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Single molecular transistors 
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 Lux Research Nanotechnology Report: Projections of $4.4 trillion in global 
manufactured nano-products by 2018 

 Wilson Center’s Project on Emerging Nanotechnologies 2015 Consumer 
Product Database: over 1600+ self-identified nano-products now on U.S. 
market shelves. 

 Products include paints, coatings, sporting goods, sunscreens, cosmetics, 
personal care products, stain-resistant clothing, and light emitting diodes 
used in computers, cell phones, and digital cameras. 

Nanomaterials in Consumer Products 

$3B 



All nanomaterials are not the same 



All nanomaterials are not the same 



Same structure – different shapes 
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Jin et al. (2001) Science  294: 1901-1903 

The properties can vary with size 
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Properties of nanoparticles 
The biological activity of nanoparticles, including toxic and other environmental effects 
are complex phenomena, which involve the physicochemical properties based on 
molecular structure, atomic composition of a molecule, in addition to unusual size and 
surface effects.  
The following physicochemical properties of nanoparticles are determine the behavior 
in environmenta:  
 
- CHEMICAL COMPOSITION (atom composition) 
- SMALL SIZE (particle size, size distribution) 
- LARGE SURFACE (surface reactivity, surface coatings, surface groups) 
- CRYSTAL STRUCTURE (crystallinity) 
- SOLUBILITY (solubility in the relevant media) 
- SHAPE 
- AGGREGATION (aggregation status in the relevant media) 
- PURITY (purity of sample) 
 
In addition, the method of synthesis and/or preparation including postsynthetic 
modifications also plays important role in nanoparticle behavior. 

a Warheit D.B., Toxicological Sciences, 2008, 101(2), 183-185 



The importance of characterization 
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Nature Materials, 2007, 6: 
557-562  

“Orthogonal dimensions” for nanoparticles 
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Agglomeration and aggregation of 
nanoparticles 
Jiang (2009) J. Nanopart. Res. 11: 77-89. 
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Abbreviations: 
• EM- electronic microscopy, 
• AFM - atomic force microscopy, 
• FFF- field flow filtration, 
• DLS - dynamic light scattering, 
• LC- liquid chromatography, 
• XRD - X-ray diffraction, 
• TEM - transmission electron microscopy, 
• ICP-MS - inductively coupled plasma  
                   mass spectrometry, 
• ICP-OES - inductively coupled plasma  
                    emission spectroscopy, 
• EDX - energy dispersive X-ray spectrometry, 
• ESEM - environmental scanning electron microscopy. 
 

Experimental techniques that can help to 
get nano-properties (nano-descriptors) 

Haselov et al. (2008) Ecotoxicology  17: 344-361 



Mass-based “dose” may be inadequate 
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Effects may be related to surface area based “dose” 
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 1um cube  
 e.g. respirable particle  
 Surface area = 6um2 

 
 100nm cube 

 1000 cubes is equivalent volume 
 Surface area = 60 um2  

 
 10x more surface area for the same 

mass 
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Can we predict properties of 
nanomaterials? 

 
  Physical properties of nanomaterials   

 
  Toxicological aspects of nanomaterials 

 
  Pharmacological properties 
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The steps towards modeling of 
nanoparticles properties and toxicity: 

 Development of nanomaterials inventory (datasets) – collecting the 
data on experimental physicochemical properties, toxicity endpoints 
 

 Identification of structural descriptors suitable for modeling nanoparticle 
reactivity 
 

 QSAR modeling - exploring the relationships between structure and 
properties (for example, solubility), toxicity, using multivariate data 
analysis techniques 
 

 Modeling the interaction of nanoparticles with biological systems - by 
means of computational approaches including quantum chemistry 
methods, molecular modeling and protein-ligand docking techniques 
 

 
 



 Metal-based nanomaterials (metal oxide NPs)  
 

 Carbon nanostructures (fullerenes, carbon nanotubes) 
 

 

Two types of nanomaterials 



Combination of 
computational 

methods to predict 
nano-properties 



In silico methods 

Combined methods 

Empirical based Physics based 

Ligand 
based 

QSAR 

Target 
based 

Docking 

Expert 
systems 

Rule-based 
methods 

Molecular 
Dynamics 

Quantum Chemical 
Approaches 
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Computational approaches 

 Quantum-Chemical 
Approaches 
 

 QSARs: Quantitative 
Structure-Activity 
Relationships 
 

 Molecular modeling – 
Protein-Ligand Docking 

 Data visualization and 
Pattern recognition methods 
 

Physical  
Properties 

Toxicity 

Environmental  
Distribution 

Biokinetic 
Parameters 



Quantum 
Chemistry 

    Quantum-Chemical Approaches 
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Gold nanoclusters 
Small and Large gold cubic clusters, Aun , n=2-2016 

Watkins M., Rasulev B., Theodore M., Jackman J., Leszczynski J., Structures and Stabilities: Quantum-Chemical Study of Au n (n = 2-2016) 
Nanoclusters by Extended Huckel and DFT Approaches, Nanosci.& Nanotech., (2012), 2(1), 1-12 



Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical 
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58 

Quantum-Mechanical Properties  
of Metal Oxide clusters 

Scheme A: GAP, HOMO, LUMO, hardness, softness, 
electrophilicity 

Scheme B: HOF, total energy, electronic energy, SAS, 
dipole moment 
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Scheme A 

Scheme B 

1 – 5 nm 100 nm 
Size 

Size-Dependence of Quantum-Mechanical Properties  

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical 
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58 



QSAR 
    Quantitative Structure-Activity Relationship 

in materials research 
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    Corwin Hansch 
          1918-2011 
 
The Pioneer of QSAR 

Born: October 6, 1918, Kenmare, North Dakota, United States 

He was a Professor of Chemistry at Pomona College in California.  

B.S. from the University of Illinois in 1940 

Ph.D. from New York University in 1944 

Hansch worked on the Manhattan Project at the University of 
Chicago and as a group leader at DuPont Nemours in Richland, 
Washington. 

 Father  
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QSAR – what is this? 

 A QSAR is a mathematical relationship between a biological activity of a 
molecular system and its geometric, chemical or physical characteristics. 

   

 QSAR attempts to find consistent relationship between biological activity and 
molecular properties, so that these “rules” can be used to evaluate the activity of 
new compounds. 

 

 Once a valid QSAR has been determined, it should be possible to predict the 
physical property or biological activity of related compounds or drug candidates 
before they are put through expensive and time-consuming biological testing. In 
some cases, only computed values need to be known to make an assessment. 

The problem of QSAR is to find coefficients C0,C1,...Cn such that: 
 

Biological activity = C0+(C1*P1)+...+(Cn*Pn) 
 

and the prediction error is minimized for a list of given m compounds. 



QSAR methodology 
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Types of Molecular Descriptors 
*
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Electrostatic 

Geometrical 
3-D shape and structure 

Hybrid descriptors 

Quantum Chemical 
 

Constitutional, Topological 
 

2-D structural formula  



Examples of successful QSAR 
applications in industry 

Norfloxacin, antibacterial 
Kyorin Pharmaceutical Company, Japan 
                 Traditional QSAR analysis of 70 compounds, 
up to 500 times more potent then previous analogs 

Metamitron, herbicide 
Bayer AG, Germany 
                                    QSAR analysis of 22 compounds 

Bromobutide, herbicide 
Sumitomo chemical Company, Japan 

Myclobutanil, fungicide 
Rohm and Haas, USA 
                                    QSAR analysis of 67 compounds 

QSAR analysis  
of 74 compounds 
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Extending QSAR to nanoparticles 

There are three problems in order to extend QSAR approach 
to materials (nanomaterials and polymer materials): 

 
1. QSAR mainly developed for organic compounds with 

diverse structure types, while nanoparticles structurally 
limited in diversity 

2. Not enough experimental data for nanoparticles and no 
systematic data 

3. Regular QSAR descriptors applicable for organic 
compounds – not applicable for nanoparticles 
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Data for “Classic” QSAR and nano-QSAR 

„Classic” QSAR                    Nano-QSAR/QNTR 



B. Rasulev, A. Toropov, T. Puzyn, D. Leszczynska, J. Leszczynski, An Application of Graphs of Atomic Orbitals for QSAR Modeling of  
                                      Toxicity of Metal Oxides, in:  Federation of Analytical Chemistry and Spectroscopy Symposium (FACSS), 2007 

Materials’ descriptors (Nano-descriptors) 



A Gajewicz, B Rasulev, TC Dinadayalane, P Urbaszek, T Puzyn, D. Leszczynska, J. Leszczynski, Advancing risk assessment of engineered  
nanomaterials: application of computational approaches, Advanced Drug Delivery Reviews, 2012, 64 (15), 1663-1693 

Materials’ descriptors (Nano-descriptors) 



Construction of materials fingerprints from the band structure and the density of states. 
Copyright (Isayev et al., Materials Cartography: Representing and Mining Materials Space 
Using Structural and Electronic Fingerprints, Chemistry of Materials,  2015, 27, 735-743). 

Fingerprint descriptors for materials 



“Liquid Drop” nanodescriptor representation 

“Liquid drop” model as a nano-descriptor 

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the “liquid drop” 
approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, Nanoscale, 2014, 6, 13986-993 
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E.Coli cell toxicity HaCaT cells toxicity 

Nano-QSAR based on SiRMS descriptors and 
“liquid drop” nanodescriptor 

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the “liquid drop” 
approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, Nanoscale, 2014, 6, 13986-993 



Toxicity  
of nanomaterials 



An Example of Toxicity Pathway for 
Nanoparticles 



An Example of Toxicity Pathway for 
Nanoparticles 

QSAR 





Do you know what you're eating?  
 
The number of American food products containing nanomaterials has 
increased tenfold since 2008. Nanoparticles are typically used to stretch the 
shelf life and improve the texture of food. 
 
Popular lollies, sauces and dressings have been found to contain 
nanotechnology. 
 
Tests that found potentially harmful nanoparticles of titanium dioxide and 
silica in 14 popular products, including Mars' M&Ms, Woolworths white sauce 
and Praise salad dressing. 
 
The lab test of the 14 supermarket goods, which also included Eclipse chewy 
mints, Old El Paso taco mix, and Moccona Cappuccino, was conducted by a 
world-class nanotechnology research facility at Arizona State University. 
 
The Food Standards code does not require nanoparticles to be declared on 
labelling. Nano-titanium dioxide (E171) can be simply described as the 
conventional-sized type and as "Colour (171)". Nano-silica (E551) can be 
listed as the conventional version and as "Anti-caking agent (551)". 



Nanoparticles of titanium dioxide found 
in Mentos Pure Fresh Gum.  
                      Photo: Arizona State University 

Nanoparticles of silica found in Maggi's Roast Meat Gravy.  
                                                              Photo: Arizona State University 
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Nano-QSAR 
for metal oxide nanoparticles 

(Toxicity to E.coli bacteria) 
 



Main strategy 

Structural, Physical  
and Quantum-Chemical  

Properties 

In vitro data 

QSAR model 
Predicting 

the activity for  
untested 

compounds 

Modeling 

Experiment 

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 



Main strategy 

Structural, Physical  
and Quantum-Chemical  

Properties 

In vitro data 

QSAR model 
Predicting 

the activity for  
untested 

compounds 

Modeling 

Experiment 

We were wondering – why up to date (2009-2010) no studies regarding a series of  
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We were wondering – why up to date (2009-2010) no studies regarding a series of  
nanoparticles at the same experiment (same lab, same conditions)?  

Many papers include only one or two metal oxide nanoparticles studied for toxicity.  

So, we decided to measure a toxicity for as much metal oxide nanoparticles as we 
can find.  
At the beginning we were able to find about 13, and after that 4 more. 

Finally, we had a chance to build a QSAR model !!! 
 

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 



QSAR model of toxicity towards E.coli bacteria for nanosized oxides – 
Quantum-Chemical method + QSAR.  

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 

The following metal oxides in nanosized form were selected: ZnO, TiO2, SnO2, La2O3, Fe2O3, CuO, 
Al2O3, Sb2O3, V2O3, Y2O3, In2O3, Bi2O3, SiO2 , CoO, NiO, Cr2O3, and ZrO2.  
 
All of these nanosized metal oxides are widely used in many products that present around us. All of 
them are quite toxic to some extent.  
 
The quantum-chemical methods were applied to find parameters that could be responsible for the 
toxicity properties for nanosized metal oxides. 12 electronic descriptors were calculated. 
As source structures we have used the crystal structures data obtained by X-Ray analysis. 
 
                 For example, the structure of SnO2 

Ionization potentials (IP1, IP2, IP3) and electron affinities  (EA1, EA2, EA3) of, respectively,  single (i.e., SnO2), double (i.e., Sn2O4) and triple 
(Sn3O6) stoichiometric fragments cut from the crystal structure: 



Final model with only one parameter. 
 
Nano-QSAR equation, utilizing only one descriptor to predict the cytotoxicity of the metal oxide 
nanoparticles: 
 
 
                  log(1/EC50)= 2.59 (±0.07) - 0.50 (±0.07) ·∆HMe+                                                  
 
(n=10, ntest=7, R2=0.85, F=45.4, p<0.001, Q2

CVLOO=0.77, the externally validated regression 
coefficient Q2

Ext=0.83, RMSEC = 0.20, RMSECV = 0.24, RMSEP = 0.19) 
 
where the descriptor ∆HMe+ represents the enthalpy of formation of a gaseous cation having the same 
oxidation state as that in the metal oxide structure.  
 
 

                       Me (s) →  Men+ (g)  +  n·ē  → ∆HMe+                                                                        
 
 
 
The descriptors were calculated using quantum-chemical methods. Since from a quantum-
mechanical point of view, the calculations of nanoparticles of 15-90 nm size (those used in the 
experiments) were not feasible (too large systems) it was necessary to maximally simplify the 
structural models utilized to calculate the descriptors.  
 
 

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 
 



Splitting a dataset 

 

Training Set 
 

Validation set 1 
 

Validation Set 2 
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   Al2O3 

   Fe2O3 

   SiO2 

   SnO2 

   TiO2 

   V2O3 

   Sb2O3 

   ZrO2 

   CoO 
   NiO 
   Cr2O3 

   La2O3 

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 



Cytotoxicity nano-QSAR model 
for MeOx nanomaterials 

Structural, Physical  
and Quantum-Chemical  

Properties QSAR  
model 

Predicting 
the activity for  

untested 
compounds 

Modeling 

Experiment 

Training Set Validation 
set 1 

Validation 
Set 2 

   ZnO 
   CuO 
   Y2O3 

   Bi2O3 

   In2O3 

   Al2O3 

   Fe2O3 

   SiO2 

   SnO2 

   TiO2 

   V2O3 

   Sb2O3 

   ZrO2 

   CoO 
   NiO 
   Cr2O3 

   La2O3 

Nano-QSAR model, which successfully predicted the cytotoxicity of 
the metal oxide nanoparticles 

 

   log(1/EC50)= 2.59 - 0.50·∆HMe+                                                                                  
 

E. coli  and  
nanoparticle surface 

In vitro data 



Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,  
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178 

Results – Cytotoxicity trend 
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The way to cover prediction for cytotoxicity for all existing nano-sized 
metal oxides by using neural network method  

N Fjodorova, M Novic, A Gajewicz, B Rasulev, The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using 
neural network method, Nanotoxicology, 2017, 11(4), 475-483 

The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of 
MeOx NPs for data sets of 17, 36 and 72 metal oxides were employed in the study..  
 
The following metal oxides in nanosized form were selected to train the model: ZnO, TiO2, SnO2, 
La2O3, Fe2O3, CuO, Al2O3, Sb2O3, V2O3, Y2O3, In2O3, Bi2O3, SiO2 , CoO, NiO, Cr2O3, and ZrO2.  
 
The cytotoxicity model for studied metal oxide NPs was taking into account: 
(i) χ-metal electronegativity (EN) by Pauling scale, and composition of metal oxides characterized by 
(ii) number of metal atoms in oxide, 
(iii) number of oxygen atoms in oxide, 
(iv) charge of metal cation in oxide. 
 
 Quantitative CP ANN models showed a good 
prediction power of models with the leave one out 
Q2 in the range of 0.83–0.92. The categorical CP 
ANN models were capable to predict class of 
cytotoxicity with accuracy equal to 1. 
 
The methodology is expected to be useful for 
potential hazard assessment of MeOx NPs and 
prioritization for further testing and risk assessment. 
 



N Fjodorova, M Novic, A Gajewicz, B Rasulev, The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using 
neural network method, Nanotoxicology, 2017, 11(4), 475-483 



Carbon nanostructures  
fullerene C60 and carbon nanotubes 

(CNTs) 
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Immunotoxicity of nanoparticles: CNTs and fullerenes 
might be recognized as pathogens by Toll-like receptors 

M. Turabekova, B. Rasulev, M. Theodor, J. Jacksman, D. Leszczynska, J. Leszczynski, Nanoscale, 2014 



Pattern Recognition Receptors  
signaling pathway 

 Macrophages play a vital role in the immune 
system. 

 and have pattern recognition receptors (PRRs) to 
identify pathogens. 

 PRRs are represented by membrane-associated 
Toll-like receptors (TLRs) and cytoplasmic Node-
like receptors (NLRs). 

 Each TLR and NLR recognize specific, conserved 
pathogen-associated molecular patterns  
(PAMPs) present in microbial proteins, nucleic 
acids, lipids, and carbohydrates. 

 These PAMP-containing molecules act as ligands 
to trigger PRR-dependent intracellular signaling 
pathways that ultimately induce the expression of 
pro-inflammatory and antiviral cytokines. 

TLR3/RNA 
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Toll-like Receptors: TLR1/TLR2 
TLRs have evolved to recognize PAMPs expressed by the broad classes of 
pathogens (e.g. viruses, bacteria, and fungi). 
High specificity of TLRs helps them to recognize well-conserved features in 
pathogens, including bacterial cell-surface LIPOPEPTIDES 

M.S. Jin et all., Cell, 130 (2007) 1071-1082. 



Identification of Hydrophobic Binding Sites 
Site Volume, Å 

1035.86 

637.98 

596.82 

1182.66* 

* TLR2 
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Glide XP docking: TLR1/TLR2 

-15.460  -8.747 



1117 
Proteins 

170 Fullerene 
(C60, C70 and 

C80)/derivatives 

Inhibitors or toxins? Large library target-specific 
screening of fullerene-based nanoparticles 

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017,  9 (29), 10263-10276 



We’ve selected existing fullerene derivatives and decided to dock all possible proteins 
related to diseases.    

1117 
Proteins 

169 Fullerene 
(C60, C70 and 

C80)/derivatives 

Series of Proteins Potential Drug 

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017,  9 (29), 10263-10276 

Ligand-Protein Inverse Docking 
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200 000  
pairs protein-fullerene 
 
≈ 1 000 000  
docked poses  



Figure: Glutamate transporters (Gltph, PDB ID: 1XFH) has a homotrimeric 
subunit with a large central water-filled cavity that restricts ligand 
diffusion to the exterior bulk medium. Fullerene derivative trapped in the 
cavity. 

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017,  9 (29), 10263-10276 



Binding Score 

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017,  9 (29), 10263-10276 



Rank PDB_ID Biochemical Type Therapeutic Area Target Details 

1 1RTD Enzyme Viral infections DNA Polymerase/reverse Transcriptase, HIV-1 
Reverse Transcriptase 

2 1HKB   Hormones and hormone 
antagonists 

D-Glucose 6-Phosphotransferase  

3 2BU5 Enzyme   Pyruvate dehydrogenase kinase-2 

4 1CVI Enzyme   Prostatic acid phosphatase 

5 1OVM Enzyme Vitamins Indole-3-Pyruvate Decarboxylase 

6 8CAT Enzyme   Oxidoreductase 

7 1H9U Nuclear Receptor Vitamins Retinoid X Receptor, Beta 

8 2VAA Monoclonal Antibodies   Murine MHC class I H-2Kb 

9 1KAE Enzyme Synaptic and neuroeffector 
junctional sites and central 
nervous system 

Histidinol Dehydrogenase 

10 1IG0 Enzyme Vitamins Thiamin Pyrophosphokinase 

11 2BWN Enzyme   5-Aminolevulinate synthase 

12 2F9Q Enzyme   CYP2D6 

13 6COX Enzyme Inflammation Cyclooxygenase 1,2(COX-1,COX-2) 

14 1HNI Enzyme Viral infections HIV-1 Reverse Transcriptase 

15 1IYH Enzyme Blood and blood-forming 
organs 

Hematopoietic Prostagladin D Synthase 

Top target proteins 

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017,  9 (29), 10263-10276 



            Descriptors                  +                        Data Mining                     =     New Materials Design 
                                                                                                                                    Risk Assessment 

Figure. The structure of CdSe/ZnS quantum dot with ligand 
coating (a) and Al2O3 nanoparticle with OVA and linker (b).  
Copyright – (a)en.rusnano.com, (b)-nature.com (Li et al., 2011).  

Nano-Descriptors Generation and Calculation 

Structural, Physical  
and Quantum-Chemical  

Properties 

In vitro data 

QSAR  
model 

Predicting 
the activity for  

Untested 
materials 

Modeling 

Experiment 

Modeling of Nanomaterials Structure-Property Relationship  Development of new Nanomaterial 
with improved properties or 

predicting Toxicity 

Figure. 
Construction of 
materials 
fingerprints from 
the band 
structure and the 
density of states. 
Copyright (Isayev 
et al., 2015). 

Figure. A representation of graph-atomic orbitals descriptors for 
encoding of metal oxide NMs (Copyright – Rasulev B. et al, 
FACSS conference proceedings, 2007).  

Figure. A representation of theoretical descriptor generation based 
on experimental TEM images for NMs (Copyright - Gajewicz A, 
Rasulev B. et al, Advanced Drug Delivery Reviews, 2012). 

Figure. A representation of data mining for protein-ligand 
docking studies of 1200 proteins and 169 fullerene 
nanoparticles (Nature Nanotechnology. Copyright - Ahmed L, 
Rasulev B. et al,, 2015, under review). 
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