CLINICAL, PATHOLOGICAL AND MOLECULAR CHARACTERISATION OF *C9orf72*-ALS LEADS TO IDENTIFICATION OF NOVEL THERAPEUTIC TARGETS

Johnathan Cooper-Knock

PLAN FOR TALK

- 1. Clinical and pathological features of C9orf72-disease
 - 2. Southern blotting to size the C9orf72 expansion
 - 3. RNA foci and neuropathology
- 4. Gene expression profiling to determine prognostic biomarkers

Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72

Johnathan Cooper-Knock,^{1,*} Christopher Hewitt,^{1,*} J. Robin Highley,^{1,*} Alice Brockington,¹ Antonio Milano,² Somai Man,² Joanne Martindale,² Judith Hartley,¹ Theresa Walsh,¹ Catherine Gelsthorpe,¹ Lynne Baxter,¹ Gillian Forster,¹ Melanie Fox,¹ Joanna Bury,¹ Kin Mok,³ Christopher J. McDermott,¹ Bryan J. Traynor,^{4,5} Janine Kirby,¹ Stephen B. Wharton,¹ Paul G. Ince,¹ John Hardy³ and Pamela J. Shaw¹

47% of familial MND cases and 7% of sporadic MND cases.

Clinically and pathologically resembles the more common sporadic disease.

Overrepresentation of extramotor disease in patients and families.

C9orf72 NEUROPATHOLOGY

C9orf72 AND PARKINSONISM

5/61 (8.2%) patients had either a diagnosis of PD or a family history of PD.

We screened 518 patients with clinical parkinsonism and αsynucleinopathy for the C9orf72 expansion.

Only one patient carried the expansion - similar to control frequency. This patient had a family history of ALS.

Two patients with clinical ALS and PD were identified, one carried the *C90RF72* expansion, the other did not.

	<i>C9ORF72</i> expansions, parkinsonism, and Parkinson disease A clinicopathologic study
Johnathan	ABSTRACT
Cooper-Knock, BA*	Objective: To determine the histopathologic bases for the observed incidence of parkinsonism in
Antonina Frolov*	families with C90RF72 expansions, which typically cause amyotrophic lateral sclerosis (ALS)
J. Robin Highley, DPhil*	and/or frontotemporal dementia.

C9orf72 AND MULTIPLE SCLEROSIS

3/61 (5%) patients had either a diagnosis or a family history of demyelinating disease.

We prospectively identified 7 patients with MS who subsequently developed ALS

Neurodegeneration

RESEARCH PAPER

Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of *C90RF72*

Azza Ismail,^{1,3} Johnathan Cooper-Knock,^{1,3} J Robin Highley,¹ Antonio Milano,⁷ Janine Kirby,¹ Emily Goodall,¹ James Lowe,⁵ Ian Scott,⁵ Cris S Constantinescu,⁴ Stephen J Walters,² Sian Price,³ Christopher J McDermott,^{1,3} Stephen Sawcer,⁶ D Alastair S Compston,⁶ Basil Sharrack,^{1,3} Pamela J Shaw^{1,3}

80% of MS-ALS patients carried the C9orf72 expansion. This is a significant association (OR 3.27, p<0.001).

Zero from 215 pure MS cases carried the *C9orf*2 expansion.

C9orf72-ALS is more rapidly progressive in the presence of MS

C9orf72 AND MULTIPLE SCLEROSIS

C90RF72-ALS

Controls

non-C9ORF72 ALS

SOUTHERN BLOTTING TO SIZE THE C9orf72 EXPANSION

EFFECT OF REPEAT LENGTH ON C9orf72 TRANSCRIPTION

C9orf72 AND RNA FOCI

Acta Neuropathol (2015) 130:63-75 DOI 10.1007/s00401-015-1429-9	CrossMark
ORIGINAL PAPER	
Antisense RNA foci in the motor neuron	s of C90RF72-ALS
patients are associated with TDP-43 pro	teinopathy
Johnathan Cooper-Knock ¹ · Adrian Higginbottom ¹ · Matthew J	Stopford ¹
J. Robin Highley ¹ · Paul G. Ince ¹ · Stephen B. Wharton ¹ · Stuart	Pickering Brown ²
	Ticketing-brown

Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions

Johnathan Cooper-Knock,^{1,*} Matthew J. Walsh,^{1,*} Adrian Higginbottom,¹ J. Robin Highley,¹ Mark J. Dickman,² Dieter Edbauer,³ Paul G. Ince,¹ Stephen B. Wharton,¹ Stuart A. Wilson,⁴ Janine Kirby,¹ Guillaume M. Hautbergue¹ and Pamela J. Shaw¹

RNA FOCI AND RRM-CONTAINING PROTEINS

RELATIVE DISTRIBUTION OF SENSE AND ANTISENSE RNA FOCI

RELATIVE DISTRIBUTION OF SENSE AND ANTISENSE RNA FOCI

	Purkinje Neurons			Granule Neurons			Motor Neurons		
Case	Antisense	Sense	P-value	Antisense	Sense	P-value	Antisense	Sense	P-value
1	26.40	6.40	2.37E-14	0.00	0.56	1.37E-12	3.33	1.00	0.02
2	4.30	1.10	0.002	0.03	1.10	9.63E-18	3.00	1.00	0.02
3	4.60	1.30	0.002	0.01	0.34	1.17E-07	5.40	2.44	0.02
4	6.30	1.40	6.88E-05	0.02	0.40	3.1E-07	14.90	1.50	5.65E-14

CELLULAR DISTRIBUTION OF RNA FOCI AND TDP-43

CONCLUSIONS FROM RNA FOCI WORK

The presence of antisense foci correlates with TDP-43 mislocalisation in motor neurons.

Sense and antisense transcripts share similar binding partners.

The relative frequency of sense and antisense foci/dipeptide-repeat proteins varies between neuronal populations.

A key event determining toxicity might be a propensity to produce antisense transcripts.

Brief Communication

Cell Chemical Biology c9orf72 Disease-Related Foci Are Each Composed of One Mutant Expanded Repeat RNA

Highlights

Authors

- Quantitative biochemical link between RNA numbers and disease
- Less than four mutant c9orf72 molecules per cell on average
- ~1:1 correspondence between c9orf72 foci and mutant intronic RNA
- Small numbers of disease RNA molecules can have major consequences

Jing Liu, Jiaxin Hu, Andrew T. Ludlow, Jacqueline T. Pham, Jerry W. Shay, Jeffrey D. Rothstein, David R. Corey

Correspondence

david.corey@utsouthwestern.edu

In Brief

Knowing absolute numbers of cellular RNAs is critical for understanding molecular mechanism. The *c9orf72* gene is a suspected cause of ALS. Liu et al. find that a handful of mutant *c9orf72* transcripts are present per cell. Small numbers of RNA molecules may have a big impact on disease.

Neuron

C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD

Highlights

- C9orf72 BAC mice with behavioral, neurodegenerative, and molecular features of ALS/FTD
- These mice express C9orf72 sense and upregulated antisense transcripts
- Antisense RNA foci accumulate preferentially in ALS/FTDvulnerable cell populations
- RAN aggregates increase with age and disease with TDP-43 aggregates at end stage

Authors

Yuanjing Liu, Amrutha Pattamatta, Tao Zu, ..., David R. Borchelt, Anthony T. Yachnis, Laura P.W. Ranum

Article

Correspondence

ranum@ufl.edu

In Brief

Liu et al. report the generation of the first C9orf72 BAC mouse model that recapitulates the molecular, behavioral, and neurodegenerative features of ALS/ FTD. Antisense RNA foci accumulate in vulnerable regions, and RAN protein accumulation increases with age and disease.

GENE EXPRESSION PROFILING IN MOTOR NEURONS

NEXT STEPS...

In C9orf72-disease we look forward to the forthcoming ASO trial

Building C9orf72-disease models with particular focus on antisense transcription

Fascinating insight into genetic architecture of ALS from early project MinE data - mt*C9orf72* probably never works alone.

THANKS

Many, many people at SITraN but especially:

- Adrian Higginbottom
- Guillaume Hautbergue
- Winston Hide
- Paul Heath
- Robin Highley
- Janine Kirby
- Pamela Shaw

THANKS

Collaborators:

- Vladimir Buchman
- Magnus Rattray
- John Hardy
- Bryan Traynor
- Dieter Edbauer
- Michael Baughn
- MNDA LCL Bank

