Theano

A Fast Python Library for Modelling and Training

Pascal Lamblin
Institut des algorithmes d'apprentissage de Montréal
Montreal Institute for Learning Algorithms
Université de Montréal

Deep Learning Summer School
June 27th, 2017, Montréal

Université f”\

de Montréal

Objectives

Objectives

This tutorial will have 4 parts:
» Introduction to Theano — Motivation and design
> Walk-through example — LeNet on MNIST with Lasagne
» Exercises — Basics of Theano
» Hands-on example — Build your own classifier from VGG-16

All the material is online at github.com/mila-udem/summerschool2017

Hands-on examples
Go to http://mila.umontreal.ca/vmip
» Jupyter notebooks
» Executed on AWS instances with a GPU (K80)

2/46

github.com/mila-udem/summerschool2017
http://mila.umontreal.ca/vmip

Motivation and design

Motivation and design
Goals
Design
Status

3/46

Expressing models as mathematical expressions

> Not only a collection of standard layers or modules
> Not only regular gradient descent

» From an interpreted / scripting language

Automatically deriving gradients

» Define gradients for basic, elementary operations
» Treat those gradients as mathematical expressions as well

» Simplify automatically the resulting expression

Training the model efficiently
» Without having to write C / C++ / CUDA code

» Automatic simplification of the graph

» Automatic code generation

4/46

Design

Theano: A mathematical symbolic expression compiler

Easy to define expressions

» Using Python

» Expressions mimic NumPy's syntax and semantics
Possible to manipulate those expressions

» Substitutions
» Gradient, R operator

» Stability optimizations

Fast to compute values for those expressions

» Speed optimizations
» Use fast back-ends (CUDA, BLAS, custom C code)

» Inplace optimizations to reduce memory usage

Tools to inspect and check for correctness
5/46

>

>

Status

Mature: developed and used since January 2008 (9 years old)
Theano 0.9 released in March 2017

Driven > 1000 research papers

Many contributors (123 for version 0.9)

Active mailing list with participants worldwide

Used to teach university classes

Core technology for Silicon Valley start-ups

Used for research at large companies

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/

6/46

deeplearning.net/software/theano/
deeplearning.net/tutorial/

Status

Related projects

Many libraries are built on top of Theano (mostly machine learning)
> Blocks
> Keras
> Lasagne
> rllab
PyMC 3

> ...

v

For parallelism
> Platoon
Theano-MPI
Synkhronos
Elephas (through Keras)

v

v

v

7/46

Symbolic expressions

Symbolic expressions
Declaring inputs
Defining expressions
Deriving gradients

8/46

Theano defines a language, a compiler, and a library.

» Define a symbolic expression
» Compile a function that can compute values

» Execute that function on numeric values

0/46

Declaring inputs

Symbolic inputs

Symbolic, strongly-typed inputs
import theano
from theano import tensor as T
x = T.vector('x")
y = T.vector('y')
» All Theano variables have a type
» For instance ivector, fmatrix, dtensor4
» ndim, dtype, broadcastable pattern, device are part of the type

» shape and memory layout (strides) are not

10 /46

Declaring inputs

Shared variables

import numpy as np
np.random.seed(42)
W_val = np.random.randn(4, 3)
b_val = np.ones(3)

W = theano.shared(W_val)
b = theano.shared(b_val)
W.name = 'W'
b.name = 'b'

» Symbolic variables, with a value associated to them

» The value is persistent across function calls

v

The value is shared among all functions

v

The value can be updated

11 /46

Build an expression

NumPy-like syntax

dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)

C = ((out - y) *x 2).sum()
C.name = 'C'
» This creates new variables
» Outputs of mathematical operations

» Graph structure connecting them

Defining expressions

12 /46

pydotprint(ou

Defining expressions

, compact=False)

| name=W TensorType(float64, matrix)
0

name=b TensorType(float64, vector) |

TensorType(float64, vector)

1 0
Elemwise{add,no_inplace}
TensorType(float64, vector)

13 /46

Defining expressions

pydotprint(out)

| name=W TensorType(float64, matrix)

name=b TensorType(float64, vector)

0 TensorType(float64, vector)

Elemwise{add,no_inplace}

ensorType(float64, vector)

14 /46

Deriving gradients

The back-propagation algorithm

Application of the chain-rule for functions from R" to R.
» C:RV SR
» f:RM 5 R
» g:RY 5 RM

> C(x) = f(g(x)
, oC| _ of| o
Ix |x og g(x) Ox |x

The whole M x N Jacobian matrix %h is not needed.
We only need Vg, : RY - RV v s v. 2

Ox |x

This is implemented for (almost) each mathematical operation in Theano.

15 /46

Deriving gradients

Using theano.grad

theano.grad traverses the graph, applying the chain rule.

dC_dW = theano.grad(C, W)
dC_db = theano.grad(C, b)
or dC_dW, dC_db = theano.grad(C, [W, bl)

» dC_dW and dC_db are symbolic expressions, like out and C
» There are no numerical values at this point

» They are part of the same computation graph

» They can also be used to build new expressions

upd_W =W - 0.1 * dC_dwW

upd_b = b - 0.1 * dC_db

16 / 46

Deriving gradients

pydotprint([dC_dW, dC_dbl)

17 /46

Deriving gradients

pydotprint(Lupd_W, upd_b])

18 /46

Function compilation

Function compilation
Compiling a Theano function
Graph optimizations
Graph visualization

19 /46

Compiling a Theano function

Computing values

Build a callable that compute outputs given inputs

» Shared variables are implicit inputs

predict = theano.function([x], out)

x_val = np.random.rand(4)

print(predict(x_val))

-> array([0.9421594 , ©.73722395, 0.67606977])

monitor = theano.function([x, yl, [out, CI)

y_val = np.random.uniform(size=3)
print(monitor(x_val, y_val))

-> [array([0.9421594 , 0.73722395, 0.67606977]),
array(0.6137821438190066)]

error = theano.function([out, yJ], C)
print(error([0.942, 0.737, 0.676], y_val))
-> array(0.613355628529845)

20/ 46

Compiling a Theano function

Updating shared variables

A function can compute new values for shared variables, and perform updates.
train = theano.function([x, yl, C,

updates=[(W, upd_W),

(b, upd_b)1)

print(b.get_value())
#->01. 1. 1.]
train(x_val, y_val)
print(b.get_value())
-> [0.99639999 0.97684097 ©0.98318412]

» Variables W and b are implicit inputs
» Expressions upd_W and upd_b are implicit outputs

» All outputs, including the update expressions, are computed before the
updates are performed

21/46

Graph optimizations

Graph optimizations

An optimization replaces a part of the graph with different nodes

» The types of the replaced nodes have to match

» The values should be equivalent

Different goals for optimizations:

|

>

>

Merge equivalent computations

Simplify expressions: x/x becomes 1

Numerical stability: “log(1 + x)" becomes “loglp(x)"

Insert in-place an destructive versions of operations

Use specialized, efficient versions (Elemwise loop fusion, BLAS, cuDNN)
Shape inference

Constant folding

Transfer to GPU

22 /46

Graph optimizations

Enabling/disabling optimizations

Trade-off between compilation speed, execution speed, error detection.
Different pre-defined modes and optimizers govern the runtime and how much
optimizations are applied

>

mode="'FAST_RUN': default, make the runtime as fast as possible, launching
overhead. Includes moving computation to GPU if a GPU was selected

optimizer='fast_compile': enables code generation and GPU use, but
limits graph optimizations

mode="DEBUG_MODE ' : checks and double-checks everything, extremely slow
Enable and disable particular optimizations or sets of optimizations

Can be done globally, or for each function

23 /46

Graph visualization

pydotprint(out)

| name=W TensorType(float64, matrix)

name=b TensorType(float64, vector)

0 TensorType(float64, vector)

Elemwise{add,no_inplace}

ensorType(float64, vector)

24 /46

Graph visualization

pydotprint(predict

name=W TensorType(float64, matrix)
InplaceDimShuffle(1.0}

ensorType(float64, matrix)

name=W.T TensorType(float64, matrix)

name=b TensorType(float64, vector)

ensorType(float64, vector)

Elemwise{ScalarSigmoid} [(0, 0)]

25 /46

Graph visualization

pydotprint(Lupd_W, upd_b])

26 /46

Graph visualization

pydotprint(train)

fensorType(onts, masx)

TensorType(fou, vector)
Elemise(ScalrSigmaid [0, 0]

CorEe

=

ensorTypeoatd, veetor)

TensorType(ous, vecor)

27 /46

Graph visualization

debugprint

debugprint(predict)
debugprint(out)
Elemwise{ScalarSigmoid}[(@, @)] [id A] '' 2
sigmoid [id A] "' |CGemv{no_inplace} [id B] "' 1
|Elemwise{add,no_inplace} [id B] "' |b [id C]
|dot [id C] "' | TensorConstant{1.0} [id D]
| |x [id D] |InplaceDimShuffle{1,0} [id E] 'W.T' 0
| |W [id E] | |W [id F1
|b [id F] |x [id G]

| TensorConstant{1.0} [id D]

28 /46

Optimized execution

Optimized execution
Code generation and execution
GPU

29 /46

Code generation and execution

Code generation and execution

Code generation for Ops:

» Ops can define C++/CUDA code computing its output values
» Dynamic code generation is possible
> For instance, loop fusion for arbitrary sequence of element-wise operations

» Code gets compiled into a Python module, cached, and imported
» Otherwise, fall back to a Python implementation
Code execution through a runtime environment, or VM:
» Calls the functions performing computation for the Ops
> Deals with ordering constraints, lazy execution

» A C++ implementation (CVM) to avoid context switches (in/out of the
Python interpreter)

30/46

Using the GPU

We want to make the use of GPUs as transparent as possible.
Theano features a new GPU back-end, with

» More dtypes, not only float32
» Experimental support for float16 for storage
» Easier interaction with GPU arrays from Python
» Multiple GPUs and multiple streams
Select GPU by setting the device flag to 'cuda' or 'cuda{0,1,2,...3}".
» All shared variables will be created in GPU memory
» Enables optimizations moving supported operations to GPU

» You want to make sure to use float32 for speed

31/46

Configuration flags

Configuration flags can be set in a couple of ways:
> In the .theanorc configuration file:

[global]
device = cuda@
floatX = float32

» THEANO_FLAGS=device=cuda@,floatX=float32 in the shell
> In Python:
theano.config.floatX = 'float32'

(theano.config.device cannot be set once Theano is imported, but you
can call theano.gpuarray.use('cuda@'))

32/46

Advanced Topics

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
Development
Lasagne

33/46

Looping: the scan operation

Overview of scan

Symbolic looping

>

>

>

Can perform map, reduce, reduce and accumulate, ...
Can access outputs at previous time-step, or further back
Symbolic number of steps

Symbolic stopping condition (behaves as do ... while)
Actually embeds a small Theano function

Gradient through scan implements backprop through time
Can be transfered to GPU

34 /46

Looping: the scan operation

Example: Loop with accumulation

k = T.iscalar("k")
A = T.vector("A")

Symbolic description of the result

result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
outputs_info=T.ones_like(A),
non_sequences=A,
n_steps=k)

We only care about A*xk, but scan has provided us with A**1 through A*xk.
Discard the values that we don't care about. Scan is smart enough to

notice this and not waste memory saving them.

final_result = result[-1]

compiled function that returns Ax*k
power = theano.function(inputs=[A, k], outputs=final_result, updates=updates)

print(power(range(10), 2))

#[0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
print(power(range(10), 4))

[0.] 1.] 1.6 01
2.56 02 6.25 02 1.29600000e+03
4.09600000e+03 6.56100000e+03]

8.1 01
2.40100000e+03

35/46

Debugging

Visualization, debugging, and diagnostic tools

The definition of a Theano function is separate from its execution. To help
with this, we provide:

> Information in error messages

» Get information at runtime

» Monitor NaN or large value

» Test values when building the graph

» Detect common sources of slowness

v

Self-diagnostic tools

36 /46

Extending Theano

Extending Theano

Theano can be extended in a few different ways
» Creating an Op with Python code
> Easy, using Python bindings for specialized libraries (PyCUDA, ...)
> Some runtime overhead is possible
» Example: 3D convolution using FFT on GPU
» Creating an Op with C or CUDA code
> Use the C-API of Python / NumPy / GpuArray, manage refcounts
> No overhead of Python function calls, or from the interpreter
» C++ code inline or in a separate file
> Example: Caffe-style convolutions, using GEMM, on CPU and GPU
» Adding an optimization
» Perform additional graph simplifications
> Replace part of the graph by a new optimized Op

37 /46

Development

New features

>

New GPU back-end, based on libgpuarray, with:
> Arrays of all dtypes, half-precision float (float16) for storage
> Better scheduling
> Much simpler installation on Windows (conda package)

v

Performance improvements
> Integration of CuDNN (now v6) for 2D /3D convolutions and pooling,
RNNs, batch normalization
» Fast memory allocator on GPU
» For memory: checkpointing in scan, gradients of long sequences
» Data parallelism with Platoon (github.com/mila-udem/platoon/)
» Faster graph optimization phase
> More optimization / compile time trade-offs (optimizer={00,o01,...,04})
> Various ways to avoid recompilation
» Diagnostic tools

> Interactive visualization (d3viz)
> PdbBreakPoint

38/46

github.com/mila-udem/platoon/

Development

Current development

» Better support for int operations on GPU (indexing, argmax)
» Faster reductions on GPU

» Simpler, faster optimization mode

> Faster generation and loading of C++ / CUDA code

» More convolution variants: grouped, dilated, ... (GSoC)

> More linear algebra operations on GPU (GSoC)

» Data parallelism across nodes in Platoon

» OpFromGraph for re-defining gradients

390 /46

Development

Projects in our road map

» Constant shape inference when building the graph
» Better compilation cache for generated C++ code

» Continue refactoring graph optimization (for optimization speed)
» Optimize and re-use sub-graphs (like subroutines)

> Improving OpFromGraph
> Maybe cache them

» Deterministic mode

» Use CPU memory to offload intermediate results from GPU (maybe
limited to Pascal GPUs)

40/ a6

Lasagne

What is Lasagne?

Lasagne is a thin framework/library on top of Theano.
lasagne.readthedocs.org

> Does not hide Theano
» Builds Theano graphs easily by using layers
» Contains many preimplemented losses and optimizers

» Does not include a training loop

41 /46

lasagne.readthedocs.org

Acknowledgements

» All people working or having worked at the MILA (previously LISA),
especially Theano contributors

> Reyhane Askari Hemmat, Frédéric Bastien, Yoshua Bengio, James Bergstra,
Arnaud Bergeron, Steven Bocco, Philemon Brakel, Olivier Breuleux, Pierre
Luc Carrier, Mathieu Germain, lan Goodfellow, Simon Lefran¢ois, Razvan
Pascanu, Joseph Turian, David Warde-Farley, and many more

» Compute Canada, Calcul Québec, NSERC, the Canada Research Chairs,
CIFAR, and the CFI for providing funding or access to compute resources

» CIFAR and CRM for organizing the Deep learning summer school

42 /46

Thanks for your attention

Questions, comments, requests?

43 /46

github.com/mila-udem/summerschool2017
deeplearning.net/software/theano/
github.com/Theano/Theano/
arxiv.org/abs/1605.02688
deeplearning.net/tutorial/

Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
» Slides: theano.pdf
» Companion notebook: notebooks/intro_theano.ipynb

44 /46

github.com/mila-udem/summerschool2017
deeplearning.net/software/theano/
github.com/Theano/Theano/
arxiv.org/abs/1605.02688
deeplearning.net/tutorial/

Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
» Slides: theano.pdf
» Companion notebook: notebooks/intro_theano.ipynb

More resources
» Documentation: deeplearning.net/software/theano/
» Code: github.com/Theano/Theano/

» Article: The Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions”,
arxiv.org/abs/1605.02688

» Deep Learning Tutorials: deeplearning.net/tutorial/

45 /46

github.com/mila-udem/summerschool2017
deeplearning.net/software/theano/
github.com/Theano/Theano/
arxiv.org/abs/1605.02688
deeplearning.net/tutorial/

Go to http://mila.umontreal.ca/vmip

46/ a6

http://mila.umontreal.ca/vmip

	Motivation and design
	Goals
	Design
	Status

	Symbolic expressions
	Declaring inputs
	Defining expressions
	Deriving gradients

	Function compilation
	Compiling a Theano function
	Graph optimizations
	Graph visualization

	Optimized execution
	Code generation and execution
	GPU

	Advanced Topics
	Looping: the scan operation
	Debugging
	Extending Theano
	Development
	Lasagne

