

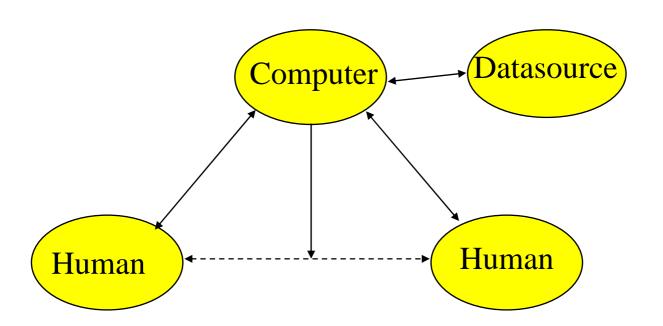
Computers in the Human Interaction Loop

or: How can Computers Support Human-Human
Communication

May 1, 2006

Alex Waibel
Interactive Systems Laboratories
Carnegie Mellon University
University of Karlsruhe
http://www.interact.cs.cmu.edu

Human-Human Interaction



Different Roles for Humans and Computer

Interpreting Human Communication

"Why did Joe get angry at Bob about the budget?"

Need Recognition and Understanding of Multimodal Cues

- Verbal:
 - Speech
 - Words
 - Speakers
 - Emotion
 - Genre
 - Language
 - Summaries
 - Topic
 - Handwriting

- Visual
 - Identity
 - Gestures
 - Body-language
 - Track Face, Gaze, Pose
 - Facial Expressions
 - Focus of Attention

We need to understand the: Who, What, Where, Why and How!

Project CHIL

http://chil.server.de

- **Integrated Project** (IP) in 6th Framework Program of the EC
 - One of three IP's in the first call Multimodal/Multilingual:
 - CHIL, TC-STAR, AMI

• International Consortium:

15 Partners from 9 countries
 in Europe (12) and the US (3)

• Coordination:

- Research: Prof. A. Waibel InterACT Center
 Universität Karlsruhe, Carnegie Mellon University
- Financial: Prof. H. Steusloff Fraunhofer IITB

• Term:

- 6 Year Goal, Two Phases
- First (Current) Phase: 3 Years

• Budget

CHIL: 25 Million Euro Cost Volume for three Years

The CHIL Project

The CHIL Team:

Universität Karlsruhe (TH)

Fraunhofer Institut

Informations- und Datenverarbeitung

UNIVERSITAT POLITÈCNICA DE CATALUNYA

NFORMATION TECHNOLOGY

STANFORD UNIVERSITY

Management Approach

• Goal:

- Accountability without Stifling Creativity
- Approach: Coopetition
- Evalations, MOPs and MOEs
- Technologies Evaluations
 - Benchmarks CHIL, CLEAR, RT
 - Technology Catalogue
 - Building on and Advancing the State of the Art

Services

Information Society
Technologies

- Services Built on Tech
 - Architecture, Infrastructure
 - Technology Catalogue
- Not One Integrator Site, but 4 Service Builder Sites
- Compare & Contrast Site Visits
- User Studies, Assess Usability / Effectiveness
 - Creative Surprises Encouraged

Project Overview

• Services:

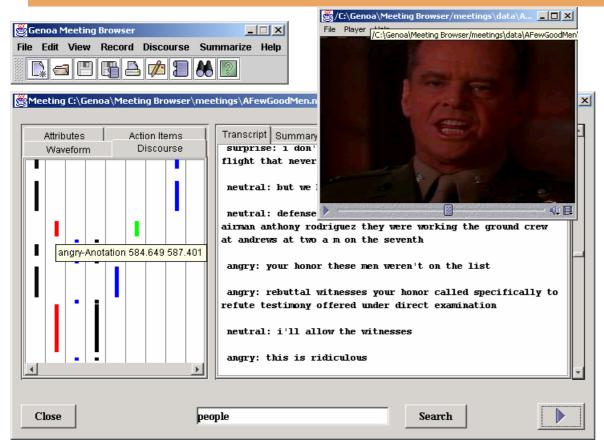
- Implicit Proactive Computing Services Based on Perceived Implicit Need
- Study Success of Such Services and their Ability to Improve Productivity

Technologies & Functionalities:

- Descriptions of Human Behavior and Attributes the "Who? Where?
 What? Why? How?" of Humans.
- Underlying perceptive technologies have been studied before, but require greater robustness and performance (speech, vision, ...)

Infrastructure:

- To enable composition, aggregation, processing and interoperation of the distributed components (sensors, technologies, fusion, services,...)


CHIL Services

Information Society
Technologies

Retrieval Services: Meeting Browser

ICASSP'98 – Experiments in Meeting Recognition, Yu et al. DARPA BN'98 – Meeting Browser: Tracking and Summarizing Meetings, Waibel et al.

Motivation

- Projects:Genoa ('97-'00),Fame (01-04)
- Rapid Access/Review of Meeting Records

• Components:

- Transcribe Speech
- Summarization
- Named Entities
- Discourse Types,Games, Genres
- Emotion, Hyperartc.
- People ID
- Focus of Attention
- Speaker Style, Types,
 Relations

Proactive Services

Connector

• Connects people through the right device at the right moment

Memory Jog

- Unobtrusive service. Helps meeting attendees with information
- Provides pertinent information at the right time (proactive/reactive)
- Lecture Tracking and Memory

Relational Report

- Informs the current speaker about interest/boredom of audience
- Coaches Meetings to be More Effective

Socially Supportive Workspaces

• Physically shared infrastructure aimed at fostering collaboration

- Simultaneous Translation Services

Detect Language Need and Deliver Services Inobtrusively
(and more)

The Connector

- Socially Appropriate Connection
 - Connect People when Appropriate by Appropriate Media
- Connecting People depends on:
 - Social Relationship of Parties
 - Space / Environment
 - Activity, User State
 - Urgency of Matter

Memory Jog

....What was his name? ...Where did I meet him? ...What happened at the last meeting?

Implicit Information Delivery

Private and Public Information Delivery

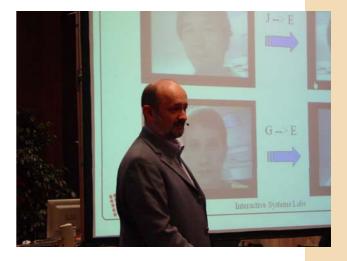
- CHIL phone
- Steerable Camera Projector
- Targeted Audio
- Retinal and Heads-Up Displays

Memory Jog

....What was his name? ...Where did I meet him? ...What did we discuss last time?

Language Support

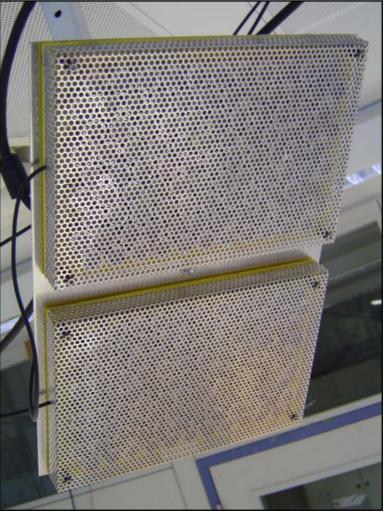
....and what in the world is he saying?



Lecture Translator

- Idea: Translate Domain Unlimited Speeches
- Applications:
 - TV/Radio Broadcast Translation
 - Translation of Lectures and Speeches
 - Parliamentary Speeches (UN, EU,..)
 - Telephone Conversations
 - Meeting Translation
- Technical Difficulty:
 - Open Domain, Open Vocabulary,
 Open Speaking Style, Spontaneous Speech,
 Disfluencies, Ill-Formed Sentences
- Research:
 - NSF-ITR STR-DUST, EC-IP TC-STAR
 - Learning, Statistical Learning Algorithms

TC-STAR



Information Society
Technologies

Targeted Audio

Silent Speech based on EMG Signals

CHIL Technologies

Interpreting Human Communication

"Why did Joe get angry at Bob about the budget?"

Need Recognition and Understanding of Multimodal Cues

- Verbal:
 - Speech
 - Words
 - Speakers
 - Emotion
 - Genre
 - Language
 - Summaries
 - Topic
 - Handwriting

- Visual
 - Identity
 - Gestures
 - Body-language
 - Track Face, Gaze, Pose
 - Facial Expressions
 - Focus of Attention

We need to understand the: Who, What, Where, Why and How!

Technologies & Fusion

Who & Where ?

- Audio-Visual Person Tracking
- Tracking Hands and Faces
- AV Person Identification
- Head Pose / Focus of Attention
- Pointing Gestures
- Audio Activity Detection

• What? (Input)

- Far-field Speech Recognition
- Far-field Audio-Visual Speech Recognition
- Acoustic Event Classification

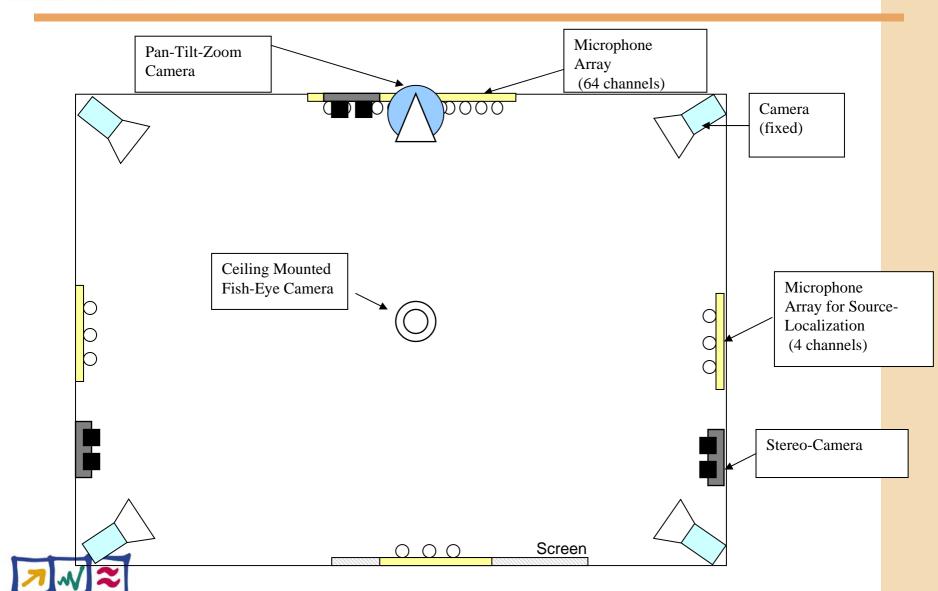
• What ? (Output)

- Animated Social Agents
- Steerable targeted Sound
- Q&A Systems
- Summarization

Why & How ?

- Classification of Activities
- Emotion Recognition
- Interaction & ContextModelling
- Vision-based posture recognition
- Topical Segmentation

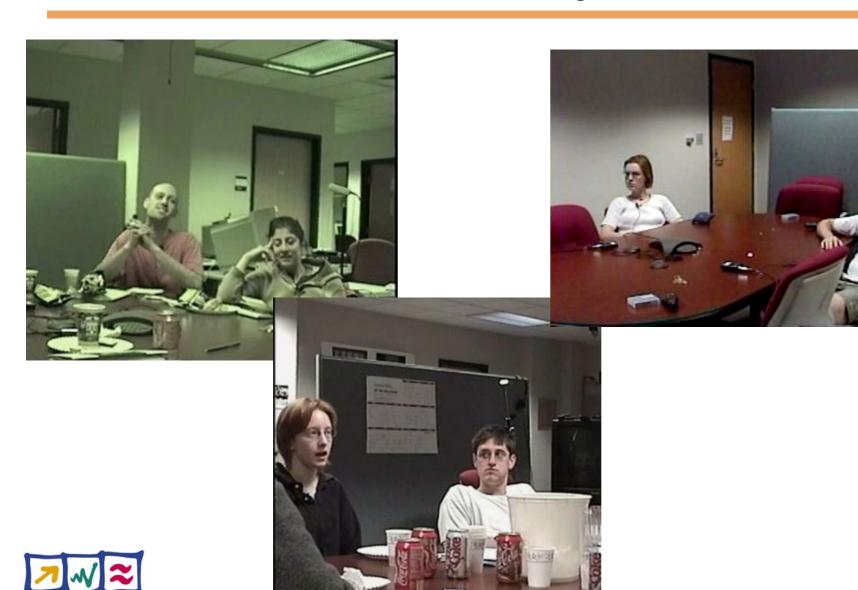
Special New Challenges & Opportunities


- Require: Performance, Robustness, Realism
 - Distant, Remote Microphones
 - Hands-Free, Always On → Segmentation
 - Sloppy Speech
 - Cross-Talk
 - Noise
 - Disfluencies, Prosody, Structuring Discourse
 - Communication by Other Modalities
 - Other Elements of Speech (Emotion, Direction, Scene Analysis
 - Multimodal People ID
 - Free People Movement
 - Focus of Attention and Direction
 - Named Entities, OOV's
 - Adaptation and Evolution
 - Summarization

Information Society
Technologies

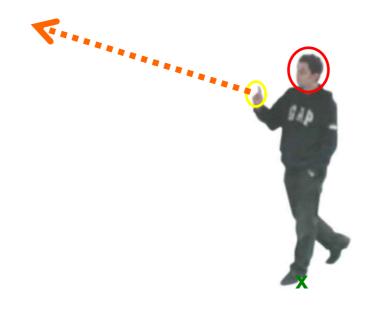
Sensors in the CHIL Room

Scenario 1: Seminars/Lectures



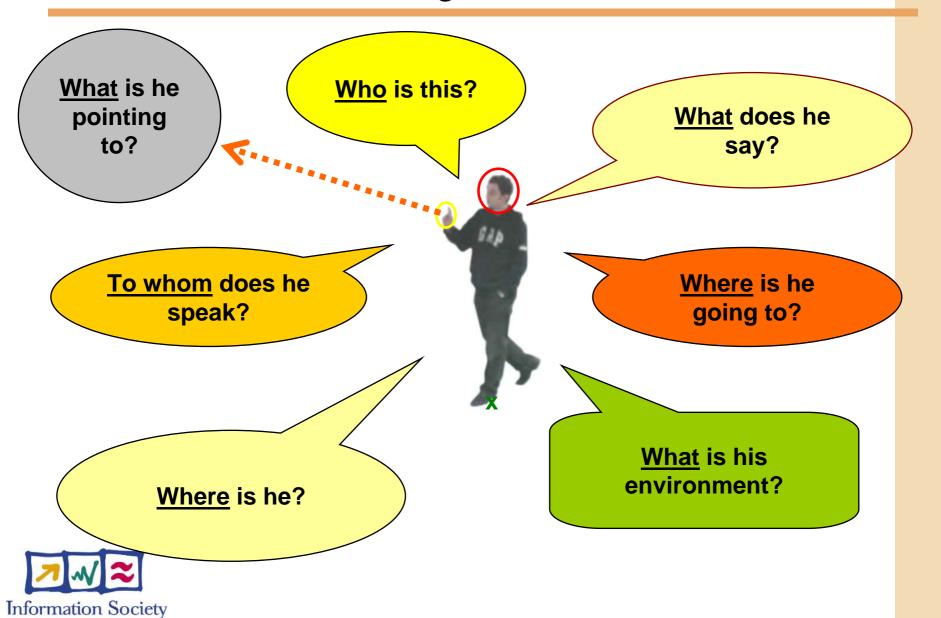
Information Society
Technologies

Scenario 2: Meetings



Describing Human Activities

Describing Human Activities



Technologies

Technologies/Functionalities

Results, June 2004

Face Recognition (7 subjects) • 76% with manual alignment •15% fully automatic Head Detection: • 78% correct (error < 15 pixel) Head Orientation: • Mean error ca. 10°

Hand Tracking:

• 73% correct

3D Pointing Gestures:

- 75% Recall
- 77% Precision

Body Tracking:

- 80,7% correct (error < 30 cm)
 - mean error: 22 cm

Speech Recognition

- Close talking: 37% WERFar-field: 65% WER
- Speech Detection
- 9% Mismatch rate (CTM)
 - 12.5% far field

Source Localization:

• 11° root mean square error

Speaker ID:

• 100% correct, after 30s

Accoustic event classification (25 classes)

• 38,4% error

International Evaluation Campaigns

NIST and EC Programs Join Forces

- RT-Meeting'06 Rich Transcription
 - Emerges from established DARPA activity
 - MLMI Workshops, AMI/CHIL
 - Evaluated Verbal Content Extraction
 - Chair: Garofolo (NIST)
- CLEAR'06 -

Classification of Locations, Events, Activities, Relationships

- Emerging from European program efforts (CHIL, etc.) and US-Programs (VACE,..)
- First Joint Workshop to be Held in Europe after Face & Gesture Reco WS, April 6 & 7, Southampton
- Chair: Stiefelhagen (UKA)

Putting it All Together

Information Society
Technologies

Conclusion

Human-Human Communication

- New Class of Computer Services
- Supported by Multimodal Perceptual User Interfaces

Scientific Challenges

- Observing Human-Human Interaction is a New Dimension in Difficulty for Perceptual Processing Technologies
- Importance of Evaluations and Solid Progress
- Detect, Understand Human Needs
- Computer Sciences and Social Sciences Meet

• Main Products

- Instantiated Human-Centered CHIL Services
- One of the Largest, Most Realistic, Annotated Multimodal Database
- Benchmarks, Metrics, Evaluation Infrastructure
- Transferable Perceptual Technologies (Catalogue)

