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Objectives

Objectives

This tutorial will have 4 parts:
» Introduction to Theano — Motivation and design
> Walk-through example — LeNet on MNIST with Lasagne
» Exercises — Basics of Theano
» Hands-on example — Build your own classifier from VGG-16

All the material is online at github.com/mila-udem/summerschool2017

Hands-on examples
Go to http://mila.umontreal.ca/vmip
» Jupyter notebooks
» Executed on AWS instances with a GPU (K80)
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github.com/mila-udem/summerschool2017
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Motivation and design

Motivation and design
Goals
Design
Status
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Expressing models as mathematical expressions

> Not only a collection of standard layers or modules
> Not only regular gradient descent

» From an interpreted / scripting language

Automatically deriving gradients

» Define gradients for basic, elementary operations
» Treat those gradients as mathematical expressions as well

» Simplify automatically the resulting expression

Training the model efficiently
» Without having to write C / C++ / CUDA code

» Automatic simplification of the graph

» Automatic code generation
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Design

Theano: A mathematical symbolic expression compiler

Easy to define expressions

» Using Python

» Expressions mimic NumPy's syntax and semantics
Possible to manipulate those expressions

» Substitutions
» Gradient, R operator

» Stability optimizations

Fast to compute values for those expressions

» Speed optimizations
» Use fast back-ends (CUDA, BLAS, custom C code)

» Inplace optimizations to reduce memory usage

Tools to inspect and check for correctness
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>

>

Status

Mature: developed and used since January 2008 (9 years old)
Theano 0.9 released in March 2017

Driven > 1000 research papers

Many contributors (123 for version 0.9)

Active mailing list with participants worldwide

Used to teach university classes

Core technology for Silicon Valley start-ups

Used for research at large companies

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/
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deeplearning.net/software/theano/
deeplearning.net/tutorial/

Status

Related projects

Many libraries are built on top of Theano (mostly machine learning)
> Blocks
> Keras
> Lasagne
> rllab
PyMC 3

> ...

v

For parallelism
> Platoon
Theano-MPI
Synkhronos
Elephas (through Keras)

v

v

v
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Symbolic expressions

Symbolic expressions
Declaring inputs
Defining expressions
Deriving gradients
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Theano defines a language, a compiler, and a library.

» Define a symbolic expression
» Compile a function that can compute values

» Execute that function on numeric values
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Declaring inputs

Symbolic inputs

Symbolic, strongly-typed inputs
import theano
from theano import tensor as T
x = T.vector('x")
y = T.vector('y')
» All Theano variables have a type
» For instance ivector, fmatrix, dtensor4
» ndim, dtype, broadcastable pattern, device are part of the type

» shape and memory layout (strides) are not
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Declaring inputs

Shared variables

import numpy as np
np.random.seed(42)
W_val = np.random.randn(4, 3)
b_val = np.ones(3)

W = theano.shared(W_val)
b = theano.shared(b_val)
W.name = 'W'
b.name = 'b'

» Symbolic variables, with a value associated to them

» The value is persistent across function calls

v

The value is shared among all functions

v

The value can be updated
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Build an expression

NumPy-like syntax

dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)

C = ((out - y) *x 2).sum()
C.name = 'C'
» This creates new variables
» Outputs of mathematical operations

» Graph structure connecting them

Defining expressions
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pydotprint(ou

Defining expressions

, compact=False)

| name=W TensorType(float64, matrix)
0

name=b TensorType(float64, vector) |

TensorType(float64, vector)

1 0
Elemwise{add,no_inplace}
TensorType(float64, vector)
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Defining expressions

pydotprint(out)

| name=W TensorType(float64, matrix)

name=b TensorType(float64, vector)

0 TensorType(float64, vector)

Elemwise{add,no_inplace}

ensorType(float64, vector)
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Deriving gradients

The back-propagation algorithm

Application of the chain-rule for functions from R" to R.
» C:RV SR
» f:RM 5 R
» g:RY 5 RM

> C(x) = f(g(x)
, oC| _ of| o
Ix |x og g(x) Ox |x

The whole M x N Jacobian matrix %h is not needed.
We only need Vg, : RY - RV v s v. 2

Ox |x

This is implemented for (almost) each mathematical operation in Theano.
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Deriving gradients

Using theano.grad

theano.grad traverses the graph, applying the chain rule.

dC_dW = theano.grad(C, W)
dC_db = theano.grad(C, b)
# or dC_dW, dC_db = theano.grad(C, [W, bl)

» dC_dW and dC_db are symbolic expressions, like out and C
» There are no numerical values at this point

» They are part of the same computation graph

» They can also be used to build new expressions

upd_W =W - 0.1 * dC_dwW

upd_b = b - 0.1 * dC_db
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Deriving gradients

pydotprint([dC_dW, dC_dbl)
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Deriving gradients

pydotprint(Lupd_W, upd_b])
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Function compilation

Function compilation
Compiling a Theano function
Graph optimizations
Graph visualization
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Compiling a Theano function

Computing values

Build a callable that compute outputs given inputs

» Shared variables are implicit inputs

predict = theano.function([x], out)

x_val = np.random.rand(4)

print(predict(x_val))

# -> array([ 0.9421594 , ©.73722395, 0.67606977])

monitor = theano.function([x, yl, [out, CI)

y_val = np.random.uniform(size=3)
print(monitor(x_val, y_val))

# -> [array([ 0.9421594 , 0.73722395, 0.67606977]),
# array(0.6137821438190066) ]

error = theano.function([out, yJ], C)
print(error([0.942, 0.737, 0.676], y_val))
# -> array(0.613355628529845)
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Compiling a Theano function

Updating shared variables

A function can compute new values for shared variables, and perform updates.
train = theano.function([x, yl, C,

updates=[ (W, upd_W),

(b, upd_b)1)

print(b.get_value())
#->01. 1. 1.]
train(x_val, y_val)
print(b.get_value())
# -> [ 0.99639999 0.97684097 ©0.98318412]

» Variables W and b are implicit inputs
» Expressions upd_W and upd_b are implicit outputs

» All outputs, including the update expressions, are computed before the
updates are performed
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Graph optimizations

Graph optimizations

An optimization replaces a part of the graph with different nodes

» The types of the replaced nodes have to match

» The values should be equivalent

Different goals for optimizations:

|

>

>

Merge equivalent computations

Simplify expressions: x/x becomes 1

Numerical stability: “log(1 + x)" becomes “loglp(x)"

Insert in-place an destructive versions of operations

Use specialized, efficient versions (Elemwise loop fusion, BLAS, cuDNN)
Shape inference

Constant folding

Transfer to GPU
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Graph optimizations

Enabling/disabling optimizations

Trade-off between compilation speed, execution speed, error detection.
Different pre-defined modes and optimizers govern the runtime and how much
optimizations are applied

>

mode="'FAST_RUN': default, make the runtime as fast as possible, launching
overhead. Includes moving computation to GPU if a GPU was selected

optimizer='fast_compile': enables code generation and GPU use, but
limits graph optimizations

mode="DEBUG_MODE ' : checks and double-checks everything, extremely slow
Enable and disable particular optimizations or sets of optimizations

Can be done globally, or for each function
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Graph visualization

pydotprint(out)

| name=W TensorType(float64, matrix)

name=b TensorType(float64, vector)

0 TensorType(float64, vector)

Elemwise{add,no_inplace}

ensorType(float64, vector)
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Graph visualization

pydotprint(predict

name=W TensorType(float64, matrix)
InplaceDimShuffle( 1.0}

ensorType(float64, matrix)

name=W.T TensorType(float64, matrix)

name=b TensorType(float64, vector)

ensorType(float64, vector)

Elemwise{ScalarSigmoid} [(0, 0)]
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Graph visualization

pydotprint(Lupd_W, upd_b])
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Graph visualization

pydotprint(train)

fensorType(onts, masx)

TensorType(fou, vector)
Elemise(ScalrSigmaid [0, 0]

CorEe

=

ensorTypeoatd, veetor)

TensorType(ous, vecor)
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Graph visualization

debugprint

debugprint(predict)
debugprint(out)
Elemwise{ScalarSigmoid}[(@, @)] [id A] '' 2
sigmoid [id A] "' |CGemv{no_inplace} [id B] "' 1
|Elemwise{add,no_inplace} [id B] "' |b [id C]
|dot [id C] "' | TensorConstant{1.0} [id D]
| |x [id D] |InplaceDimShuffle{1,0} [id E] 'W.T' 0
| |W [id E] | |W [id F1
|b [id F] |x [id G]

| TensorConstant{1.0} [id D]
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Optimized execution

Optimized execution
Code generation and execution
GPU
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Code generation and execution

Code generation and execution

Code generation for Ops:

» Ops can define C++/CUDA code computing its output values
» Dynamic code generation is possible
> For instance, loop fusion for arbitrary sequence of element-wise operations

» Code gets compiled into a Python module, cached, and imported
» Otherwise, fall back to a Python implementation
Code execution through a runtime environment, or VM:
» Calls the functions performing computation for the Ops
> Deals with ordering constraints, lazy execution

» A C++ implementation (CVM) to avoid context switches (in/out of the
Python interpreter)
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Using the GPU

We want to make the use of GPUs as transparent as possible.
Theano features a new GPU back-end, with

» More dtypes, not only float32
» Experimental support for float16 for storage
» Easier interaction with GPU arrays from Python
» Multiple GPUs and multiple streams
Select GPU by setting the device flag to 'cuda' or 'cuda{0,1,2,...3}".
» All shared variables will be created in GPU memory
» Enables optimizations moving supported operations to GPU

» You want to make sure to use float32 for speed
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Configuration flags

Configuration flags can be set in a couple of ways:
> In the .theanorc configuration file:

[global]
device = cuda@
floatX = float32

» THEANO_FLAGS=device=cuda@,floatX=float32 in the shell
> In Python:
theano.config.floatX = 'float32'

(theano.config.device cannot be set once Theano is imported, but you
can call theano.gpuarray.use('cuda@'))
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Advanced Topics

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
Development
Lasagne
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Looping: the scan operation

Overview of scan

Symbolic looping

>

>

>

Can perform map, reduce, reduce and accumulate, ...
Can access outputs at previous time-step, or further back
Symbolic number of steps

Symbolic stopping condition (behaves as do ... while)
Actually embeds a small Theano function

Gradient through scan implements backprop through time
Can be transfered to GPU
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Looping: the scan operation

Example: Loop with accumulation

k = T.iscalar("k")
A = T.vector("A")

# Symbolic description of the result

result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
outputs_info=T.ones_like(A),
non_sequences=A,
n_steps=k)

# We only care about A*xk, but scan has provided us with A**1 through A*xk.
# Discard the values that we don't care about. Scan is smart enough to

# notice this and not waste memory saving them.

final_result = result[-1]

# compiled function that returns Ax*k
power = theano.function(inputs=[A, k], outputs=final_result, updates=updates)

print(power(range(10), 2))

#[ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
print(power(range(10), 4))

# [ 0. ] 1. ] 1.6 01
# 2.56 02  6.25 02 1.29600000e+03
# 4.09600000e+03 6.56100000e+03]

8.1 01
2.40100000e+03

35/46



Debugging

Visualization, debugging, and diagnostic tools

The definition of a Theano function is separate from its execution. To help
with this, we provide:

> Information in error messages

» Get information at runtime

» Monitor NaN or large value

» Test values when building the graph

» Detect common sources of slowness

v

Self-diagnostic tools
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Extending Theano

Extending Theano

Theano can be extended in a few different ways
» Creating an Op with Python code
> Easy, using Python bindings for specialized libraries (PyCUDA, ...)
> Some runtime overhead is possible
» Example: 3D convolution using FFT on GPU
» Creating an Op with C or CUDA code
> Use the C-API of Python / NumPy / GpuArray, manage refcounts
> No overhead of Python function calls, or from the interpreter
» C++ code inline or in a separate file
> Example: Caffe-style convolutions, using GEMM, on CPU and GPU
» Adding an optimization
» Perform additional graph simplifications
> Replace part of the graph by a new optimized Op
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Development

New features

>

New GPU back-end, based on libgpuarray, with:
> Arrays of all dtypes, half-precision float (float16) for storage
> Better scheduling
> Much simpler installation on Windows (conda package)

v

Performance improvements
> Integration of CuDNN (now v6) for 2D /3D convolutions and pooling,
RNNs, batch normalization
» Fast memory allocator on GPU
» For memory: checkpointing in scan, gradients of long sequences
» Data parallelism with Platoon (github.com/mila-udem/platoon/)
» Faster graph optimization phase
> More optimization / compile time trade-offs (optimizer={00,o01,...,04})
> Various ways to avoid recompilation
» Diagnostic tools

> Interactive visualization (d3viz)
> PdbBreakPoint
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github.com/mila-udem/platoon/

Development

Current development

» Better support for int operations on GPU (indexing, argmax)
» Faster reductions on GPU

» Simpler, faster optimization mode

> Faster generation and loading of C++ / CUDA code

» More convolution variants: grouped, dilated, ... (GSoC)

> More linear algebra operations on GPU (GSoC)

» Data parallelism across nodes in Platoon

» OpFromGraph for re-defining gradients
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Development

Projects in our road map

» Constant shape inference when building the graph
» Better compilation cache for generated C++ code

» Continue refactoring graph optimization (for optimization speed)
» Optimize and re-use sub-graphs (like subroutines)

> Improving OpFromGraph
> Maybe cache them

» Deterministic mode

» Use CPU memory to offload intermediate results from GPU (maybe
limited to Pascal GPUs)
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Lasagne

What is Lasagne?

Lasagne is a thin framework/library on top of Theano.
lasagne.readthedocs.org

> Does not hide Theano
» Builds Theano graphs easily by using layers
» Contains many preimplemented losses and optimizers

» Does not include a training loop
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lasagne.readthedocs.org
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Thanks for your attention

Questions, comments, requests?
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github.com/mila-udem/summerschool2017
deeplearning.net/software/theano/
github.com/Theano/Theano/
arxiv.org/abs/1605.02688
deeplearning.net/tutorial/

Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
» Slides: theano.pdf
» Companion notebook: notebooks/intro_theano.ipynb
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github.com/mila-udem/summerschool2017
deeplearning.net/software/theano/
github.com/Theano/Theano/
arxiv.org/abs/1605.02688
deeplearning.net/tutorial/

Thanks for your attention

Questions, comments, requests?

github.com/mila-udem/summerschool2017
» Slides: theano.pdf
» Companion notebook: notebooks/intro_theano.ipynb

More resources
» Documentation: deeplearning.net/software/theano/
» Code: github.com/Theano/Theano/

» Article: The Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions”,
arxiv.org/abs/1605.02688

» Deep Learning Tutorials: deeplearning.net/tutorial/
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Go to http://mila.umontreal.ca/vmip
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