
Reinforcement Learning:
Basic concepts

Joelle Pineau
School of Computer Science, McGill University

Facebook AI Research (FAIR)

CIFAR Reinforcement Learning Summer School
July 3 2017

3

• Learning by trial-and-error, in real-time.

• Improves with experience

• Inspired by psychology
– Agent + Environment
– Agent selects actions to maximize

utility function.

observation,
reward action

Agent

Environment

Reinforcement learning

RL system circa 1990’s: TD-Gammon

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the
best human player.

4

2016: World Go Champion
Beaten by Deep Learning

5

RL applications at RLDM 2017

• Robotics
• Video games
• Conversational systems
• Medical intervention
• Algorithm improvement
• Improvisational theatre
• Autonomous driving
• Prosthetic arm control
• Financial trading
• Query completion

6

When to use RL?

• Data in the form of trajectories.

• Need to make a sequence of (related) decisions.

• Observe (partial, noisy) feedback to choice of actions.

• Tasks that require both learning and planning.

7

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Outputs
(“actions”)

Training signal = “rewards”

8

Inputs
(“states”)

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Training signal = “rewards” Environment

9

Inputs
(“states”)

Outputs
(“actions”)

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs
(“states”)

Training signal = “rewards”

10

Outputs
(“actions”)

Environment

Practical & technical
challenges:

1. Need access to the
environment.

2. Jointly learning
AND planning from
correlated
samples.

3. Data distribution
changes with action
choice.

Markov Decision Process (MDP)
Defined by:
S: = {s1, s2, …, sn }, the set of states (can be infinite/continuous)
A: = {a1, a2, …, am }, the set of actions (can be infinite/continuous)
T(s,a,s’) := Pr(s’|s,a), the dynamics of the environment
R(s,a): Reward function
μ(s) : Initial state distribution

MDPs as Decision Graphs

!" !# !$

%# %$

&" &#

'''

• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference

COMP-652 and ECSE-608, March 29, 2016 28

11

T T

The Markov property

The distribution over future states depends only on the present
state and action, not on any other previous event.

Pr(st+1 | s0, …, st, a0, … at) = Pr(st+1 | st, at)

12

MDPs as Decision Graphs

!" !# !$

%# %$

&" &#

'''

• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference

COMP-652 and ECSE-608, March 29, 2016 28

• Traffic lights?

• Chess?

The Markov property

13

• Traffic lights?

• Chess?

• Poker?

The Markov property

14

Tip: Incorporate past
observations in the
state to have sufficient
information to predict
next state.

The goal of RL? Maximize return!

• Return, Ut of a trajectory, is the sum of rewards starting from step t.

15

The goal of RL? Maximize return!

• Return, Ut of a trajectory, is the sum of rewards starting from step t.

• Episodic task: consider return over finite horizon (e.g. games, maze).

Ut = rt + rt+1 + rt+2 + … + rT

• Continuing task: consider return over infinite horizon (e.g. juggling,
balancing).

Ut = rt + grt+1 + g2rt+2 + g3rt+3 … = ∑k=0: ∞ gkrt+k

16

The discount factor, g

• Discount factor, g ∊ [0, 1) (usually close to 1).

• Intuition:

– Receiving $80 today is worth the same as $100 tomorrow
(assuming a discount factor of factor of g = 0.8).

– At each time step, there is a 1- g chance that the agent dies,
and does not receive rewards afterwards.

17

Defining behavior: The policy

• Policy, p defines the action-selection strategy at every state:

p(s,a) = P(at=a | st=s)
p : S→A

Goal: Find the policy that maximizes expected total reward.
(But there are many policies!)

argmaxp Ep [r0 + r1 + … + rT | s0]

18

Example: Career Options

Example: Career Options

a = Apply to academia

Grad School

 (G)

Academia

 (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

 (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?

COMP-652 and ECSE-608, March 29, 2016 39

19

Unemployed Industry

Grad School Academia

i

g

n,a

a

n,i

a

g
i

g,n n,g,a

i

What is the best policy?

Example: Career Options

Example: Career Options

a = Apply to academia

Grad School

 (G)

Academia

 (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

 (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?

COMP-652 and ECSE-608, March 29, 2016 39

20

Unemployed
R(s) = -1

Industry
R(s) = +10

Grad School
R(s) = 0

Academia
R(s) = +5

i

g

n,a

a

n,i

a

g
i

g,n n,g,a

i

0.5

0.2

0.5

0.8

0.1 0.9

0.4
0.6

0.4 0.7
0.6

What is the best policy?

0.9

Value functions

The expected return of a policy (for every state) is called the
value function:Vp(s) = Ep [rt + rt+t + … + rT | st = s]

Simple strategy to find the best policy:
1. Enumerate the space of all possible policies.
2. Estimate the expected return of each one.
3. Keep the policy that has maximum expected return.

21

Getting confused with terminology?

• Reward?

• Return?

• Value?

• Utility?

22

Getting confused with terminology?

• Reward: 1 step numerical feedback

• Return: Sum of rewards over the agent’s trajectory.

• Value: Expected sum of rewards over the agent’s trajector.

• Utility: Numerical function representing preferences.

• In RL, we assume Utility = Return.

23

The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s]

Vp(s) = Ep [rt] + Ep [rt+1 + … + rT | st = s]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [rt+1 + … + rT | st = s]

Immediate reward Future expected sum of rewards

24

The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s]

Vp(s) = Ep [rt] + Ep [rt+1 + … + rT | st = s]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [rt+1 + … + rT | st = s]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’)Ep [rt+1+…+ rT | st+1=s’]

Expectation over 1-step transition

25

The value of a policy

Vp(s) = Ep [rt + rt+1 + … + rT | st = s]

Vp(s) = Ep [rt] + Ep [rt+1 + … + rT | st = s]

Vp(s) = ∑aÎA p(s,a)R(s,a) + Ep [rt+1 + … + rT | st = s]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’)Ep [rt+1+…+ rT | st+1=s’]

Vp(s) = ∑aÎA p(s,a)R(s,a) + ∑aÎA p(s,a)∑s’ÎST(s,a,s’) Vp(s’)

By definition

This is a dynamic programming algorithm.

26

The value of a policy

State value function (for a fixed policy):

Vp(s) = ∑aÎA p(s,a) [R(s,a) + g ∑s’ÎS T(s,a,s’)Vp(s’)]

Immediate Future expected sum of rewards

State-action value function:

Qp(s,a) = R(s,a) + γ ∑s’T(s,a,s’)[∑a’ÎA p(s’,a’)Qp(s’,a’)]

These are two forms of Bellman’s equation.

27

The value of a policy

State value function:

Vp(s) = ∑aÎA p(s,a) (R(s,a) + g ∑s’ÎS T(s,a,s’)Vp(s’))

When S is a finite set of states, this is a system of linear equations
(one per state) with a unique solution Vp.

Bellman’s equation in matrix form: Vp = Rp + g Tp Vp

Which can solved exactly: Vp = (I - g Tp)-1 Rp

28

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

29

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ¬ (R(s, p(s)) + g ∑s’ÎS T(s, p(s), s’)Vk(s’))

30

Iterative Policy Evaluation: Fixed policy

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ¬ (R(s, p(s)) + g ∑s’ÎS T(s, p(s), s’)Vk(s’))

3. Stop when the maximum changes between two iterations is smaller

than a desired threshold (the values stop changing.)

This is a dynamic programming algorithm. Guaranteed to converge!
31

Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate Vk+1(s):

• As long as g<1, the error contracts and eventually goes to 0.

32

Optimal policies and optimal value functions

• Optimal value function, V* is the highest value that can be

achieved for each state:

V*(s) = maxp Vp(s)

• Any policy that achieves V* is called an optimal policy, p*.

33

Optimal policies and optimal value functions

• Optimal value function, V* is the highest value that can be

achieved for each state:

V*(s) = maxp Vp(s)

• Any policy that achieves V* is called an optimal policy, p*.

• For each MDP there is a unique optimal value function

(Bellman, 1957).

• The optimal policy is not necessarily unique.

34

Optimal policies and optimal value functions

• If we know V* (and R, T, g), then we can compute p* easily.
p*(s) = argmaxaÎA (R(s,a) + g ∑s’ÎS T(s,a,s’)V*(s’))

• If we know p* (and R, T, g), then we can compute V* easily.
V*(s) = ∑aÎA p*(s,a) (R(s,a) + g ∑s’ÎS T(s,a,s’)V*(s’))

V*(s) = R(s, p(s)) + g ∑s’ÎS T(s, p(s),s’)V*(s’)

Take-home: Both V* and p* are “solutions” to the MDP.

35

Finding a good policy: Policy Iteration

• Start with an initial policy p0 (e.g. random)

• Repeat:
– Compute Vp, using iterative policy evaluation.
– Compute a new policy p’ that is greedy with respect to Vp

• Terminate when p = p’

36

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V0(s)

2. On each iteration, update the value function estimate:
Vk(s) = maxaÎA (R(s,a) + g ∑s’ÎS T(s,a,s’)Vk-1(s’))

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.

37

Three related algorithms

1. Policy evaluation: Fix the policy, estimate its value.

2. Policy iteration: Find the best policy at each state.
» Policy evaluation + greedy improvement.

3. Value iteration: Find the optimal value function.

38

Three related algorithms

1. Policy evaluation: Fix the policy, estimate its value.
– O(S3)

2. Policy iteration: Find the best policy at each state.
» Policy evaluation + greedy improvement.

– O(S3+S2A) per iteration

3. Value iteration: Find the optimal value function.
– O(S2A) per iteration

39

A 4x3 gridworld example

• 11 discrete states, 4 motion actions (N, S, E, W) in each state.

• Transitions are mildly stochastic.

• Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.

• Episode terminates when the agent reaches +1 or -10 state.

• Discount factor g = 0.99.

S +1

-10

0.1

0.1

0.10.7
Intended
direction

40

Value Iteration (1)

0 0 0 +1

0 0 -10

0 0 0 0

41

Value Iteration (2)

0 0 0.69 +1

0 -0.99 -10

0 0 0 -0.99

Bellman residual: |V2(s) - V1(s)| = 0.99

42

Value Iteration (5)

0.48 0.70 0.76 +1

0.23 -0.55 -10

0 -0.20 -0.23 -1.40

Bellman residual: |V5(s) - V4(s)| = 0.23

43

Value Iteration (20)

0.78 0.80 0.81 +1

0.77 -0.44 -10

0.75 0.69 0.37 -0.92

Bellman residual: |V5(s) - V4(s)| = 0.008

44

Another example: Four Rooms

• Four actions, fail 30% of the time.
• No rewards until the goal is reached, g = 0.9.
• Values propagate backwards from the goal.

45

Asynchronous value iteration

• Instead of updating all states on every iteration, focus on
important states.
– E.g., board positions that occur on every game, rather than

just once in 100 games.

• Asynchronous dynamic programming algorithm:
– Generate trajectories through the MDP.
– Update states whenever they appear on such a trajectory.

• Focuses the updates on states that are actually possible.

46

Generalized Policy Iteration

• Any combination of policy evaluation and policy improvement steps.
e.g. only update value of one state and improve policy at that state.

47

Key challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions
– Time-delayed cost/reward signal

• Function approximation

• Validation / confidence measures

48

Learning online from trial & error

st =>a rt, st+1

Q, p
at

49

Online reinforcement learning

• Monte-Carlo value estimate: Use the empirical return, U(st) as
a target estimate for the actual value function:

– Here 𝛼 is the learning rate (a parameter).

– Need to wait until the end of the trajectory to compute U(st).

V (st)←V (st)+α U(st)−V (st)()

50

* Not a Bellman
equation. More like
a gradient equation.

Temporal-Difference (TD) learning

• Monte-Carlo learning:

• TD-learning:

Temporal-Di↵erence (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its
change, i.e. temporal di↵erence from one moment to the next

• Tabular TD(0):

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) 8t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator, e..g a
neural network, with parameter ✓:

✓ ✓ + ↵ (rt+1 + �V (st+1)� V (st))r✓V (st), 8t = 0, 1, 2, . . .

In other words, we used the TD-error instead of the “supervised” error

COMP-652 and ECSE-608, March 29, 2016 69

51

TD-error

V (st)←V (st)+α U(st)−V (st)()

learning
rate

TD-Gammon (Tesauro, 1992)

52

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the
best human player.

Several challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions

• Time-delayed cost/reward signal

• Function approximation

• Validation / confidence measures

53

Tabular / Function approximation

• Tabular: Can store in memory a list of the states and their value.

• Function approximation: Too many states, continuous state spaces.

0.1

0.1

0.10.7
Intended
direction

54

* Can prove many more
theoretical properties
in this case, about
convergence, sample
complexity.

In large state spaces: Need approximation

55

Learning representations for RL

s

Original state

Q𝛳(s,a)

56

Linear function

Deep Reinforcement Learning

Q𝛳(s,a)

s

Original state
Convolutional Neural Net

[DeepMind: Mnih et al., 2015].

Deep Q-Network trained with stochastic gradient descent.

57

Deep RL in Minecraft

[U.Michigan: Oh et al., 2016].

Many possible architectures,
incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft

58

The RL lingo

59

• Episodic / Continuing task

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

60

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

61

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

• Use importance sampling to reweigh data samples to compute
unbiased estimates of a new policy.

62

Exploration / Exploitation

63

Exploration / Exploitation

Exploitation: Leverage current knowledge
to maximize short-term gain

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

64

Model-based vs Model-free RL

• Option #1: Collect large amounts of observed trajectories.
Learn an approximate model of the dynamics (e.g. with
supervised learning). Pretend the model is correct and apply
value iteration.

• Option #2: Use data to directly learn the value function or
optimal policy.

65

Policy Optimization / Value FunctionApproaches to RL

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic
Methods

modified
policy iteration

Q-Learning

66

TD-Learning

Quick summary

• RL problems are everywhere!
– Games, text, robotics, medicine, …

• Need access to the “environment” to generate samples.
– Most recent results make extensive use of a simulator.

• Feasible methods for large, complex tasks.

• Intuition about what is “easy”, “hard” is different than supervised
learning.

67

Learning PlanningRL

RL resources

Comprehensive list of resources:
• https://github.com/aikorea/awesome-rl

Environments & algorithms:
• http://glue.rl-community.org/wiki/Main_Page
• https://gym.openai.com
• https://github.com/deepmind/lab

68

