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Seven sensational scrap metal sculptures line the 32-mile stretch of highway in
southwest North Dakota, including artist Gary Greff’'s massive “Geese in Flight,”
listed in the Guinness World Records as the world’s largest scrap metal sculpture.
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“THERE WON’T BE A BETTER FILM
THAN THIS ALL YEAR!”
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Nanomaterials Applications

"

Functional
M Nanomaterial
Electrochemical
u

Magnstic
Ampilificat]
Optical mp an
Amplification

¥

A

Amplification

Mechanical
Amplification

Enzymatic
Amplification

Bio-Barcode
Amplilication

BExamples of Nanomaterial Applications

Optical crystals
Quantum dots
Organism sensors

By mixing and embedding Catalysts

nanoparticles in differart & %

materials, we can creata f % Solar cells

matarials with novel & = )
properties. {3’ o Fuel cells

,$“ Nanoparticles

Dispersed

Cosmetics, pigments, drugs,
fuel additives, stronger
materials

%

Colour changing due to

Anti-reflecting different perspectives

coatings

Scratch-resistant varnish

Scratch-
resistant

plastics Soll repellent surfaces

Electrechrome drive-mirrors (getting

E"g_“”'\ Irmln:lgn'r:cnl.: darker due to an electrical signal)

Carbon black"

We can boost the activity of
metal particles by controlling
tham at the nanometer level.

Artificial bones

4
—

Electronic Pasta

By limiting ingrediant
particles to nanomeater sizes,
we can eliminate inconsistencies.




Nanomaterials in Consumer Products

$3B

Market Volume .

1990 2000 2005 2010 2020

3,000,000
2,500,000
2,000,000
1,500,000

1,000,000 -

Revenue (USs millions)

500,000 -

Q

2008 2004 2010 2011 2012 2013 2014 2015

® MNano-enabled Products  ® Manointermediates Nanomaterials

Value chain stage 2008 2009 2010 2011 2012 2013 2014 2015
Mano-enabled s$145,291 5223785  $336,062 $£10,435  5702,204 51,081,025 51,480,928 51,062,950
products
Nanointermediates 518,353 $28,830 $55,502 75,712 $120,200 s206, 823 $323,691 siun8.023
Manomaterials 813 £1,074 £3,3049 §1,540 31,798 52,098 £1,403 £2,9i6

] Total $164,457 $253,0699 §5383,963 s5590,677 3BBg, 208 51,389,947 51,806,081 52,403,890 )

Source: Lux Research, Inc.

www, luxresearching.com

m Lux Research Nanotechnology Report: Projections of $4.4 trillion in global
manufactured nano-products by 2018

m  Wilson Center’s Project on Emerging Nanotechnologies 2015 Consumer
Product Database: over 1600+ self-identified nano-products now on U.S.

market shelves.

m Products include paints, coatings, sporting goods, sunscreens, cosmetics,
personal care products, stain-resistant clothing, and light emitting dlodes
used in computers, cell phones, and digital cameras.
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All nanomaterials are not the same




"

All nanomaterials are not the same




"

Same structure — different shapes

] £ 1 ISEE@L i@l
COOOOVRGULUE
SCCCC 4roF ¥
dteadudeSFIOm
(& S PO
COCeecG@EE e
OnC€aaaO OO0
=1@] Teq el gloloel o1 o |
CCLEOLLEL LT
CUEed § dDans

i




The properties can vary with size

Jin et al. (2001) Science 294: 1901-1903

Ag Nanoprisms Au Spheres Au Spheres Ag Spheres Ag Spheres Ag Spheres
~100 nm ~100 nm ~50 nm ~100 nm ~80 nm ~40 nm
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Properties of nanoparticles

The biological activity of nanoparticles, including toxic and other environmental effects
are complex phenomena, which involve the physicochemical properties based on
molecular structure, atomic composition of a molecule, in addition to unusual size and
surface effects.
The following physicochemical properties of nanoparticles are determine the behavior
in environmenta;

- CHEMICAL COMPOSITION (atom composition)

- SMALL SIZE (particle size, size distribution)

- LARGE SURFACE (surface reactivity, surface coatings, surface groups)
- CRYSTAL STRUCTURE (crystallinity)

- SOLUBILITY (solubility in the relevant media)

- SHAPE

- AGGREGATION (aggregation status in the relevant media)

- PURITY (purity of sample)

In addition, the method of synthesis and/or preparation including postsynthetic
modifications also plays important role in nanopatrticle behavior.

a Warheit D.B., Toxicological Sciences, 2008, 101(2), 183-185
17



The importance of characterization

William Shakespeare

18
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“Orthogonal dimensions” for nanoparticles

Surface coverage

. (patchiness) A
Nature Materials, 2007, 6:
557-562
Aspect ratio B
Faceting C
Pattern quantization D
_— —_—
Branching E
Chemical ordering F
Shape gradient G
Roughness H

19
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Agglomeration and aggregation of
nanoparticles

Jiang (2009) J. Nanopart. Res. 11: 77-89.

e O @ P

Primary Particle = Agglomerates Aggregates Agglomerated
Primary particles held by weak FPrimary particles held by strong A t
van der Waals Forces chemical bonds (sintered) ggregales

Wl

P

Primary Particle

Liquid Dispersions N

Electrical Double Layer Hydrodynamic Diameter

(Thickness depends on
solution lonic strength)

REPULSIVE FORCES DOMINANT WEAK REPULSIVE FORCES IN LIQUID

(high surface charge: thicker double layer; RESULTING IN AGGLOMERATION

steric forces) (low surface charge; thinner double layer;
no steric forces)

Important Parameters: Primary Particle Size (nm);: Hydrodynamic Diameter (nm); Zeta
Potential (mV, measure of surface charge): Double Layer Thickness (nm); Steric Forces

20
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Experimental techniques that can help to
get nano-properties (nano-descriptors)

Haselov et al. (2008) Ecotoxicology 17: 344-361

Surface charge

z-Potential, electrophoretic mobility

Crystal structure

XRD, TEM-XRD

Elemental composition

Bulk:

ICP-MS, ICP-OES
Singe nanoparticle:
TEM-EDX

Particle population:
FFF-ICP-MS

Aggregation state

DLS, AFM, ESEM

Hydrophobicity

Liquid-liquid extraction
chromatography

Hydrodynamic diameter

Flow-FFF, DLS

Equivalent poresize
diameter

Particle filtration

Properties Instruments and methods

Diameter EM, AFM, Flow-FFF, DLS

oflime Sl uiing Abbreviations:
Area EM, AFM

* EM- electronic microscopy,

* AFM - atomic force microscopy,

¢ FFF- field flow filtration,

e DLS - dynamic light scattering,

e LC- liquid chromatography,

* XRD - X-ray diffraction,

® TEM - transmission electron microscopy,

¢ ICP-MS - inductively coupled plasma
mass spectrometry,

e ICP-OES - inductively coupled plasma
emission spectroscopy,

* EDX - energy dispersive X-ray spectrometry,

e ESEM - environmental scanning electron microscopy.

21



Mass-based “dose” may be inadequate

22
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Effects may be related to surface area based “dose”

m 1lum cube Tum cube
e.g. respirable particle
Surface area = 6um?

m 100nm cube
1000 cubes is equivalent volume
Surface area = 60 um?

1000 x “100nm” cubes
m 10x more surface area for the same

mass

23
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Can we predict properties of
nanomaterials?

Physical properties of nanomaterials
Toxicological aspects of nanomaterials

Pharmacological properties
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The steps towards modeling of

nanoparticles properties and toxicity:

m — collecting the
data on experimental physicochemical properties, toxicity endpoints

m - exploring the relationships between structure and
properties (for example, solubility), toxicity, using multivariate data
analysis techniques

m - by
means of computational approaches including quantum chemistry
methods, molecular modeling and protein-ligand docking techniques

25



Two types of nanomaterials

» Metal-based nanomaterials (metal oxide NPs)

= Carbon nanostructures (fullerenes, carbon nanotubes)



Combination of
computational
methods to predict
nano-properties
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In silico methods

Physics based
based based systems Dynamics
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Computational approaches
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m Data visualization and
Pattern recognition methods 54
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Quantum-Chemical Approaches
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Gold nanoclusters

Small and Large gold cubic clusters, Au, , n=2-2016
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Watkins M., Rasulev B., Theodore M., Jackman J., Leszczynski J., Structures and Stabilities: Quantum-Chemical Study of Au n (n = 2-2016)
Nanoclusters by Extended Huckel and DFT Approaches, Nanosci.& Nanotech., (2012), 2(1), 1-12



i A
) Band GAP energy of the nanometr-sized SnO; clusters

Quantum-Mechanical Properties
of Metal Oxide clusters

Scheme A: GAP, HOMO, LUMO, hardness, softness, o s
electrophilicity : Sn0: (8A) Diameter

20 40 60 80 100 120 140 160 [number of atoms]

(B)
Total energy of the nanometr-sized SnO; clusters

Diameter

100 120 140 160 [number of atoms]

-10000
-15000
-20000
-25000
-30000

-35000

Sn0,[10A]

Scheme B: HOF, total energy, electronic energy, SAS,
dipole moment

SnO; [13A]

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58
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) Band GAP energy of the nanometr-sized SnO; clusters

Quantum-Mechanical Properties &
of Metal Oxide clusters :

Non-linear =

Scheme A: GAP, HOMO, LUMO, hardness, softness,
electrophilicity ’

SnO-> [85«] Diameter
0 20 60 80 100 120 140 160 [number of atoms]

(B)
Total energy of the nanometr-sized SnO; clusters

Diameter

100 120 140 160 [number of atoms]

-5000
-10000
-15000
-20000
-25000

-30000

-35000

Sn0,[10A]

Scheme B: HOF, total energy, electronic energy, SAS,
dipole moment

SnO; [13A]

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58
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) Band GAP energy of the nanometr-sized SnO; clusters

Quantum-Mechanical Properties &
of Metal Oxide clusters :

Non-linear - =

Scheme A: GAP, HOMO, LUMO, hardness, softness,
electrophilicity ’

SnO-> [SA] Diameter
0 20 60 80 100 120 140 160 [number of atoms]

(B)
Total energy of the nanometr-sized SnO; clusters

Diameter

LU 140 160 [number of atoms]

-5000

-10000

=)

LINGar -

-25000

-30000

-35000

Sn0,[10A]

Scheme B: HOF, total energy, electronic energy, SAS,
dipole moment

SnO; [13A]

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58



) . (=) Band GAP energy of the nanometr-sized SnO- clusters
Quantum-Mechanical Propertie:
of Metal Oxide clusters
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Scheme A: GAP, HOMO, LUMO, hardness, softness,
electrophilicity

“ Diameter
LU 140 160 [number of atoms]

-5000

-10000

=)

Linear -

-25000

-30000

-35000

Sn0,[10A]

Scheme B: HOF, total energy, electronic energy, SAS,
dipole moment

SnO; [13A]

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58
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Size-Dependence of Quantum-Mechanical Properties

1-5nm 100 nm
Size

Scheme A

Scheme B

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical
Properties, Nanoscience & Nanotechnology, (2011), 1, 53-58



QSAR

Quantitative Structure-Activity Relationship
In materials research
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He was a Professor of Chemistry at Pomona College in California.
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Corwin Hansch
1918-2011

He was a Professor of Chemistry at Pomona College in California.

The Father of QSAR

"y
"/_.

B.S. from the University of lllinois in 1940
Ph.D. from New York University in 1944

Hansch worked on the Manhattan Project at the University of
Chicago and as a group leader at DuPont Nemours in Richland,

Washington.
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He was a Professor of Chemistry at Pomona College in California.

The Father of QSAR

Born: October 6, 1918, Kenmare, North Dakota, United States
B.S. from the University of lllinois in 1940

Ph.D. from New York University in 1944

Hansch worked on the Manhattan Project at the University of

Chicago and as a group leader at DuPont Nemours in Richland,
Washington.
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(Q)SAR

(Quantitative) Structure-Activity
Relationship

IN SILICO

E. Benfenati ©
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QSAR —what Is this?

m AQSARIsa

m  QSAR attempts to find consistent relationship between biological activity and
molecular properties, so that these “rules” can be used to evaluate the activity of
new compounds.

m  Once a valid QSAR has been determined, it should be possible to predict the
physical property or biological activity of related compounds or drug candidates
before they are put through expensive and time-consuming biological testing. In
some cases, only computed values need to be known to make an assessment.

The problem of QSAR is to find coefficients Cy,C4,...C,, such that:
= CoH(C1*Pq)+...+(C*Py)

and the prediction error is minimized for a list of given m compounds.
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QSAR methodology

Activity
(e.g.: ER binding affinity)

Molecular structure

|

Statistiqal Validation
Analysis of QSAR

""""""

X Y
Molecular Response
descriptors variable
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Types of Molecular Descriptors

Constitutional, Topological n[| sz—csz o \’\_/\, L——-@— 1+

2-D structural formula

Geometrical

3-D shape and structure

Quantum Chemical

Electrostatic

Hybrid descriptors
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Examples of successful QSAR
applications in industry

Norfloxacin, antibacterial
Kyorin Pharmaceutical Company, Japan
Traditional QSAR analysis of 70 compounds,

Bromobutide, herbicide
Sumitomo chemical Company, Japan

up to 500 times more potent then previous analogs li|:H3 E|-r a
HsC &
I ) CHy—C—CH—C QSAR analysis
N | N of 74 compounds
HO / N :_ CH, r‘\l H
/\ Jorfloxacit A0,
0 N N—H XANS
y \__/ |
F !
Metamitron, herbicide Myclobutanil, fungicide
Bayer AG, Germany Rohm and Haas, USA
QSAR analysis of 22 compounds QSAR analysis of 67 compounds
(|3N
N CI@CCHECHECHECHS
E AN |
N e
BN o
0 ITJ CH, N |

MH;



Extending QSAR to nanoparticles

There are three problems in order to extend QSAR approach
to materials (nanomaterials and polymer materials):

1. QSAR mainly developed for organic compounds with
diverse structure types, while nanoparticles structurally
limited In diversity

2. Not enough experimental data for nanoparticles and no
systematic data

3. Regular QSAR descriptors applicable for organic
compounds — not applicable for nanoparticles

44
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Data for “Classic” QSAR and nano-QSAR

Chemicals
Chemicals

>

>

Descriptors / Properties Descriptors / Properties

,Classic” QSAR Nano-QSAR/QNTR



Materials’ descriptors (Nano-descriptors)

Me — O
O—Me—0
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B. Rasulev, A. Toropov, T. Puzyn, D. Leszczynska, J. Leszczynski, An Application of Graphs of Atomic Orbitals for QSAR Modeling of
Toxicity of Metal Oxides, in: Federation of Analytical Chemistry and Spectroscopy Symposium (FACSS), 2007



Materials’ descriptors (Nano-descriptors)

ad
nanodescriptor

Processed images Surface
TEM images Numerical representation nanodescriptor

A Gajewicz, B Rasulev, TC Dinadayalane, P Urbaszek, T Puzyn, D. Leszczynska, J. Leszczynski, Advancing risk assessment of engineered
nanomaterials: application of computational approaches, Advanced Drug Delivery Reviews, 2012, 64 (15), 1663-1693
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Fingerprint descriptors for materials

Band Structure Fingerprints
(32 bins per K point) Fl - __K1.|_\|_103 (Icsb :7;84) o .Den$itygf5ta'tes (states/eV
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Sl \atching between materials &
Matching between

¢ with the same Bravais lattice
any material

Construction of materials fingerprints from the band structure and the density of states.
Copyright (Isayev et al., Materials Cartography: Representing and Mining Materials Space
Using Structural and Electronic Fingerprints, Chemistry of Materials, 2015, 27, 735-743).
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“Liquid drop” model as a nano-descriptor

-

N

[Ti] = [O] = [Ti]
J

Rule for electronegativity (A< 1.5<B<2.0<C<25<D<35<F)

Electronegativity of [Ti] = 1.5; Electronegativity of [O] = 3.5

[A] = [D] = [A]

) 4

ve'/ \;o
ye% \110 ye% \o

\

[ Group 1 ][ Group 2 ][ Group 3 ][ Group 4

|

v

S

v

“Liquid Drop” nanodescriptor representation

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the “liquid drop”

approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, Nanoscale, 2014, 6, 13986-993
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Nano-QSAR based on SIRMS descriptors and
“liguid drop” nanodescriptor

/

X

[Ti] = [O] = [Ti]
J

Rule for electronegativity (A< 1.5<B<2.0<C<25<D<35<F)

Electronegativity of [Ti] = 1.5; Electronegativity of [O] = 3.5

[A] = [D] = [A]

o

o

o

\

W Van-der-Waals
interactions
M electronegativity

I MLB characteristics

LDM-based

/

X>5

ve'/ \;o
ye% \o

ye% \110

\

|

Group 1 ][ Group 2 ][ Group 3 ][ Group 4 ]

S

v

/

E.Coli cell toxicity

\

m Van-der-Waals
interactions
M electronegativity

= MLB characteristics

LDM-based

/

HaCaT cells toxicity

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the “liquid drop”
approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, Nanoscale, 2014, 6, 13986-993
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Toxicity
of nanomaterials




An Example of Toxicity Pathway for
Nanoparticles

In Silico Modeling In vitro Assays In vivo Assays

acro-Molecular
Interactions

Responses

Receptor/Ligand
Toxicant Interaction - Altered Physiology | \ | - Lethality
Chemical f__, DNA binding - GeneActivation - Disrupted - Impaired
Nanoparticle | =| Reactivity Protein Oxidation - Protein Production | —, Homeostasis Development
Profile - Altered Signaling - Altered Tissue - Impaired
f - Protein Depletion Development Reproduction
'; Nanoparticle or Function - Cancer
5 metabolites or
Nanoparticle/  |_ | small molecule
Small molecule metabolites
Interactions
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An Example of Toxicity Pathway for
Nanoparticles

Responses

Toxicant
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Do you know what you're eating?

The number of American food products containing nanomaterials has
iIncreased tenfold since 2008. Nanoparticles are typically used to stretch the
shelf life and improve the texture of food.

Popular lollies, sauces and dressings have been found to contain
nanotechnology.

Tests that found potentially harmful nanoparticles of titanium dioxide and
silica in 14 popular products, including Mars' M&Ms, Woolworths white sauce
and Praise salad dressing.

The lab test of the 14 supermarket goods, which also included Eclipse chewy
mints, Old El Paso taco mix, and Moccona Cappuccino, was conducted by a
world-class nanotechnology research facility at Arizona State University.

The Food Standards code does not require nanoparticles to be declared on
labelling. Nano-titanium dioxide (E171) can be simply described as the
conventional-sized type and as "Colour (171)". Nano-silica (E551) can be
listed as the conventional version and as "Anti-caking agent (551)".



Nanoparticles of silica found in Maggi's Roast Meat Gravy.
Photo: Arizona State University

Nanopatrticles of titanium dioxide found

in Mentos Pure Fresh Gum.
Photo: Arizona State University
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Donuts and tea are the main ingredients in a
MacGyver-style do-it-yourself solar cell, explained
step-by-step in this video.

"It turns out these delicious little things contain
everything we need to make a simple solar cell," said
Blake Farrow, a Canadian scientist who filmed the video
while visiting Prashant Kamat's lab at the University of
Notre Dame.

Powdered sugar contains titanium dioxide nanoparticles,
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Dunkin’ Donuts Eliminates
Nanomaterials From Powdered
Donuts

by Gina-Marie Cheeseman on Thursday, Mar 19th, 2015
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There are concerns about the use of nanomaterials,
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such as titanium dioxide, in food products. One
company has responded to consumer pressure to
remove these ingredients from its products. That
company is Dunkin’ Brands Group, parent company
of Dunkin’ Donuts. Earlier this month, the company
announced it will remove the whitening agent
titanium dioxide from all the powdered sugar used

to coat its donuts.
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for metal oxide nanoparticles
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Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178
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Main strategy

Modeling

Experiment

We were wondering — why up to date (2009-2010) no studies regarding a series of
nanoparticles at the same experiment (same lab, same conditions)?

Many papers include only one or two metal oxide nanoparticles studied for toxicity.

So, we decided to measure a toxicity for as much metal oxide nanoparticles as we

can find.
At the beginning we were able to find about 13, and after that 4 more.

Finally, we had a chance to build a QSAR model !!!

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178



QSAR model of toxicity towards E.coli bacteria for nanosized oxides —
Quantum-Chemical method + QSAR.

The following metal oxides in nanosized form were selected: ZnO, TiO,, SnO,, La,0;, Fe,05, CuO,
Al,O4, Sb,04, V,04, Y,0,, In,04, Bi,O3, SIiO, , CoO, NiO, Cr,03, and ZrO,.

All of these nanosized metal oxides are widely used in many products that present around us. All of
them are quite toxic to some extent.

The quantum-chemical methods were applied to find parameters that could be responsible for the
toxicity properties for nanosized metal oxides. 12 electronic descriptors were calculated.
As source structures we have used the crystal structures data obtained by X-Ray analysis.

For example, the structure of SnO,

C

lonization potentials (IP1, IP2, IP3) and electron affinities (EA1, EA2, EA3) of, respectively, single (i.e., SnO,), double (i.e., Sn,0,) and triple
(Sn;0¢) stoichiometric fragments cut from the crystal structure:

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178



"
Final model with only one parameter.

Nano-QSAR equation, utilizing only one descriptor to predict the cytotoxicity of the metal oxide
nanoparticles:

l0g(L/ECq)= 2.59 (20.07) - 0.50 (£0.07) -AHyyes

(n=10, n,=7, R?=0.85, F=45.4, p<0.001, Q?%:y 00=0.77, the externally validated regression
coefficient Q%,;=0.83, RMSEC = 0.20, RMSECV = 0.24, RMSEP = 0.19)

where the descriptor AHy. represents the enthalpy of formation of a gaseous cation having the same
oxidation state as that in the metal oxide structure.

Me (s) > Me"™ (g) + n-€é — AHyyes

The descriptors were calculated using quantum-chemical methods. Since from a quantum-
mechanical point of view, the calculations of nanoparticles of 15-90 nm size (those used in the
experiments) were not feasible (too large systems) it was necessary to maximally simplify the
structural models utilized to calculate the descriptors.

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178



Splitting a dataset

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J.,
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178




Cytotoxicity nano-QSAR model

for MeOx nanomaterials

Nano-QSAR model, which successfully predicted the cytotoxicity of

the metal oxide nanoparticles
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Using nano-QSAR to predict the cytotoxicity of

metal oxide nanoparticles

Tomasz Puzyn'?, Bakhtiyor Rasulev', Agnieszka Gajewicz'?, Xiaoke Hu?, Thabitha P. Dasari®,
Andrea Michalkova', Huey-Min Hwang?, Andrey Toropov*, Danuta Leszczynska®

and Jerzy Leszczynski'*

It is expected that the number and variety of engineered nano-
particles will increase rapidly over the next few years', and
there is a need for new methods to quickly test the potential
toxicity of these materials?,

22

30 32
Observed values of log(1/EC50)

24 26 2.8 34 36

E. coli and
nanoparticle surface

between the structures of 17 metal oxides and their cytotoxicity to
E. coli cells. Based on this model and experimental data®, we have
hypothesized the most probable mechanism for the cytotoxicity of
these nanoparticles. We investigated this cytotoxicity in bacteria,



Results — Cytotoxicity trend

log(1/LC,,) = 2.59(+0.07) - 0.50(0.07)- AH,,

Me2+ Me,, — Meg, +n-e

AHMe+=AHS+Z1IPi

Me3* a-Me"(g)+b-0"(g) > Me0,(s)
e+0, —> O,
Me4+ O, +2H"+e—— H,0,

H,0, +0, —> OH +OH™ +0O,

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nature Nanotechnology, 2011, 175-178



The way to cover prediction for cytotoxicity for all existing nano-sized
metal oxides by using neural network method

The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of
MeOx NPs for data sets of 17, 36 and 72 metal oxides were employed in the study..

The following metal oxides in nanosized form were selected to train the model: ZnO, TiO,, SnO,,
La,O,, Fe,0,5, CuO, Al,O3, Sb,0,, V,03, Y,03, In,03, Bi,O,, SIiO, , CoO, NiO, Cr,0Os, and ZrO,.

The cytotoxicity model for studied metal oxide NPs was taking into account:
(i) x-metal electronegativity (EN) by Pauling scale, and composition of metal oxides characterized by
(i) number of metal atoms in oxide,

(i) number of oxygen atoms in oxide, 2,754

(iv) charge of metal cation in oxide. ol | Transitional metals | A

Quantitative CP ANN models showed a good 2,25

prediction power of models with the leave one out o | —

Q?in the range of 0.83-0.92. The categorical CP z h

ANN models were capable to predict class of o

cytotoxicity with accuracy equal to 1. 1,501 % —
| o S P

The methodology is expected to be useful for 0] C Y metala i { - EEY

potential hazard assessment of MeO, NPs and o R . | . |

prioritization for further testing and risk assessment. 0 10 2 30 5. 50 €0 7

N Fjodorova, M Novic, A Gajewicz, B Rasulev, The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using
neural network method, Nanotoxicology, 2017, 11(4), 475-483
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Carbon nanostructures

fullerene C60 and carbon nanotubes

(CNTSs)
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Immunotoxicity of nanoparticles: CNTs and fullerenes
might be recognized as pathogens by Toll-like receptors

Cytoplasm

I\I\I\IU\I\I\I\I

M. Turabekova, B. Rasulev, M. Theodor, J. Jacksman, D. Leszczynska, J. Leszczynski, Nanoscale, 2014 69
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Pattern Recognition Receptors

signaling pathway

TLR3/RNA

Macrophages play a vital role in the immune
system.

and have pattern recognition receptors (PRRs) to
identify pathogens.

PRRs are represented by membrane-associated
Toll-like receptors (TLRs) and cytoplasmic Node-
like receptors (NLRS).

Each TLR and NLR recognize specific, conserved
pathogen-associated molecular patterns
(PAMPs) present in microbial proteins, nucleic
acids, lipids, and carbohydrates.

These PAMP-containing molecules act as ligands
to trigger PRR-dependent intracellular signaling
pathways that ultimately induce the expression of
pro-inflammatory and antiviral cytokines.
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(carbon nanoparticles) recognizers
In macrophages.



" JE—
Pattern Recognition Receptors
signaling pathway

TLR3/RNA

Macrophages play a vital role in the immune
system.

and have pattern recognition receptors (PRRs) to
identify pathogens.

PRRs are represented by membrane-associated
Toll-like receptors (TLRs) and cytoplasmic Node-
like receptors (NLRS).

Each TLR and NLR recognize specific, conserved
pathogen-associated molecular patterns
(PAMPs) present in microbial proteins, nucleic
acids, lipids, and carbohydrates.

These PAMP-containing molecules act as ligands
to trigger PRR-dependent intracellular signaling
pathways that ultimately induce the expression of
pro-inflammatory and antiviral cytokines.

|

TLRs act as the forefront PAMPs
(carbon nanoparticles) recognizers
In macrophages.




" JEE
Toll-like Receptors: TLR1/TLR2

TLRs have evolved to recognize PAMPs expressed by the broad classes of
pathogens (e.g. viruses, bacteria, and fungi).

High specificity of TLRs helps them to recognize well-conserved features in
pathogens, including bacterial cell-surface LIPOPEPTIDES

M.S. Jin et all., Cell, 130 (2007) 1071-1082.
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Identification of Hydrophobic Binding Sites

Site Volume, A
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Inhibitors or toxins? Large library target-specific
screening of fullerene-based nanoparticles
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Ligand-Protein Inverse Docking

We’ve selected existing fullerene derivatives and decided to dock all possible proteins
related to diseases.

V e Y
169 Fullerene
(C60, C70 and oo
C80)/derivatives
. 4

Potential Drug

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017, 9 (29), 10263-10276
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Overall Schematic Diagram of the Study
* —

Structure Optimization
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Overall Schematic Diagram of the Study

Structure Optimization

Docking to
PDB
200 000 structures )

pairs protein-fullerene

~ 1 000 000
docked poses




Figure: Glutamate transporters (Glt,,, PDB ID: 1XFH) has a homotrimeric
subunit with a large central water-filled cavity that restricts ligand
diffusion to the exterior bulk medium. Fullerene derivative trapped in the
cavity.

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017, 9 (29), 10263-10276
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