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Basic Ideas of Statistical Learning Theory I

Three scenarios: regression, classification & density estimation.
Learn f from examples

(x1, y1), . . . , (xN , yN) ∈ RN × RM or {±1}, generated from P(x, y),

such that expected number of errors on test set (drawn from P(x, y)),

R[f ] =

∫
1

2
|f (x)− y)|2 dP(x, y),

is minimal (Risk Minimization (RM)).

Problem: P is unknown. −→ need an induction principle.

Empirical risk minimization (ERM): replace the average over P(x, y) by
an average over the training sample, i.e. minimize the training error

Remp[f ] =
1

N

N∑
i=1

1

2
|f (xi )− yi |2
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Basic Ideas of Statistical Learning Theory II

Law of large numbers: Remp[f ] → R[f ] as N →∞.
“consistency” of ERM: for N →∞, ERM should lead to the
same result as RM?

No: uniform convergence needed (Vapnik) → VC theory.
Theorem (Vapnik 95): with a probability of at least 1− η,

R[f ] ≤ Remp[f ] +

√
d
(
log 2N

d + 1
)
− log(η/4)

N
.

Structural risk minimization (SRM): introduce structure on
set of functions {fα} & minimize RHS to get low risk!
(Vapnik 95)

d is VC dimension, measuring complexity of function class
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Linear Hyperplane Classifier

hyperplane y = sgn (w · x + b) in canonical form if
minxi∈X | (w · xi ) + b| = 1., i.e. scaling freedom removed.

larger margin ∼ 1/‖w‖ is giving better generalization → LMC!
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Applying VC Theory to Hyperplanes

Theorem (Vapnik 95): For hyperplanes in canonical form
VC–dimension satisfying

d ≤ min{[R2‖w‖2] + 1, n + 1}.

Here, R is the radius of the smallest sphere containing data.
Use d in SRM bound

R[f ] ≤ Remp[f ] +

√
d
(
log 2N

d + 1
)
− log(η/4)

N
.

maximal margin = minimum ‖w‖2 → good generalization, i.e.
low risk, i.e. optimize

min ‖w‖2

independent of the dimensionality of the space!
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Feature Spaces and “Curse of Dimensionality”

The Support Vector (SV) approach: preprocess the data with

Φ : RN → F

x 7→ Φ(x)

where N � dim(F ).

to get data (Φ(x1), y1), . . . , (Φ(xN), yN) ∈ F × RM or {±1}.

Learn f̃ to construct f = f̃ ◦ Φ

classical statistics: harder, as the data are high-dimensional

SV-Learning: (in some cases) simpler:

If Φ is chosen such that {f̃ } allows small training error and has low
complexity, then we can guarantee good generalization.

The complexity matters, not the dimensionality of the space.
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Nonlinear Algorithms in Feature Spaces

Example: all second order monomials

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
1 ,
√

2 x1x2, x
2
2 )
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Kernel “Trick”: An Example

(cf. Boser, Guyon & Vapnik 1992)

(Φ(x) · Φ(y)) = (x2
1 ,
√

2 x1x2, x
2
2 )(y2

1 ,
√

2 y1y2, y
2
2 )>

= (x · y)2

=: k(x, y)

Scalar product in (high dimensional) feaure space can be
computed in R2!

works only for Mercer Kernels k(x, y).
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Kernology I

[Mercer] If k is a continuous kernel of a positive integral operator on
L2(D) (where D is some compact space),∫

f (x)k(x, y)f (y) dx dy ≥ 0, for f 6= 0

it can be expanded as

k(x, y) =

NF∑
i=1

λiψi (x)ψi (y)

with λi > 0, and NF ∈ N or NF = ∞. In that case

Φ(x) :=


√
λ1ψ1(x)√
λ2ψ2(x)

...


satisfies (Φ(x) · Φ(y)) = k(x, y).
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Kernology II

Examples of common kernels:

Polynomial k(x, y) = (x · y + c)d

RBF k(x, y) = exp
(
−‖x− y‖2/(2σ2)

)
inverse multiquadric k(x, y) =

1√
‖x− y‖2 + c2

Note: kernels correspond to regularization operators (a la
Tichonov) with regularization properties that can be conveniently
expressed in Fourier space, e.g. Gaussian kernel corresponds to
general smoothness assumption (Smola et al 98)!
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A Preliminary Summary

Statistical learning theory tells us: we need to restrict the
complexity of our hypthesis class and trade-off error vs.
complexity.

For large margin hyperplanes, VC-dimension is independent of
dimensionality of space

Kernels can be used to preprocess data to increase
descriminative power.

Still, it is not fully clear why any of this works: How do kernels find
useful non-linear preprocessings, which also realize a large margin?
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Learning in Kernel Spaces

complexity
control

F (high−dimensional)

complexity
has low

increase linear
separability

X

Y need for

(since it works!)

ψ
?
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Kernelizing Linear Algorithms—PCA

(cf. Schölkopf, Smola and Müller 1996, 1998, Schölkopf et al
1999, Mika et al, 1999, 2000, 2001, Müller et al 2001, Harmeling
et al 2003, . . . )
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PCA in High-Dimensional Feature Spaces

x1, . . . , xN , Φ : RD → F , C =
1

N

N∑
j=1

Φ(xj)Φ(xj)
>

Eigenvalue problem

λV = CV =
1

N

N∑
j=1

(Φ(xj) · V)Φ(xj).

For λ 6= 0, V ∈ span{Φ(x1), . . . ,Φ(xN)}, thus V =
N∑

i=1

αiΦ(xi ).

Multiplying with Φ(xk) from the left yields

Nλ(Φ(xk) · V) = (Φ(xk) · CV) for all k = 1, . . . ,N
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Nonlinear PCA as an Eigenvalue Problem

Define an N × N matrix

Kij := (Φ(xi ) · Φ(xj)) = k(xi , xj)

to get
NλKα = K 2α

where α = (α1, . . . , αN)>.

Solve
Nλα = Kα

−→ (λk ,α
k)

(Vk · Vk) = 1 ⇐⇒ Nλk(αk ·αk) = 1
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Feature Extraction

Compute projections on the Eigenvectors

Vk =
M∑
i=1

αk
i Φ(xi )

in F :

for a test point x with image Φ(x) in F we get the features
(“kernel PCA components”)

fk(x) = (Vk · Φ(x)) =
M∑
i=1

αk
i (Φ(xi ) · Φ(x))

=
M∑
i=1

αk
i k(xi , x)
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Example: RBF Kernel, 8 Principal Components

k(x, y) = exp
(
−‖x−y‖2

0.1

)
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Empirical Kernel Map

Kernel PCA components (“features”) allow us to construct a
feature mapping and look at the data points in feature map:

Let K = k(xi , xj), and let K = ULU> be the eigendecomposition
of K.

Then,
F = UL1/2

is a matrix such that

FF> = UL1/2L1/2U> = K.

This means that the rows of F are the transformed input points
such that their scalar products are k(xi , xj).
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Example: ZIP Data Set

Columns are dimensions in feature space, rows are data points.

Note that variance of data becomes smaller and smaller.
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Variances in Feature Space

Principal values (variances) are given by the eigenvalues of the
kernel matrix.

Both sample and population eigenvalues typically decay quickly!

Theorem Bounds on the eigenvalues1

Individual eigenvalues:

|li − λi | ≤ λiC (r ,N) + E (r ,N)

with C (r ,N) → 0 for N →∞, E (r ,N) → 0 for r →∞.
Tail sums of eigenvalues:∣∣∣∣∣

n∑
i=d

li −
∞∑
i=d

λi

∣∣∣∣∣ ≤ C ′

√√√√ ∞∑
i=d

λi + E ′

1
Blanchard et al., Statistical Properties of Kernel Principal Component Analysis, Machine Learning, 2006

Braun, Accurate Bounds for the Eigenvalues of the Kernel Matrix, JMLR, 2006
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Kernel PCA and the Outputs

In a supervised setting, the goal is to predict outputs yi (class
labels, real numbers) from inputs xi .

Contributions of kernel PCA components can be computed by

si = ui
>y,

with ui eigenvector of kernel matrix K, y = (y1, . . . , yN)
vector of outputs.

Projection of outputs to first m kernel PCA components given
by

Πmy =
m∑

i=1

uiui
>y.

Ideally, |si | is large only for a few directions.
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Class Information and Large PCA Directions

Large PCA directions need not be informative!
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Location of the Label Information

Information about class membership concentrated in direction 2,
almost absent from dimensions with small variance! 23 / 52
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Theoretical Result

Result

If we assume that the learning problem can be represented by the
kernel asymptotically,
then the relevant information about the Y is contained in the
leading kernel PCA directions up to a small error.

24 / 52



Statistical Learning Theory
The Kernel PCA view of the Feature Space

Applications

Kernel PCA
Empirical Kernel Map
Theoretical Result

Overview

1 Define “relevant information”.

2 Consider asymptotic setting, introduce assumption, derive
result for asymptotic setting.

3 Derive bound for contribution of kernel PCA direction for
finite sample setting.

4 Consider noise in the labels.
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Relevant Information

Define “relevant information” by separating the noise from the outputs:

Yi = g(Xi ) + εi , ”outputs” = ”smooth part” + ”noise”

g(x) = E (Y |X = x), the (population) relevant information

G = (g(X1), . . . , g(XN)). the (sample) relevant information
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The Finite Sample and the Asymptotic Setting

The question reduces to approximation of integral operators by
Monte carlo integration:

Finite sample setting:

The kernel matrix K defines a linear operator via

[Kv ]i =
N∑

j=1

k(Xi ,Xj)vj , also for vj = f (Xj).

This operator has eigenvectors ui , which are also the kernel
PCA components.

The contribution of the ith component ui to the relevant
information in the labels G is given by

si = ui
>G .
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The Finite Sample and the Asymptotic Setting

For N →∞, these quantites converge to their asymptotic
counterparts:

The asymptotic setting:

The kernel matrix (properly scaled) converges to an integral
operator:

Kf (a) =
1

N

N∑
j=1

k(a,Xj)f (Xj) → Tk f (a) =

∫
X

k(a, b)f (b)PX (dt),

where PX is the probability measure generating the Xj .
The eigenvectors converge to the eigenfunctions ψi of Tk .
the contributions si converge to the scalar products with
g(x) = E (Y |X = x):

si =
1√
N
|ui

>G | → |〈ψi , g〉| =
∫
X
ψi (x)g(x)PX (dx).
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The Finite Sample and the Asymptotic Setting

finite sample setting

Kf (a) =
1

N

N∑
j=1

k(a,Xj)f (Xj)

ui eigenvector of K
si = ui

>G

 

asymptotic setting

Tk f (s) =

∫
X

k(s, t)f (t)P(dt)

ψi eigenfunction of Tk

σi = 〈ψi , g〉
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Discussion of the Asymptotic Setting

Under the following assumption, asymptotic coefficients σi decay
at rate O(λi ):

Assumption

Kernel and data set match in the following sense:
g asymptotically representable by Tk , (exists h such that
g = Tkh):

 g(x) =
∞∑
i=1

λiαiψi (x)

 σi = λiαi = O(λi ).

(Note: Constant unspecified, depends on fit between kernel and
data set.)
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Equivalence of Finite Sample and Asymptotic Setting

Theorem

Let g(x) =
∑∞

i=1 αiλiψi (x), G = (g(X1), . . . , g(XN)). Then, with
high probability,

1√
N
|ui

>G | < 2liarci (1 + O(rN−1/4))

+ rarΛrO(1) + Tr +
√

ATrO(N−1/4) + rar

√
ΛrO(N−1/2),

where
ci : measures size of the eigenvalue cluster around li
ar =

∑r
i=1 |αi |: measure for size of the first r components

Λr : sum of all eigenvalues smaller than λr

A: supremum norm of g
Tr : error of projecting g to the space spanned by the

first r eigenfunctions
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Proof Sketch (1/5)
Decomposition

Decompose scalar product by truncating the kernel function and
the function g :

g  g̃ =
r∑

`=1

α`λ`ψ`, k(x , y) k̃(x , y) =
r∑

j=1

λjψj(x)ψj(y).

Analogously, K K̃, ui  ũi , etc. Then:

1√
N
|ui

>g(X)| ≤ 1√
N
|ui

>g̃(X)|+ 1√
N
‖g(X)− g̃(X)‖

and

1√
N
|ui

>g̃(X)| ≤
r∑

`=1

|α`|
r∑

j=1

(ui
>ũj)

[
1√
N
λ`ψ`(X)>ũj

]
.
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Proof Sketch (2/5)
The degenerate kernel case

Bound scalar product between sample vector of eigenfunction and
eigenvector of truncated kernel matrix:

l̃j ũj = K̃ũj = Ψ̃Λ̃Ψ̃>ũj ⇒ l̃jΨ̃
+ũj = Λ̃Ψ̃>ũj

with Ψ̃ij = ψj(Xi )/
√

N. Taking norms,

1√
N
λ`ψ`(X)>ũj ≤ ‖Λ̃Ψ̃>ũj‖ ≤ l̃j‖Ψ̃+‖.
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Proof Sketch (3/5)
Bounding the truncation error

Bound on scalar product between eigenvectors of original kernel
matrix K and kernel matrix K̃ using truncated kernel.

With Ẽ = K− K̃, and sin-theta-theorem

|ui
>ũj | ≤ min

(
‖Ẽ‖
|li − l̃j |

, 1

)
=: ωij

Combining with the previous bound, we will be interested in
bounding

r∑
j=1

l̃jωij =
∑

j∈J(li )

l̃jωij +
∑

j /∈J(li )

l̃jωij ≤ 2|J(li )|li + 2r‖Ẽ‖

with
J(li ) = {1 ≤ j ≤ r | li/2 ≤ l̃j ≤ 2li}.
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Proof Sketch (4/5)
Bounding the truncation error for the function

By the law of large numbers,

1

n
‖g(X)− g̃(X)‖2 → ‖g − g̃‖2

L(PX ) =
∞∑

j=r+1

α2
j λ

2
j =: T̃ 2.

If g is bounded by F ,

VarPX
((g − g̃)2) ≤ ‖g − g̃‖2

∞‖g − g̃‖2 = F 2T̃ 2

and by the Chebychev-inequality we get

1√
N
‖g(X)− g̃(X)‖ ≤ T̃ +

√
FT̃ (nδ)−1/4.
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Proof Sketch (5/5)
Summary

1 eigenfunction sample vectors and “truncated” eigenvectors

1√
N
λ`ψ`(X)>ũj ≤ l̃j‖Ψ̃+‖.

2 perturbation of kernel truncation

1√
N
|ui

>g̃(X)| ≤ ‖Ψ̃+‖
r∑

`=1

|α`|(2|J(li )li + 2r‖Ẽ‖).

3 truncation of the function g

1√
N
‖g(X)− g̃(X)‖ ≤ T̃ +

√
FT̃ (nδ)−1/4.

1√
N
|ui

>g(X)| ≤ 2li |J(li )|‖α̃‖1‖Ψ̃+‖+2r‖Ẽ‖‖α̃‖1‖Ψ̃+‖+T̃+
√

FT̃ (nδ)−1/4
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An Example

(rbf-kernel with w = 1, sinc(x) function and cos(x) sin(5x).)
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The Location of Zero-Mean Noise

0 10 20 30 40
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0
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Y

10 20 30 40
0
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|s
|

coordinate transform

Since U> is a random rotation, noise stays the same.
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Example
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Applications

Estimating the dimensionality of the data set given a kernel.

Denoising the labels, estimating the amount of noise in the
labels.

Model selection among kernels.
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Estimating the Dimensionality
Fitting a Two-Component Model

Find cut-off dimension which separates the two parts.
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Estimating the Dimensionality
Fitting a Two-Component Model

Assumption:

si ∼

{
N (0, σ2

1) 1 ≤ i ≤ d

N (0, σ2
2) d < i ≤ n

The negative log-likelihood is proportional to

− log `(d) ∼ d

n
log

1

d

d∑
i=1

s2
i +

n − d

n
log

1

n − d

n∑
i=d+1

s2
i .

 choose d which minimizes − log `(d).
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Estimating the Dimensionality
Fitting a Two-Component Model
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Model Selection

Idea: Use kernel which separates noise from data best.

 choose kernel such that log-likelihood value at d̂ is maximal.
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Benchmark Data Sets

data set dim dim (cv) est. error rate kPCR KRR SVM
banana 24 26 8.8 ± 1.5 11.3 ± 0.7 10.6 ± 0.5 11.5 ± 0.7
breast-cancer 2 2 25.6 ± 2.1 27.0 ± 4.6 26.5 ± 4.7 26.0 ± 4.7
diabetis 9 9 21.5 ± 1.3 23.6 ± 1.8 23.2 ± 1.7 23.5 ± 1.7
flare-solar 10 10 32.9 ± 1.2 33.3 ± 1.8 34.1 ± 1.8 32.4 ± 1.8
german 12 12 22.9 ± 1.1 24.1 ± 2.1 23.5 ± 2.2 23.6 ± 2.1
heart 4 5 15.8 ± 2.5 16.7 ± 3.8 16.6 ± 3.5 16.0 ± 3.3
image 272 368 1.7 ± 1.0 4.2 ± 0.9 2.8 ± 0.5 3.0 ± 0.6
ringnorm 36 37 1.9 ± 0.7 4.4 ± 1.2 4.7 ± 0.8 1.7 ± 0.1
splice 92 89 9.2 ± 1.3 13.8 ± 0.9 11.0 ± 0.6 10.9 ± 0.6
thyroid 17 18 2.0 ± 1.0 5.1 ± 2.1 4.3 ± 2.3 4.8 ± 2.2
titanic 4 6 20.8 ± 3.8 22.9 ± 1.6 22.5 ± 1.0 22.4 ± 1.0
twonorm 2 2 2.3 ± 0.7 2.4 ± 0.1 2.8 ± 0.2 3.0 ± 0.2
waveform 14 23 8.4 ± 1.5 10.8 ± 0.9 9.7 ± 0.4 9.9 ± 0.4

kPCR: (kernel) least-squares on the denoised data
KRR: kernel ridge regression
SVM: support vector machines
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Benchmark Data Sets: Categorizing Data Sets

low noise high noise
low dimensional banana, breast-cancer, diabetis

thyroid, flare-solar, german
waveform heart, titanic

high dimensional image, ringnorm splice

Splice data set seems most promising for more model
selection.

On “high noise, low dimensional” data sets, data seems to be
intrinsically very noisy.
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Application: Kernel Design for Splice Site Detection

Genes are not encoded in one piece on the DNA, but in multiple
parts.

Splice sites indicate where a coding region ends.

First, the whole protein sequence is built from the DNA, then
special enzymes “cut out” the non-coding regions based on the
splice cites.
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Naive Encoding

Aminoacid Encoded as

A 0
C 1
G 2
T 3
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Median of estimated dimensions = 87.5
Maximum of median kernel PCA coefficient = 13.3

0.95 percentile
median
0.05 percentile

Dimensionality 87, test error 12.9± 0.9%.

Using an rbf kernel, over 100 resamples of the data.

Main problem: A, C appear more similar than A, T.
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A Better Encoding

Aminoacid Encoded as

A (0, 0, 0, 1)
C (0, 0, 1, 0)
G (0, 1, 0, 0)
T (1, 0, 0, 0)
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Median of estimated dimensions = 12.0
Maximum of median kernel PCA coefficient = 18.3

0.95 percentile
median
0.05 percentile

Dimensionality 11, test error 7.6± 0.7%.

All aminoacids are comparably far from one another. But only
fixed positions are comapred.
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A Domain Specific Kernel: Weighted Degree Kernel

Weighted degree kernel is defined as

k(x , x ′) =
d∑

j=1

wi

N−d∑
i=1

1{uj,i (x)=uj,i (x ′)}

with:

uj ,i (x) = xixi+1 . . . xi+j−1 (subword of length j starting at i)

wj = d − j + 1 (longer matches get lower weights)
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A Domain Specific Kernel: Weighted Degree Kernel
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Median of estimated dimensions = 29.5
Maximum of median kernel PCA coefficient = 21.2

0.95 percentile
median
0.05 percentile

Dimensionality 29, test error 5.5± 0.7%
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The Three Spectra Compared
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[BCI]
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Summary

Clarify role of embedding
through the kernel in terms
of effective dimensionality of
the data in feature space.

Theoretical contribution to
better understanding of
kernel methods.

New diagnosis tool for
model selection.

Future work: effective
dimensionality dependend
learning bounds.

complexity
control

F (high−dimensional)

complexity
has low

increase linear
separability

X

Y need for

(since it works!)

ψ
?
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