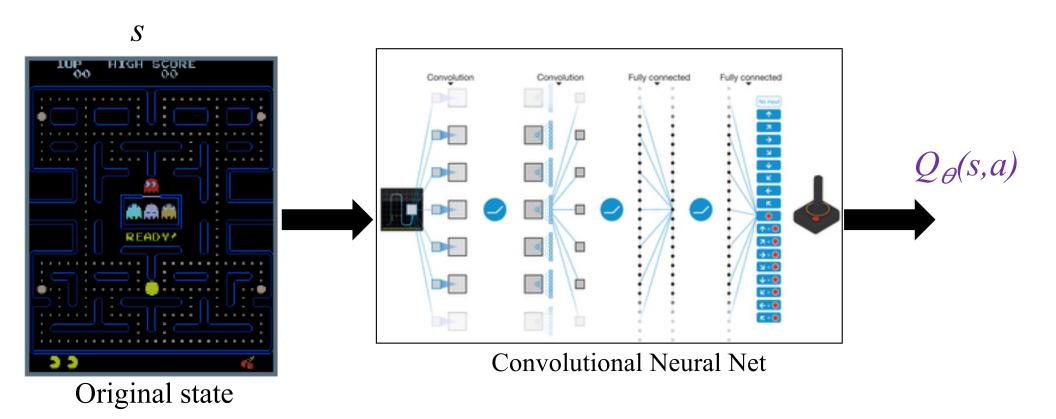
In large state spaces: Need approximation

Challenge: finding good features
$$\hat{Q}^{\pi}(s,a) = \sum_{i=1}^{Challenge: finding good features} \theta_i \phi_i(s,a)$$
 feature vector

Learning representations for RL

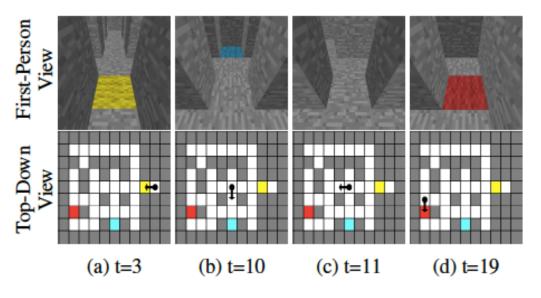


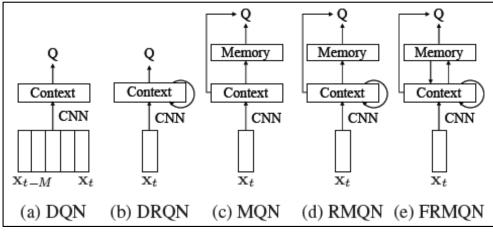
Deep Reinforcement Learning



Deep Q-Network trained with stochastic gradient descent.

Deep RL in Minecraft





Many possible architectures, incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft

[U.Michigan: Oh et al., 2016].

The RL lingo

- Episodic / Continuing task
- Batch / Online
- On-policy / Off-policy
- Exploration / Exploitation
- Model-based / Model-free
- Policy optimization / Value function methods

On-policy / Off-policy

- Policy induces a distribution over the states (data).
 - Data distribution changes every time you change the policy!

On-policy / Off-policy

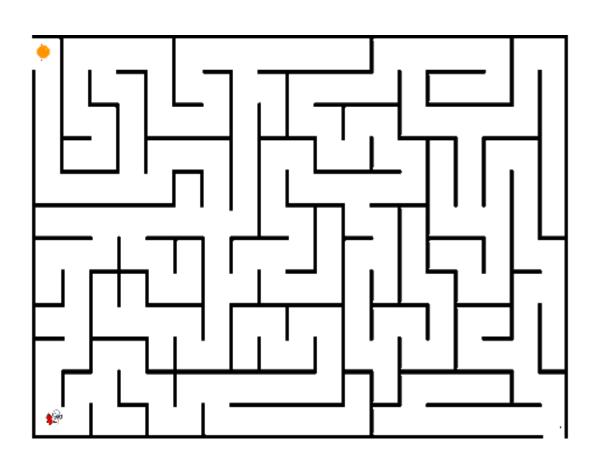
- Policy induces a distribution over the states (data).
 - Data distribution changes every time you change the policy!
- Evaluating several policies with the same batch:
 - Need very big batch!
 - Need policy to adequately cover all (s,a) pairs.

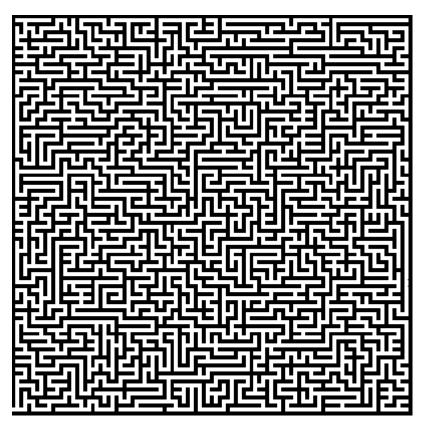
On-policy / Off-policy

- Policy induces a distribution over the states (data).
 - Data distribution changes every time you change the policy!
- Evaluating several policies with the same batch:
 - Need very big batch!
 - Need policy to adequately cover all (s,a) pairs.
- Use importance sampling to reweigh data samples to compute unbiased estimates of a new policy.

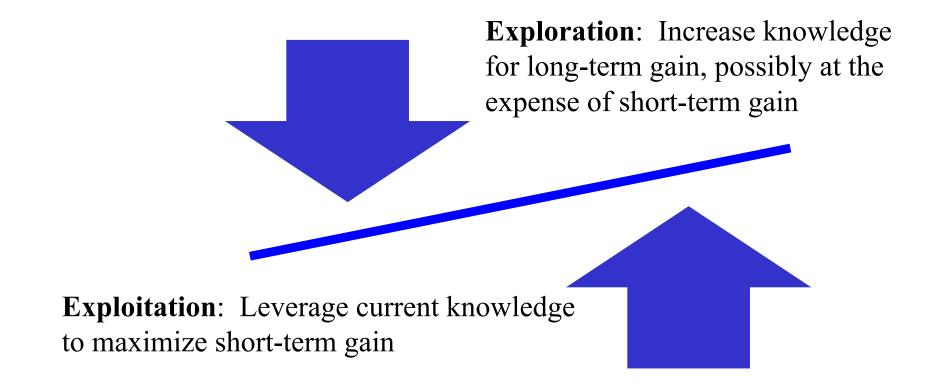
$$\rho_t = \frac{\pi(s_t, a_t)}{b(s_t, a_t)}$$

Exploration / Exploitation





Exploration / Exploitation

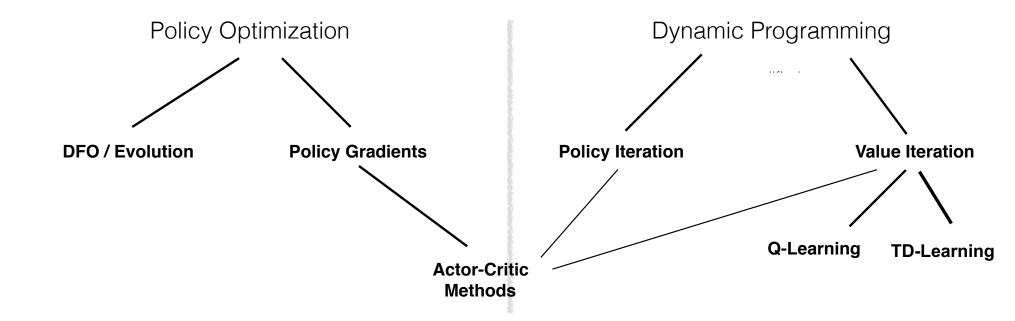


Model-based vs Model-free RL

- Option #1: Collect large amounts of observed trajectories.

 Learn an approximate model of the dynamics (e.g. with supervised learning). Pretend the model is correct and apply value iteration.
- Option #2: Use data to directly learn the value function or optimal policy.

Policy Optimization / Value Function



Quick summary

- RL problems are everywhere!
 - Games, text, robotics, medicine, ...
- Need access to the "environment" to generate samples.
 - Most recent results make extensive use of a simulator.
- Feasible methods for large, complex tasks.
- Intuition about what is "easy", "hard" is different than supervised learning.

Learning RL Planning

RL resources

Comprehensive list of resources:

https://github.com/aikorea/awesome-rl

Environments & algorithms:

- http://glue.rl-community.org/wiki/Main_Page
- https://gym.openai.com
- https://github.com/deepmind/lab



