

Adaptation and Application of Cheminformatics Methods in Toxicity Assessment of Nanomaterials

Bakhtiyor Rasulev

North Dakota State University, Fargo, ND USA

Kemijski inštitut / National Institute of Chemistry, Ljubljana, Slovenia, October 19, 2017

182,000 km²

North Doleato

182,000 km²

182,000 km²

A lot can happen in the middle of nowhere.

PolyGram Video

R

nowhere. POLYGRAM FILMED ENTERTAINMENT PRESENS IN ASSISTATION WITH WORK WILLIAM IN MARY STEVE RHIGGENN HARVE DRESNELL DETER STOR

DOG

65

GRAMERCY

PolyGram

Ŋ8

Polymers

Polymers

Nanomaterials

Nanomaterials Applications

Single molecular transistors
Nanomaterials in Consumer Products

- Lux Research Nanotechnology Report: Projections of \$4.4 trillion in global manufactured nano-products by 2018
- Wilson Center's Project on Emerging Nanotechnologies 2015 Consumer Product Database: over 1600+ self-identified nano-products now on U.S. market shelves.
- Products include paints, coatings, sporting goods, sunscreens, cosmetics, personal care products, stain-resistant clothing, and light emitting diodes used in computers, cell phones, and digital cameras.

All nanomaterials are not the same

All nanomaterials are not the same

Same structure – different shapes

The properties can vary with size

Jin et al. (2001) Science 294: 1901-1903

Properties of nanoparticles

The biological activity of nanoparticles, including toxic and other environmental effects are complex phenomena, which involve the physicochemical properties based on molecular structure, atomic composition of a molecule, in addition to unusual size and surface effects.

The following physicochemical properties of nanoparticles are determine the behavior in environment^a:

- CHEMICAL COMPOSITION (atom composition)
- **SMALL SIZE** (particle size, size distribution)
- LARGE SURFACE (surface reactivity, surface coatings, surface groups)
- CRYSTAL STRUCTURE (crystallinity)
- SOLUBILITY (solubility in the relevant media)
- SHAPE
- AGGREGATION (aggregation status in the relevant media)
- **PURITY** (purity of sample)

In addition, the method of synthesis and/or preparation including postsynthetic modifications also plays important role in nanoparticle behavior.

The importance of characterization

"Orthogonal dimensions" for nanoparticles

Nature Materials, 2007, 6: 557-562

Agglomeration and aggregation of nanoparticles

Jiang (2009) J. Nanopart. Res. 11: 77-89.

Experimental techniques that can help to get nano-properties (nano-descriptors)

Haselov et al. (2008) Ecotoxicology 17: 344-361

Properties	Instruments and methods [*]
Diameter	EM, AFM, Flow-FFF, DLS
Volume	Sed-FFF
Area	EM, AFM
Surface charge	z-Potential, electrophoretic mobility
Crystal structure	XRD, TEM-XRD
Elemental composition	Bulk:
	ICP-MS, ICP-OES
	Singe nanoparticle:
	TEM-EDX
	Particle population:
	FFF-ICP-MS
Aggregation state	DLS, AFM, ESEM
Hydrophobicity	Liquid-liquid extraction
	chromatography
Hydrodynamic diameter	Flow-FFF, DLS
Equivalent poresize	Particle filtration
diameter	

Abbreviations:

- EM- electronic microscopy,
- AFM atomic force microscopy,
- FFF- field flow filtration,
- DLS dynamic light scattering,
- LC- liquid chromatography,
- XRD X-ray diffraction,
- TEM transmission electron microscopy,
- ICP-MS inductively coupled plasma mass spectrometry,
- ICP-OES inductively coupled plasma emission spectroscopy,
- EDX energy dispersive X-ray spectrometry,
- ESEM environmental scanning electron microscopy.

Mass-based "dose" may be inadequate

Effects may be related to surface area based "dose"

- 1um cube
 - □ e.g. respirable particle
 - \Box Surface area = 6um^2
- 100nm cube
 - □ 1000 cubes is equivalent volume
 - \Box Surface area = 60 um²
- 10x more surface area for the same mass

Can we predict properties of nanomaterials?

- Physical properties of nanomaterials
- Toxicological aspects of nanomaterials
- Pharmacological properties

The steps towards modeling of nanoparticles properties and toxicity:

- Development of nanomaterials inventory (datasets) collecting the data on experimental physicochemical properties, toxicity endpoints
- Identification of structural descriptors suitable for modeling nanoparticle reactivity
- QSAR modeling exploring the relationships between structure and properties (for example, solubility), toxicity, using multivariate data analysis techniques
- Modeling the interaction of nanoparticles with biological systems by means of computational approaches including quantum chemistry methods, molecular modeling and protein-ligand docking techniques

Two types of nanomaterials

- Metal-based nanomaterials (metal oxide NPs)
- Carbon nanostructures (fullerenes, carbon nanotubes)

Combination of computational methods to predict nano-properties

In silico methods

Combined methods

Computational approaches

Physical Properties

Toxicity

Quantum-Chemical Approaches

 QSARs: Quantitative Structure-Activity Relationships

Environmental Distribution

- Molecular modeling Protein-Ligand Docking
- Data visualization and Pattern recognition methods

Quantum Chemistry Quantum-Chemical Approaches

Gold nanoclusters

Watkins M., Rasulev B., Theodore M., Jackman J., Leszczynski J., Structures and Stabilities: Quantum-Chemical Study of Au n (n = 2-2016) Nanoclusters by Extended Huckel and DFT Approaches, *Nanosci.*& *Nanotech.*, (2012), 2(1), 1-12

Scheme A: GAP, HOMO, LUMO, hardness, softness, electrophilicity

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties, *Nanoscience & Nanotechnology*, (2011), 1, 53-58

Scheme A: GAP, HOMO, LUMO, hardness, softness, electrophilicity

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties, *Nanoscience & Nanotechnology*, (2011), 1, 53-58

(A) Band GAP energy of the nanometr-sized SnO₂ clusters SnO2 $10_{2}[11Å]$ Diameter [number of atoms] (B) Total energy of the nanometr-sized SnO₂ clusters Diameter 100 120 140 160 [number of atoms] -5000 -1000 -1500 -2000 SnO₂ -25000 SnO₂[-30000 -35000

Scheme A: GAP, HOMO, LUMO, hardness, softness, electrophilicity

Scheme B: HOF, total energy, electronic energy, SAS, dipole moment

(A) Band GAP energy of the nanometr-sized SnO₂ clusters $10_{2}[11Å]$ Diameter [number of atoms] (B) Total energy of the nanometr-sized SnO₂ clusters Diameter 100 120 140 160 [number of atoms] -5000 -10000 -15000 -2000 -25000 SnO₂[7 -30000 -35000

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties, *Nanoscience & Nanotechnology*, (2011), 1, 53-58

Scheme A: GAP, HOMO, LUMO, hardness, softness, electrophilicity

Scheme B: HOF, total energy, electronic energy, SAS, dipole moment

Linear

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties, *Nanoscience & Nanotechnology*, (2011), 1, 53-58

(A) Band GAP energy of the nanometr-sized SnO₂ clusters

Size-Dependence of Quantum-Mechanical Properties

Gajewicz A., Puzyn T., Rasulev, B., Leszczynska D., Leszczynski J. Metal Oxide Nanoparticles: Size-Dependence of Quantum-Mechanical Properties, *Nanoscience & Nanotechnology*, (2011), 1, 53-58

Quantitative Structure-Activity Relationship in materials research

The Pioneer of QSAR

The Father of QSAR

The Father of QSAR

He was a Professor of Chemistry at Pomona College in California.

The Father of QSAR

He was a Professor of Chemistry at Pomona College in California.

B.S. from the University of Illinois in 1940

The Father of QSAR

He was a Professor of Chemistry at Pomona College in California.

B.S. from the University of Illinois in 1940Ph.D. from New York University in 1944

The Father of QSAR

He was a Professor of Chemistry at Pomona College in California.

B.S. from the University of Illinois in 1940

Ph.D. from New York University in 1944

Hansch worked on the Manhattan Project at the University of Chicago and as a group leader at DuPont Nemours in Richland, Washington.

The Father of QSAR

He was a Professor of Chemistry at Pomona College in California.

Born: October 6, 1918, Kenmare, North Dakota, United States

- B.S. from the University of Illinois in 1940
- Ph.D. from New York University in 1944

Hansch worked on the Manhattan Project at the University of Chicago and as a group leader at DuPont Nemours in Richland, Washington.

(Quantitative) Structure-Activity Relationship

E. Benfenati ©

QSAR – what is this?

- A QSAR is a mathematical relationship between a biological activity of a molecular system and its geometric, chemical or physical characteristics.
- QSAR attempts to find consistent relationship between biological activity and molecular properties, so that these "rules" can be used to evaluate the activity of new compounds.
- Once a valid QSAR has been determined, it should be possible to predict the physical property or biological activity of related compounds or drug candidates before they are put through expensive and time-consuming biological testing. In some cases, only computed values need to be known to make an assessment.

The problem of QSAR is to find coefficients $C_0, C_1, ..., C_n$ such that:

Biological activity = $C_0 + (C_1 * P_1) + ... + (C_n * P_n)$

and the prediction error is minimized for a list of given m compounds.

QSAR methodology

Types of Molecular Descriptors

Constitutional, Topological * - [1] - CH_ - CH_

2-D structural formula

Geometrical

3-D shape and structure

Quantum Chemical

Electrostatic

Hybrid descriptors

Examples of successful QSAR applications in industry

Norfloxacin, antibacterial Kyorin Pharmaceutical Company, Japan Traditional QSAR analysis of 70 compounds, up to 500 times more potent then previous analogs

Bromobutide, herbicide Sumitomo chemical Company, Japan

QSAR analysis of 74 compounds

Metamitron, herbicide Bayer AG, Germany

QSAR analysis of 22 compounds

Myclobutanil, fungicide Rohm and Haas, USA

QSAR analysis of 67 compounds

Extending QSAR to nanoparticles

There are three problems in order to extend QSAR approach to materials (nanomaterials and polymer materials):

- 1. QSAR mainly developed for organic compounds with diverse structure types, while nanoparticles structurally limited in diversity
- 2. Not enough experimental data for nanoparticles and no systematic data
- 3. Regular QSAR descriptors applicable for organic compounds not applicable for nanoparticles

Data for "Classic" QSAR and nano-QSAR

Materials' descriptors (Nano-descriptors)

B. Rasulev, A. Toropov, T. Puzyn, D. Leszczynska, J. Leszczynski, An Application of Graphs of Atomic Orbitals for QSAR Modeling of Toxicity of Metal Oxides, in: Federation of Analytical Chemistry and Spectroscopy Symposium (FACSS), 2007

Materials' descriptors (Nano-descriptors)

A Gajewicz, B Rasulev, TC Dinadayalane, P Urbaszek, T Puzyn, D. Leszczynska, J. Leszczynski, Advancing risk assessment of engineered nanomaterials: application of computational approaches, *Advanced Drug Delivery Reviews*, 2012, 64 (15), 1663-1693

Fingerprint descriptors for materials

Construction of materials fingerprints from the band structure and the density of states. Copyright (Isayev et al., Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints, *Chemistry of Materials*, 2015, 27, 735-743).

"Liquid drop" model as a nano-descriptor

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, *Nanoscale*, 2014, 6, 13986-993

Nano-QSAR based on SiRMS descriptors and "liquid drop" nanodescriptor

N Sizochenko, B Rasulev, A Gajewicz, V Kuz'min, T Puzyn, J Leszczynski, From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles, *Nanoscale*, 2014, 6, 13986-993

Toxicity of nanomaterials

An Example of Toxicity Pathway for Nanoparticles

An Example of Toxicity Pathway for Nanoparticles

Do you know what you're eating?

The number of American food products containing nanomaterials has increased tenfold since 2008. Nanoparticles are typically used to stretch the shelf life and improve the texture of food.

Popular lollies, sauces and dressings have been found to contain nanotechnology.

Tests that found potentially harmful nanoparticles of titanium dioxide and silica in 14 popular products, including Mars' M&Ms, Woolworths white sauce and Praise salad dressing.

The lab test of the 14 supermarket goods, which also included Eclipse chewy mints, Old El Paso taco mix, and Moccona Cappuccino, was conducted by a world-class nanotechnology research facility at Arizona State University.

The Food Standards code does not require nanoparticles to be declared on labelling. Nano-titanium dioxide (E171) can be simply described as the conventional-sized type and as "Colour (171)". Nano-silica (E551) can be listed as the conventional version and as "Anti-caking agent (551)".

Nanoparticles of titanium dioxide found in Mentos Pure Fresh Gum. Photo: Arizona State University

Nanoparticles of silica found in Maggi's Roast Meat Gravy. Photo: Arizona State University

Donuts

How To Make a Solar Cell with Donuts and Tea

By Aaron Rowe March 18, 2009 | 10:48 am | Categories: Uncategorized

WIRED SCIENCE

NEWS FOR YOUR NEURONS

Donuts and tea are the main ingredients in a MacGyver-style do-it-yourself solar cell, explained step-by-step in this video.

"It turns out these delicious little things contain everything we need to make a simple solar cell," said Blake Farrow, a Canadian scientist who filmed the video while visiting Prashant Kamat's lab at the University of Notre Dame.

Wired Science Blogs Anew network of all-star science bloggers.

Read the latest Wired Science Blogs articles

SUBSCRIBE TO WIRED MAGAZINE

E Follow us on Twitter

Powdered sugar contains titanium dioxide nanoparticles,

Dunkin' Donuts Eliminates Nanomaterials From Powdered Donuts

by Gina-Marie Cheeseman on Thursday, Mar 19th, 2015

67

Shares and Likes

There are concerns about the use of nanomaterials, such as titanium dioxide, in food products. One company has responded to consumer pressure to remove these ingredients from its products. That company is Dunkin' Brands Group, parent company of Dunkin' Donuts. Earlier this month, the company announced it will remove the whitening agent titanium dioxide from all the powdered sugar used to coat its donuts.

Get the daily headlines

More than 5,000 people receive our daily news headlines. Join them now.

enter your email	Sign up

Our sponsors

WHERE CONSERVATION PAYS

Nano-QSAR for metal oxide nanoparticles (Toxicity to *E.coli bacteria*)

We were wondering – why up to date (2009-2010) no studies regarding a series of nanoparticles at the same experiment (same lab, same conditions)?

We were wondering – why up to date (2009-2010) no studies regarding a series of nanoparticles at the same experiment (same lab, same conditions)?

Many papers include only one or two metal oxide nanoparticles studied for toxicity.

We were wondering – why up to date (2009-2010) no studies regarding a series of nanoparticles at the same experiment (same lab, same conditions)?

Many papers include only one or two metal oxide nanoparticles studied for toxicity.

So, we decided to measure a toxicity for as much metal oxide nanoparticles as we can find.

At the beginning we were able to find about 13, and after that 4 more.

We were wondering – why up to date (2009-2010) no studies regarding a series of nanoparticles at the same experiment (same lab, same conditions)?

Many papers include only one or two metal oxide nanoparticles studied for toxicity.

So, we decided to measure a toxicity for as much metal oxide nanoparticles as we can find. At the beginning we were able to find about 13, and after that 4 more.

Finally, we had a chance to build a **QSAR model** !!!

QSAR model of toxicity towards *E.coli* bacteria for nanosized oxides – Quantum-Chemical method + QSAR.

The following metal oxides in nanosized form were selected: ZnO, TiO₂, SnO₂, La₂O₃, Fe₂O₃, CuO, Al₂O₃, Sb₂O₃, V₂O₃, V₂O₃, In₂O₃, Bi₂O₃, SiO₂, CoO, NiO, Cr₂O₃, and ZrO₂.

All of these nanosized metal oxides are widely used in many products that present around us. All of them are quite toxic to some extent.

The quantum-chemical methods were applied to find parameters that could be responsible for the toxicity properties for nanosized metal oxides. 12 electronic descriptors were calculated. As source structures we have used the crystal structures data obtained by X-Ray analysis.

Ionization potentials (IP1, IP2, IP3) and electron affinities (EA1, EA2, EA3) of, respectively, single (i.e., SnO_2), double (i.e., Sn_2O_4) and triple (Sn_3O_6) stoichiometric fragments cut from the crystal structure:

Final model with only one parameter.

Nano-QSAR equation, utilizing only one descriptor to predict the cytotoxicity of the metal oxide nanoparticles:

$log(1/EC_{50}) = 2.59 (\pm 0.07) - 0.50 (\pm 0.07) \cdot \Delta H_{Me+}$

(n=10, n_{test}=7, R^2 =0.85, F=45.4, p<0.001, Q^2_{CVLOO} =0.77, the externally validated regression coefficient Q^2_{Ext} =0.83, RMSEC = 0.20, RMSECV = 0.24, RMSEP = 0.19)

where the descriptor ΔH_{Me+} represents the enthalpy of formation of a gaseous cation having the same oxidation state as that in the metal oxide structure.

 $Me(s) \rightarrow Me^{n+}(g) + n \cdot \overline{e} \rightarrow \Delta H_{Me+}$

The descriptors were calculated using quantum-chemical methods. Since from a quantummechanical point of view, the calculations of nanoparticles of 15-90 nm size (those used in the experiments) were not feasible (too large systems) it was necessary to maximally simplify the structural models utilized to calculate the descriptors.

Splitting a dataset

Training Set	Validation set 1	Validation Set 2
ZnO	V_2O_3	CoO
CuO	Sb ₂ O ₃	NiO
Y_2O_3	ZrO ₂	Cr_2O_3
Bi ₂ O ₃		La ₂ O ₃
In ₂ O ₃		
AI_2O_3		
Fe ₂ O ₃		
SiO ₂		
SnO ₂		
TiO ₂		
Cytotoxicity nano-QSAR model for MeOx nanomaterials

Nano-QSAR model, which successfully predicted the cytotoxicity of the metal oxide nanoparticles

$\log(1/EC_{50}) = 2.59 - 0.50 \cdot \Delta H_{Me+}$

nature nanotechnology PUBLISHED ONLINE: 13 FEBRUARY 2011 | DOI: 10.1038/NNANO.2011.10

Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles

Tomasz Puzyn^{1,2}, Bakhtiyor Rasulev¹, Agnieszka Gajewicz^{1,2}, Xiaoke Hu³, Thabitha P. Dasari³, Andrea Michalkova¹, Huey-Min Hwang³, Andrey Toropov⁴, Danuta Leszczynska⁵ and Jerzy Leszczynski¹*

It is expected that the number and variety of engineered nanobe particles will increase rapidly over the next few years¹, and *E*, there is a need for new methods to quickly test the potential hy toxicity of these materials². Because experimental evaluation th

between the structures of 17 metal oxides and their cytotoxicity to *E. coli* cells. Based on this model and experimental data⁶, we have hypothesized the most probable mechanism for the cytotoxicity of these nanoparticles. We investigated this cytotoxicity in bacteria,

Results – Cytotoxicity trend

$$log(1/LC_{50}) = 2.59(\pm 0.07) - 0.50(\pm 0.07) \cdot \Delta H_{Me+}$$

$$Me^{2+} \qquad Me_{(s)} \rightarrow Me^{n+}_{(g)} + n \cdot e$$

$$\Delta H_{Me+} = \Delta H_{s} + \sum_{i=1}^{n} IP_{i}$$

$$Me^{3+} \qquad a \cdot Me^{n+}(g) + b \cdot O^{2-}(g) \rightarrow Me_{a}O_{b}(s)$$

$$e + O_{2} \longrightarrow O_{2}^{-}$$

$$Me^{4+} \qquad O_{2}^{-} + 2H^{+} + e \longrightarrow H_{2}O_{2}$$

$$H_{2}O_{2} + O_{2}^{-} \longrightarrow OH^{*} + OH^{-} + O_{2}$$

Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J., Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, *Nature Nanotechnology*, 2011, 175-178

The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method

The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of MeOx NPs for data sets of 17, 36 and 72 metal oxides were employed in the study.

The following metal oxides in nanosized form were selected to train the model: ZnO, TiO₂, SnO₂, La₂O₃, Fe₂O₃, CuO, Al₂O₃, Sb₂O₃, V₂O₃, Y₂O₃, In₂O₃, Bi₂O₃, SiO₂, CoO, NiO, Cr₂O₃, and ZrO₂.

The cytotoxicity model for studied metal oxide NPs was taking into account:

(i) χ -metal electronegativity (EN) by Pauling scale, and composition of metal oxides characterized by

(ii) number of metal atoms in oxide,

(iii) number of oxygen atoms in oxide,

(iv) charge of metal cation in oxide.

Quantitative CP ANN models showed a good prediction power of models with the leave one out Q^2 in the range of 0.83–0.92. The categorical CP ANN models were capable to predict class of cytotoxicity with accuracy equal to 1.

The methodology is expected to be useful for potential hazard assessment of $MeO_x NPs$ and prioritization for further testing and risk assessment.

N Fjodorova, M Novic, A Gajewicz, B Rasulev, The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method, *Nanotoxicology*, 2017, 11(4), 475-483

N Fjodorova, M Novic, A Gajewicz, B Rasulev, The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method, *Nanotoxicology*, 2017, 11(4), 475-483

Carbon nanostructures fullerene C60 and carbon nanotubes (CNTs)

Immunotoxicity of nanoparticles: CNTs and fullerenes might be recognized as pathogens by Toll-like receptors

M. Turabekova, B. Rasulev, M. Theodor, J. Jacksman, D. Leszczynska, J. Leszczynski, Nanoscale, 2014

- Macrophages play a vital role in the immune system.
- ✓ and have pattern recognition receptors (PRRs) to identify pathogens.
- PRRs are represented by membrane-associated Toll-like receptors (TLRs) and cytoplasmic Nodelike receptors (NLRs).
- Each TLR and NLR recognize specific, conserved pathogen-associated molecular patterns (PAMPs) present in microbial proteins, nucleic acids, lipids, and carbohydrates.
- These PAMP-containing molecules act as ligands to trigger PRR-dependent intracellular signaling pathways that ultimately induce the expression of pro-inflammatory and antiviral cytokines.

- Macrophages play a vital role in the immune system.
- ✓ and have pattern recognition receptors (PRRs) to identify pathogens.
- PRRs are represented by membrane-associated Toll-like receptors (TLRs) and cytoplasmic Nodelike receptors (NLRs).
- Each TLR and NLR recognize specific, conserved pathogen-associated molecular patterns (PAMPs) present in microbial proteins, nucleic acids, lipids, and carbohydrates.
- These PAMP-containing molecules act as ligands to trigger PRR-dependent intracellular signaling pathways that ultimately induce the expression of pro-inflammatory and antiviral cytokines.

- Macrophages play a vital role in the immune system.
- ✓ and have pattern recognition receptors (PRRs) to identify pathogens.
- ✓ PRRs are represented by membrane-associated Toll-like receptors (TLRs) and cytoplasmic Nodelike receptors (NLRs).
- Each TLR and NLR recognize specific, conserved pathogen-associated molecular patterns (PAMPs) present in microbial proteins, nucleic acids, lipids, and carbohydrates.
- These PAMP-containing molecules act as ligands to trigger PRR-dependent intracellular signaling pathways that ultimately induce the expression of pro-inflammatory and antiviral cytokines.

TLRs act as the forefront PAMPs (carbon nanoparticles) recognizers in macrophages.

- Macrophages play a vital role in the immune system.
- ✓ and have pattern recognition receptors (PRRs) to identify pathogens.
- PRRs are represented by membrane-associated Toll-like receptors (TLRs) and cytoplasmic Nodelike receptors (NLRs).
- Each TLR and NLR recognize specific, conserved pathogen-associated molecular patterns (PAMPs) present in microbial proteins, nucleic acids, lipids, and carbohydrates.
- These PAMP-containing molecules act as ligands to trigger PRR-dependent intracellular signaling pathways that ultimately induce the expression of pro-inflammatory and antiviral cytokines.

TLRs act as the forefront PAMPs (carbon nanoparticles) recognizers in macrophages.

Toll-like Receptors: TLR1/TLR2

TLRs have evolved to recognize PAMPs expressed by the broad classes of pathogens (e.g. viruses, bacteria, and fungi). High specificity of TLRs helps them to recognize well-conserved features in pathogens, including bacterial cell-surface LIPOPEPTIDES

M.S. Jin et all., Cell, 130 (2007) 1071-1082.

Identification of Hydrophobic Binding Sites

Glide XP docking: TLR1/TLR2

-15.460

-8.747

Glide XP docking: TLR1/TLR2

-15.460

-8.747

- Metal
- Water H₂O
 - Hydration site
- Displaced hydration site --
 - п-п stacking

- п-cation
- H-bond (backbone)
- H-bond (side chain)
- Metal coordination
- Solvent exposure 0

Glide XP docking: TLR1/TLR2

-8.747

Inhibitors or toxins? Large library target-specific screening of fullerene-based nanoparticles

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017, 9 (29), 10263-10276

Ligand-Protein Inverse Docking

We've selected existing fullerene derivatives and decided to dock all possible proteins related to diseases.

Overall Schematic Diagram of the Study

Overall Schematic Diagram of the Study

Figure: Glutamate transporters (Glt_{ph}, PDB ID: 1XFH) has a homotrimeric subunit with a large central water-filled cavity that restricts ligand diffusion to the exterior bulk medium. Fullerene derivative trapped in the cavity.

Top target proteins

Rank	PDB_ID	Biochemical Type	Therapeutic Area	Target Details
1	1RTD	Enzyme	Viral infections	DNA Polymerase/reverse Transcriptase, HIV-1 Reverse Transcriptase
2	1HKB		Hormones and hormone antagonists	D-Glucose 6-Phosphotransferase
3	2BU5	Enzyme		Pyruvate dehydrogenase kinase-2
4	1CVI	Enzyme		Prostatic acid phosphatase
5	10VM	Enzyme	Vitamins	Indole-3-Pyruvate Decarboxylase
6	8CAT	Enzyme		Oxidoreductase
7	1H9U	Nuclear Receptor	Vitamins	Retinoid X Receptor, Beta
8	2VAA	Monoclonal Antibodies		Murine MHC class I H-2Kb
9	1KAE	Enzyme	Synaptic and neuroeffector junctional sites and central nervous system	Histidinol Dehydrogenase
10	1IG0	Enzyme	Vitamins	Thiamin Pyrophosphokinase
11	2BWN	Enzyme		5-Aminolevulinate synthase
12	2F9Q	Enzyme		CYP2D6
13	6COX	Enzyme	Inflammation	Cyclooxygenase 1,2(COX-1,COX-2)
14	1HNI	Enzyme	Viral infections	HIV-1 Reverse Transcriptase
15	1IYH	Enzyme	Blood and blood-forming organs	Hematopoietic Prostagladin D Synthase

Lucky Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Nanoscale, 2017, 9 (29), 10263-10276

Descriptors

-

Data Mining

New Materials Design Risk Assessment

Nano-Descriptors Generation and Calculation

Figure. A representation of theoretical descriptor generation based on experimental TEM images for NMs (Copyright - Gajewicz A, Rasulev B. et al, Advanced Drug Delivery Reviews, 2012).

Figure. A representation of graph-atomic orbitals descriptors for encoding of metal oxide NMs (Copyright – Rasulev B. et al, FACSS conference proceedings, 2007).

Figure. The structure of CdSe/ZnS quantum dot with ligand coating (a) and Al2O3 nanoparticle with OVA and linker (b). Copyright – (a)en.rusnano.com, (b)-nature.com (Li et al., 2011).

Construction of materials fingerprints from the band structure and the density of states. Copyright (Isayev et al., 2015).

Modeling of Nanomaterials Structure-Property Relationship

Figure. A representation of data mining for protein-ligand docking studies of 1200 proteins and 169 fullerene nanoparticles (*Nature Nanotechnology.* Copyright - Ahmed L, Rasulev B. et al., 2015, under review).

Development of new Nanomaterial with improved properties or predicting Toxicity

Acknowledgements:

Interdisciplinary Center for Nanotoxicity, Jackson State University

Dr. Jerzy Leszczynski Dr. H.-M. Hwang Dr. Danuta Leszczynska Dr. Malakhat Turabekova Dr. Lucky Ahmed Dr. Natalia Sizochenko

Environmental Chemometrics Laboratory, University of Gdansk, Poland

Dr. Tomasz Puzyn Dr. Agnieszka Gajewicz Ms. Alicja Mikolajczyk

Applied Physics Laboratory, The Johns Hopkins University

Dr. M. Theodor, Dr. J. Jackman Wright-Patterson Air Force Research Laboratory, Ohio

> Dr. S. Hussain, Ms. N. Schaeublin

National Institute of Chemistry, Ljubljana, Slovenia Dr. Marjana Novic Dr. Natalja Fjodorova

Grant support

Interdisciplinary Nanotoxicity Center NSF-CREST Grant # HRD-0833178; NSF-EPSCoR #362492-190200-01 \NSFEPS-0903787 DOE Grant No. DE-SC0001717 ND EPSCoR Award #IIA-1355466

Thanks for your attention!