Denoising and Dimension Reduction in Feature Space

Algorithms in Complex Systems September 24–26, 2007, EURANDOM, Eindhoven, NL

Klaus-Robert Müller, Mikio L. Braun

Technische Universität Berlin, Germany and Fraunhofer Institute FIRST, Berlin, Germany

Joint work with

Claudia Sannelli¹, Joachim Buhmann²

¹ Technische Universität Berlin, Germany ² ETH Zürich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

▲ ■
 ● Q ○
 1/52

Basic Ideas of Statistical Learning Theory I

Three scenarios: regression, classification & density estimation. Learn f from examples

 $(\textbf{x}_1,y_1),\ldots,(\textbf{x}_N,y_N)\in \mathbb{R}^N\times \mathbb{R}^M \text{ or } \{\pm 1\}, \quad \text{generated from } P(\textbf{x},y),$

such that expected number of errors on test set (drawn from $P(\mathbf{x}, y)$),

$$R[f] = \int \frac{1}{2} |f(\mathbf{x}) - y|^2 \, dP(\mathbf{x}, y),$$

is minimal (Risk Minimization (RM)).

Problem: P is unknown. \longrightarrow need an *induction principle*.

Empirical risk minimization (ERM): replace the average over $P(\mathbf{x}, y)$ by an average over the training sample, i.e. minimize the training error

$$R_{emp}[f] = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} |f(\mathbf{x}_i) - y_i|^2$$

2/52

Basic Ideas of Statistical Learning Theory II

- Law of large numbers: $R_{emp}[f] \rightarrow R[f]$ as $N \rightarrow \infty$. "consistency" of ERM: for $N \rightarrow \infty$, ERM should lead to the same result as RM?
- No: uniform convergence needed (Vapnik) → VC theory. Theorem (Vapnik 95): with a probability of at least 1 − η,

$$R[f] \leq R_{emp}[f] + \sqrt{rac{d\left(\lograc{2N}{d}+1
ight) - \log(\eta/4)}{N}}.$$

- Structural risk minimization (SRM): introduce structure on set of functions {f_α} & minimize RHS to get low risk! (Vapnik 95)
- d is VC dimension, measuring complexity of function class

Basic Ideas The Kernel "Trick

Linear Hyperplane Classifier

- hyperplane $y = \text{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$ in canonical form if $\min_{\mathbf{x}_i \in X} |(\mathbf{w} \cdot \mathbf{x}_i) + b| = 1.$, i.e. scaling freedom removed.
- larger margin $\sim 1/\| \boldsymbol{\mathsf{w}} \|$ is giving better generalization $\rightarrow \mathsf{LMC}!$

≣ ∽へへ 4/52

Applying VC Theory to Hyperplanes

• **Theorem (Vapnik 95)**: For hyperplanes in canonical form VC-dimension satisfying

$$d \le \min\{[R^2 \|\mathbf{w}\|^2] + 1, n+1\}.$$

Here, R is the radius of the smallest sphere containing data. Use d in SRM bound

$$R[f] \leq R_{emp}[f] + \sqrt{\frac{d\left(\log\frac{2N}{d} + 1\right) - \log(\eta/4)}{N}}$$

 maximal margin = minimum ||w||² → good generalization, i.e. low risk, i.e. optimize

$$\min \|\mathbf{w}\|^2$$

• independent of the dimensionality of the space!

▲ 注) 注 の Q (C) 5 / 52

< 47 ▶

Feature Spaces and "Curse of Dimensionality"

The Support Vector (SV) approach: preprocess the data with

$$egin{array}{rcl} \Phi: \mathbb{R}^N & o & F \ \mathbf{x} & \mapsto & \Phi(\mathbf{x}) \ \end{array}$$
 where $N & \ll & \dim(F). \end{array}$

to get data $(\Phi(\mathbf{x}_1), y_1), \dots, (\Phi(\mathbf{x}_N), y_N) \in F \times \mathbb{R}^M$ or $\{\pm 1\}$. Learn \tilde{f} to construct $f = \tilde{f} \circ \Phi$

- classical statistics: harder, as the data are high-dimensional
- SV-Learning: (in some cases) simpler:

If Φ is chosen such that $\{\tilde{f}\}$ allows small training error and has low complexity, then we can guarantee good generalization.

The *complexity* matters, not the *dimensionality* of the space.

●
 ●
 ●
 ○
 ○
 ○
 6 / 52

< A >

Nonlinear Algorithms in Feature Spaces

Example: all second order monomials

$$\begin{array}{rcl} \Phi: \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x_1, x_2) & \mapsto & (z_1, z_2, z_3) := (x_1^2, \sqrt{2} \, x_1 x_2, x_2^2) \end{array}$$

< □
 < □

Basic Ideas The Kernel "Trick"

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
<l

Kernel "Trick": An Example

(cf. Boser, Guyon & Vapnik 1992)

$$\begin{aligned} (\Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})) &= (x_1^2, \sqrt{2} x_1 x_2, x_2^2) (y_1^2, \sqrt{2} y_1 y_2, y_2^2)^\top \\ &= (\mathbf{x} \cdot \mathbf{y})^2 \\ &=: \mathbf{k}(\mathbf{x}, \mathbf{y}) \end{aligned}$$

- Scalar product in (high dimensional) feaure space can be computed in ℝ²!
- works only for Mercer Kernels $k(\mathbf{x}, \mathbf{y})$.

Kernology I

[Mercer] If k is a continuous kernel of a positive integral operator on $L_2(\mathcal{D})$ (where \mathcal{D} is some compact space),

$$\int f(\mathbf{x})k(\mathbf{x},\mathbf{y})f(\mathbf{y}) \ d\mathbf{x} \ d\mathbf{y} \ge 0, \quad \text{for} \quad f \neq 0$$

it can be expanded as

$$k(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{N_F} \lambda_i \psi_i(\mathbf{x}) \psi_i(\mathbf{y})$$

with $\lambda_i > 0$, and $N_F \in \mathbb{N}$ or $N_F = \infty$. In that case

$$\Phi(\mathbf{x}) := \begin{pmatrix} \sqrt{\lambda_1} \psi_1(\mathbf{x}) \\ \sqrt{\lambda_2} \psi_2(\mathbf{x}) \\ \vdots \end{pmatrix}$$

satisfies $(\Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})) = k(\mathbf{x}, \mathbf{y}).$

● 三 →
● 三 →
○ へ ○
9 / 52

Examples of common kernels:

Kernology II

Polynomial
$$\mathbf{k}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + c)^d$$

RBF $\mathbf{k}(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|^2/(2\sigma^2))$
inverse multiquadric $\mathbf{k}(\mathbf{x}, \mathbf{y}) = \frac{1}{\sqrt{\|\mathbf{x} - \mathbf{y}\|^2 + c^2}}$

Note: kernels correspond to regularization operators (a la Tichonov) with regularization properties that can be conveniently expressed in Fourier space, e.g. Gaussian kernel corresponds to general smoothness assumption (Smola et al 98)!

< 47 →

< ● 三 一 三 の へ 〇 10 / 52

A Preliminary Summary

- Statistical learning theory tells us: we need to restrict the complexity of our hypthesis class and trade-off error vs. complexity.
- For large margin hyperplanes, VC-dimension is independent of dimensionality of space
- Kernels can be used to preprocess data to increase descriminative power.

Still, it is not fully clear why any of this works: How do kernels find useful non-linear preprocessings, which also realize a large margin?

□ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 <li

Basic Ideas The Kernel "Trick"

Learning in Kernel Spaces

12 / 52

Kernel PCA Empirical Kernel Map Theoretical Result

Kernelizing Linear Algorithms—PCA

(cf. Schölkopf, Smola and Müller 1996, 1998, Schölkopf et al 1999, Mika et al, 1999, 2000, 2001, Müller et al 2001, Harmeling et al 2003, ...) □ →
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</l

Kernel PCA Empirical Kernel Map Theoretical Result

. .

PCA in High-Dimensional Feature Spaces

$$\mathbf{x}_1,\ldots,\mathbf{x}_N, \quad \Phi:\mathbb{R}^D \to F, \qquad \mathbf{C} = \frac{1}{N}\sum_{j=1}^N \Phi(\mathbf{x}_j)\Phi(\mathbf{x}_j)^\top$$

Eigenvalue problem

$$\lambda \mathbf{V} = \mathbf{C} \mathbf{V} = \frac{1}{N} \sum_{j=1}^{N} (\Phi(\mathbf{x}_j) \cdot \mathbf{V}) \Phi(\mathbf{x}_j).$$

For
$$\lambda \neq 0$$
, $\mathbf{V} \in \text{span}\{\Phi(\mathbf{x}_1), \dots, \Phi(\mathbf{x}_N)\}$, thus $\mathbf{V} = \sum_{i=1}^N \alpha_i \Phi(\mathbf{x}_i)$.

Multiplying with $\Phi(\mathbf{x}_k)$ from the left yields

$$\mathbf{N}\lambda(\Phi(\mathbf{x}_k)\cdot\mathbf{V}) = (\Phi(\mathbf{x}_k)\cdot C\mathbf{V})$$
 for all $k = 1, \dots, N$

Kernel PCA Empirical Kernel Map Theoretical Result

Nonlinear PCA as an Eigenvalue Problem

Define an $N \times N$ matrix

$$K_{ij} := (\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)) = k(\mathbf{x}_i, \mathbf{x}_j)$$

to get

$$N\lambda K\alpha = K^2 \alpha$$

where
$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N)^\top$$
.
Solve

$$N\lambda \alpha = K\alpha$$

 $\longrightarrow (\lambda_k, \boldsymbol{\alpha}^k)$

$$(\mathbf{V}^k\cdot\mathbf{V}^k)=1 \Longleftrightarrow \mathbf{N}\lambda_k(oldsymbollpha^k\cdotoldsymbollpha^k)=1$$

◆ 三 ト ◆ 三 ト 三 シ へ ○ 15 / 52

< @ >

Kernel PCA Empirical Kernel Map Theoretical Result

Feature Extraction

Compute projections on the Eigenvectors

$$\mathbf{V}^k = \sum_{i=1}^M \alpha_i^k \Phi(\mathbf{x}_i)$$

in F:

for a test point **x** with image $\Phi(\mathbf{x})$ in *F* we get the features ("kernel PCA components")

$$f_{k}(\mathbf{x}) = (\mathbf{V}^{k} \cdot \Phi(\mathbf{x})) = \sum_{i=1}^{M} \alpha_{i}^{k} (\Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}))$$
$$= \sum_{i=1}^{M} \alpha_{i}^{k} k(\mathbf{x}_{i}, \mathbf{x})$$

16 / 52

Kernel PCA Empirical Kernel Map Theoretical Result

Example: RBF Kernel, 8 Principal Components

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{0.1}\right)$$

Kernel PCA Empirical Kernel Map Theoretical Result

Empirical Kernel Map

Kernel PCA components ("features") allow us to construct a feature mapping and look at the data points in feature map:

Let $\mathbf{K} = k(\mathbf{x}_i, \mathbf{x}_j)$, and let $\mathbf{K} = \mathbf{U}\mathbf{L}\mathbf{U}^{\top}$ be the eigendecomposition of \mathbf{K} .

Then,

$$\mathbf{F} = \mathbf{U}\mathbf{L}^{1/2}$$

is a matrix such that

$$\mathbf{F}\mathbf{F}^{\top} = \mathbf{U}\mathbf{L}^{1/2}\mathbf{L}^{1/2}\mathbf{U}^{\top} = \mathbf{K}.$$

This means that the rows of **F** are the transformed input points such that their scalar products are $k(\mathbf{x}_i, \mathbf{x}_j)$.

Kernel PCA Empirical Kernel Map Theoretical Result

Example: ZIP Data Set

Columns are dimensions in feature space, rows are data points. Note that variance of data becomes smaller and smaller. ・ロ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</<

Kernel PCA Empirical Kernel Map Theoretical Result

Variances in Feature Space

Principal values (variances) are given by the eigenvalues of the kernel matrix.

Both sample and population eigenvalues typically decay quickly!

Theorem Bounds on the eigenvalues¹

Individual eigenvalues:

$$|l_i - \lambda_i| \leq \lambda_i C(r, N) + E(r, N)$$

with $C(r, N) \rightarrow 0$ for $N \rightarrow \infty$, $E(r, N) \rightarrow 0$ for $r \rightarrow \infty$. Tail sums of eigenvalues:

$$\left|\sum_{i=d}^{n} l_{i} - \sum_{i=d}^{\infty} \lambda_{i}\right| \leq C' \sqrt{\sum_{i=d}^{\infty} \lambda_{i} + E'}$$

¹Blanchard et al., Statistical Properties of Kernel Principal Component Analysis, Machine Learning, 2006 Braun, Accurate Bounds for the Eigenvalues of the Kernel Matrix, JMLR, 2006 ≣ ∽) Q (? 20 / 52

< □ < 三 > < 三 >

Kernel PCA Empirical Kernel Map Theoretical Result

Kernel PCA and the Outputs

- In a supervised setting, the goal is to predict outputs y_i (class labels, real numbers) from inputs x_i.
- Contributions of kernel PCA components can be computed by

$$s_i = \mathbf{u}_i^{\top} \mathbf{y},$$

with \mathbf{u}_i eigenvector of kernel matrix \mathbf{K} , $\mathbf{y} = (y_1, \dots, y_N)$ vector of outputs.

 Projection of outputs to first *m* kernel PCA components given by

$$\Pi_m \mathbf{y} = \sum_{i=1}^m \mathbf{u}_i \mathbf{u}_i^\top \mathbf{y}.$$

Ideally, $|s_i|$ is large only for a few directions.

▲ ≣ ▶ Ξ の < @ 1 / 52

< 4 →

Kernel PCA Empirical Kernel Map Theoretical Result

Class Information and Large PCA Directions

Large PCA directions need not be informative!

Kernel PCA Empirical Kernel Map Theoretical Result

< 3

23 / 52

э

Location of the Label Information

Information about class membership concentrated in direction 2, almost absent from dimensions with small variance!

Kernel PCA Empirical Kernel Map Theoretical Result

Theoretical Result

Result

 $\boldsymbol{\mathsf{If}}$ we assume that the learning problem can be represented by the kernel asymptotically,

then the relevant information about the Y is contained in the leading kernel PCA directions up to a small error.

 </

Overview

- Define "relevant information".
- Consider asymptotic setting, introduce assumption, derive result for asymptotic setting.
- Oerive bound for contribution of kernel PCA direction for finite sample setting.
- Onsider noise in the labels.

Kernel PCA Empirical Kernel Map Theoretical Result

Relevant Information

Define "relevant information" by separating the noise from the outputs:

$$Y_i = g(X_i) + \varepsilon_i,$$

$$g(x) = E(Y|X = x),$$

$$G = (g(X_1), \dots, g(X_N))$$

"outputs" = "smooth part" + "noise" the (population) relevant information the (sample) relevant information

26 / 52

The Finite Sample and the Asymptotic Setting

The question reduces to approximation of integral operators by Monte carlo integration:

Finite sample setting:

 $\bullet\,$ The kernel matrix ${\bf K}$ defines a linear operator via

$$[\mathbf{K}\mathbf{v}]_i = \sum_{j=1}^N k(X_i, X_j)\mathbf{v}_j, \quad \text{also for } \mathbf{v}_j = f(X_j).$$

- This operator has eigenvectors u_i , which are also the kernel PCA components.
- The contribution of the *i*th component u_i to the relevant information in the labels *G* is given by

$$s_i = u_i^{\top} G.$$

The Finite Sample and the Asymptotic Setting

For $N \to \infty$, these quantites converge to their asymptotic counterparts:

The asymptotic setting:

• The kernel matrix (properly scaled) converges to an integral operator:

$$\mathbf{K}f(a) = \frac{1}{N}\sum_{j=1}^{N}k(a,X_j)f(X_j) \rightarrow T_kf(a) = \int_{\mathcal{X}}k(a,b)f(b)P_X(dt),$$

where P_X is the probability measure generating the X_j .

- The eigenvectors converge to the eigenfunctions ψ_i of T_k .
- the contributions s_i converge to the scalar products with g(x) = E(Y|X = x):

$$s_i = rac{1}{\sqrt{N}} |u_i^{\top} G|
ightarrow |\langle \psi_i, g
angle| = \int_{\mathcal{X}} \psi_i(x) g(x) P_X(dx).$$

≣ ∽⊂ 28 / 52

<個> <理> <理>

Kernel PCA Empirical Kernel Map Theoretical Result

The Finite Sample and the Asymptotic Setting

finite sample settingasymptotic setting
$$\mathbf{K}f(a) = \frac{1}{N} \sum_{j=1}^{N} k(a, X_j) f(X_j)$$
 \sim $T_k f(s) = \int_{\mathcal{X}} k(s, t) f(t) P(dt)$ u_i eigenvector of \mathbf{K} $\sigma_i = \langle \psi_i, g \rangle$

Kernel PCA Empirical Kernel Map Theoretical Result

Discussion of the Asymptotic Setting

Under the following assumption, asymptotic coefficients σ_i decay at rate $O(\lambda_i)$:

Assumption

Kernel and data set match in the following sense:

g asymptotically representable by T_k , (exists h such that

$$g = T_k h$$
):

$$\rightsquigarrow g(x) = \sum_{i=1}^{\infty} \lambda_i \alpha_i \psi_i(x)$$

 $\rightsquigarrow \qquad \qquad \sigma_i = \lambda_i \alpha_i = O(\lambda_i).$

(Note: Constant unspecified, depends on fit between kernel and data set.)

・ 一部・ ・ 三・ ・ つ へ (C) 30 (C)

Equivalence of Finite Sample and Asymptotic Setting

Theorem

Let
$$g(x) = \sum_{i=1}^{\infty} \alpha_i \lambda_i \psi_i(x)$$
, $G = (g(X_1), \dots, g(X_N))$. Then, with high probability,

$$\frac{1}{\sqrt{N}} |u_i^{\top} G| < 2I_i a_r c_i (1 + O(rN^{-1/4})) + ra_r \Lambda_r O(1) + T_r + \sqrt{AT_r} O(N^{-1/4}) + ra_r \sqrt{\Lambda_r} O(N^{-1/2}),$$

where

 $c_i:$ $a_r = \sum_{i=1}^r |\alpha_i|:$ $\Lambda_r:$ A: $T_r:$

measures size of the eigenvalue cluster around l_i measure for size of the first r components sum of all eigenvalues smaller than λ_r supremum norm of gerror of projecting g to the space spanned by the first r eigenfunctions

Kernel PCA Empirical Kernel Map Theoretical Result

Proof Sketch (1/5)Decomposition

Decompose scalar product by truncating the kernel function and the function g:

$$g \rightsquigarrow \tilde{g} = \sum_{\ell=1}^{r} \alpha_{\ell} \lambda_{\ell} \psi_{\ell}, \quad k(x, y) \rightsquigarrow \tilde{k}(x, y) = \sum_{j=1}^{r} \lambda_{j} \psi_{j}(x) \psi_{j}(y).$$

Analogously, $\mathbf{K} \rightsquigarrow \tilde{\mathbf{K}}$, $u_i \rightsquigarrow \tilde{u}_i$, etc. Then:

$$\frac{1}{\sqrt{N}}|u_i^{\top}g(\mathbf{X})| \leq \frac{1}{\sqrt{N}}|u_i^{\top}\tilde{g}(\mathbf{X})| + \frac{1}{\sqrt{N}}\|g(\mathbf{X}) - \tilde{g}(\mathbf{X})\|$$

and

$$\frac{1}{\sqrt{N}}|u_i^{\top}\tilde{g}(\mathbf{X})| \leq \sum_{\ell=1}^r |\alpha_{\ell}| \sum_{j=1}^r (u_i^{\top}\tilde{u}_j) \left[\frac{1}{\sqrt{N}}\lambda_{\ell}\psi_{\ell}(\mathbf{X})^{\top}\tilde{u}_j\right].$$

≣ •? ৭ ে 32 / 52

副▶

Kernel PCA Empirical Kernel Map Theoretical Result

Proof Sketch (2/5)The degenerate kernel case

Bound scalar product between sample vector of eigenfunction and eigenvector of truncated kernel matrix:

$$\tilde{l}_j \tilde{u}_j = \tilde{\mathbf{K}} \tilde{u}_j = \tilde{\Psi} \tilde{\Lambda} \tilde{\Psi}^\top \tilde{u}_j \implies \tilde{l}_j \tilde{\Psi}^+ \tilde{u}_j = \tilde{\Lambda} \tilde{\Psi}^\top \tilde{u}_j$$

with $\tilde{\Psi}_{ij} = \psi_j(X_i) / \sqrt{N}$. Taking norms,

$$\frac{1}{\sqrt{N}}\lambda_{\ell}\psi_{\ell}(\mathbf{X})^{\top}\tilde{u}_{j} \leq \|\tilde{\Lambda}\tilde{\Psi}^{\top}\tilde{u}_{j}\| \leq \tilde{l}_{j}\|\tilde{\Psi}^{+}\|.$$

Kernel PCA Empirical Kernel Map Theoretical Result

Proof Sketch (3/5)Bounding the truncation error

Bound on scalar product between eigenvectors of original kernel matrix \bm{K} and kernel matrix $\tilde{\bm{K}}$ using truncated kernel.

With $\tilde{\mathbf{E}} = \mathbf{K} - \tilde{\mathbf{K}}$, and sin-theta-theorem

$$|u_i^{\top} \tilde{u}_j| \leq \min\left(\frac{\|\tilde{\mathbf{E}}\|}{|l_i - \tilde{l}_j|}, 1\right) =: \omega_{ij}$$

Combining with the previous bound, we will be interested in bounding

$$\sum_{j=1}^{r} \tilde{l}_{j} \omega_{ij} = \sum_{j \in J(l_i)} \tilde{l}_{j} \omega_{ij} + \sum_{j \notin J(l_i)} \tilde{l}_{j} \omega_{ij} \le 2|J(l_i)|l_i + 2r \|\tilde{\mathbf{E}}\|$$

with

$$J(l_i) = \{1 \leq j \leq r \mid l_i/2 \leq \tilde{l}_j \leq 2l_i\}.$$

< ・ 三 ・ 三 ・ 34 / 52

< 4 →

Kernel PCA Empirical Kernel Map Theoretical Result

Proof Sketch (4/5)Bounding the truncation error for the function

By the law of large numbers,

$$\frac{1}{n} \|g(\mathbf{X}) - \tilde{g}(\mathbf{X})\|^2 \to \|g - \tilde{g}\|_{L(P_X)}^2 = \sum_{j=r+1}^{\infty} \alpha_j^2 \lambda_j^2 =: \tilde{T}^2.$$

If g is bounded by F,

$$\mathsf{Var}_{P_X}((g-\tilde{g})^2) \leq \|g-\tilde{g}\|_\infty^2 \|g-\tilde{g}\|^2 = F^2 \tilde{T}^2$$

and by the Chebychev-inequality we get

$$\frac{1}{\sqrt{N}}\|g(\mathbf{X})-\tilde{g}(\mathbf{X})\|\leq \tilde{T}+\sqrt{F\tilde{T}}(n\delta)^{-1/4}.$$

 </

Kernel PCA Empirical Kernel Map Theoretical Result

Proof Sketch (5/5)

eigenfunction sample vectors and "truncated" eigenvectors

$$\frac{1}{\sqrt{N}}\lambda_{\ell}\psi_{\ell}(\mathbf{X})^{\top}\tilde{u}_{j}\leq \tilde{l}_{j}\|\tilde{\Psi}^{+}\|.$$

erturbation of kernel truncation

$$\frac{1}{\sqrt{N}}|u_i^{\top}\tilde{g}(\mathbf{X})| \leq \|\tilde{\Psi}^+\|\sum_{\ell=1}^r |\alpha_\ell|(2|J(l_i)l_i+2r\|\tilde{\mathsf{E}}\|).$$

 \bigcirc truncation of the function g

$$\frac{1}{\sqrt{N}} \|g(\mathbf{X}) - \tilde{g}(\mathbf{X})\| \leq \tilde{T} + \sqrt{F\tilde{T}} (n\delta)^{-1/4}.$$
$$\frac{1}{\sqrt{N}} |u_i^{\top} g(\mathbf{X})| \leq 2l_i |J(l_i)| \|\tilde{\alpha}\|_1 \|\tilde{\Psi}^+\| + 2r \|\tilde{\mathsf{E}}\| \|\tilde{\alpha}\|_1 \|\tilde{\Psi}^+\| + \tilde{T} + \sqrt{F\tilde{T}} (n\delta)^{-1/4}.$$

୬ ବ. ୯ 36 / 52

Kernel PCA Empirical Kernel Map Theoretical Result

An Example

・ ロ・ ・ 酒・ ・ 達・ ・ 達・ ・ 達・ ・ ジッへで 37 / 52

Kernel PCA Empirical Kernel Map Theoretical Result

The Location of Zero-Mean Noise

Since \mathbf{U}^{\top} is a random rotation, noise stays the same.

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</li

Kernel PCA Empirical Kernel Map Theoretical Result

Example

Applications

- Estimating the dimensionality of the data set given a kernel.
- Denoising the labels, estimating the amount of noise in the labels.
- Model selection among kernels.

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Estimating the Dimensionality Fitting a Two-Component Model

Find cut-off dimension which separates the two parts.

◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→
◆□→</

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Estimating the Dimensionality Fitting a Two-Component Model

Assumption:

$$s_i \sim egin{cases} \mathcal{N}(0, \sigma_1^2) & 1 \leq i \leq d \ \mathcal{N}(0, \sigma_2^2) & d < i \leq n \end{cases}$$

The negative log-likelihood is proportional to

$$-\log \ell(d) \sim rac{d}{n}\log rac{1}{d}\sum_{i=1}^d s_i^2 + rac{n-d}{n}\log rac{1}{n-d}\sum_{i=d+1}^n s_i^2.$$

 \rightsquigarrow choose *d* which minimizes $-\log \ell(d)$.

・日本

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Estimating the Dimensionality Fitting a Two-Component Model

□ →
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</l

Model Selection

Idea: Use kernel which separates noise from data best.

 \rightsquigarrow choose kernel such that log-likelihood value at \hat{d} is maximal.

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Benchmark Data Sets

data set	dim	dim (cv)	est. error rate	kPCR	KRR	SVM
banana	24	26	8.8 ± 1.5	11.3 ± 0.7	10.6 ± 0.5	11.5 ± 0.7
breast-cancer	2	2	25.6 ± 2.1	27.0 ± 4.6	26.5 ± 4.7	26.0 ± 4.7
diabetis	9	9	21.5 ± 1.3	23.6 ± 1.8	23.2 ± 1.7	23.5 ± 1.7
flare-solar	10	10	32.9 ± 1.2	33.3 ± 1.8	34.1 ± 1.8	32.4 ± 1.8
german	12	12	22.9 ± 1.1	24.1 ± 2.1	23.5 ± 2.2	23.6 ± 2.1
heart	4	5	15.8 ± 2.5	16.7 ± 3.8	16.6 ± 3.5	16.0 ± 3.3
image	272	368	1.7 ± 1.0	4.2 ± 0.9	2.8 ± 0.5	3.0 ± 0.6
ringnorm	36	37	1.9 ± 0.7	4.4 ± 1.2	4.7 ± 0.8	1.7 ± 0.1
splice	92	89	9.2 ± 1.3	13.8 ± 0.9	11.0 ± 0.6	10.9 ± 0.6
thyroid	17	18	2.0 ± 1.0	5.1 ± 2.1	4.3 ± 2.3	4.8 ± 2.2
titanic	4	6	20.8 ± 3.8	22.9 ± 1.6	22.5 ± 1.0	22.4 ± 1.0
twonorm	2	2	2.3 ± 0.7	2.4 ± 0.1	2.8 ± 0.2	3.0 ± 0.2
waveform	14	23	8.4 ± 1.5	10.8 ± 0.9	9.7 ± 0.4	9.9 ± 0.4

kPCR: (kernel) least-squares on the denoised data KRR: kernel ridge regression SVM: support vector machines

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Benchmark Data Sets: Categorizing Data Sets

	low noise	high noise
low dimensional	banana,	breast-cancer, diabetis
	thyroid,	flare-solar, german
	waveform	heart, titanic
high dimensional	image, ringnorm	splice

- Splice data set seems most promising for more model selection.
- On "high noise, low dimensional" data sets, data seems to be intrinsically very noisy.

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Application: Kernel Design for Splice Site Detection

Genes are not encoded in one piece on the DNA, but in multiple parts.

Splice sites indicate where a coding region ends.

First, the whole protein sequence is built from the DNA, then special enzymes "cut out" the non-coding regions based on the splice cites.

Statistical Learning Theory The Kernel PCA view of the Feature Space Applications Kernel Design for Splice Site Detection

Naive Encoding

Dimensionality 87, test error $12.9 \pm 0.9\%$.

Using an rbf kernel, over 100 resamples of the data. Main problem: A, C appear more similar than A, T.

 </

Statistical Learning Theory The Kernel PCA view of the Feature Space Applications Kernel Design for Splice Site Detection

A Better Encoding

Dimensionality 11, test error $7.6 \pm 0.7\%$.

All aminoacids are comparably far from one another. But only fixed positions are comapred.

 </

A Domain Specific Kernel: Weighted Degree Kernel

Weighted degree kernel is defined as

$$k(x, x') = \sum_{j=1}^{d} w_i \sum_{i=1}^{N-d} \mathbb{1}_{\{u_{j,i}(x)=u_{j,i}(x')\}}$$

with:

 $u_{j,i}(x) = x_i x_{i+1} \dots x_{i+j-1}$ (subword of length j starting at i) $w_j = d - j + 1$ (longer matches get lower weights)

◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
<p

Statistical Learning Theory The Kernel PCA view of the Feature Space Applications Kernel Design for Splice Site Detection

A Domain Specific Kernel: Weighted Degree Kernel

Dimensionality 29, test error $5.5 \pm 0.7\%$

Statistical Learning Theory The Kernel PCA view of the Feature Space Applications Kernel Design for Splice Site Detection

The Three Spectra Compared

Statistical Learning Theory	Estimating the Dimensionality
The Kernel PCA view of the Feature Space	
Applications	Kernel Design for Splice Site Detection

[BCI]

Estimating the Dimensionality Model Selection Kernel Design for Splice Site Detection

Summary

- Clarify role of embedding through the kernel in terms of effective dimensionality of the data in feature space.
- Theoretical contribution to better understanding of kernel methods.
- New diagnosis tool for model selection.
- Future work: effective dimensionality dependend learning bounds.

□ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 ○ □ →
 <li