European Conference on Complex Systems

Hierarchical analysis of piecewise affine models

sond-neəl – *rəinruoT tnəruel

*INRIA, COMORE Team, Sophia-Antipolis, France.

Oct., 1st 2007

- The piecewise affine framework
- Hierarchical decomposition of PWA systems and asymptotic qualitative analysis
- Threshold elimination and application to biological example

Piecewise affine models of gene regulatory networks

- Vertices g_i : stand for genes. Each g_i is associated to a nonnegative variable: $x_i \in [0, max_i]$ representing
- the level of expression of gene i.
- Edges: stand for sigmoid-like interactions between

ີຮອບອີ

Qualitative analysis of PWA systems

The discrete structure of PWA systems allows a qualitative analysis of their dynamics. [de Jong et al. 2005]

.məteye AW9 e nəviə •

• Together with the relative positions of the focal points:

We can compute qualitative simulations with computer tools such that Genetic
 Metwork Analyser (GNA) [de Jong et al. 2003].

| AWG for sisylene lesidores | AWG for signal

- Hierarchical decomposition of interaction graph
- Asymptotic analysis of triangular PWA system

SCC decomposition and topological sort

• Decomposition of the interaction graph in Strongly Connected Components (SCC)

hierarchical

SCC decomposition and topological sort

This decomposition leads to a triangular form of the ODEs:

$$x = \begin{pmatrix} x^{u} \\ x^{u} \\ \vdots \\ \vdots \\ x^{u} \\ x^{u} \\ \vdots \\ x^{u} \\ x^{u}$$

.smaller brought to analyze $\mathbf{k} \ (\leq n)$ smaller PWA systems.

 $\dot{x}_4 = \kappa_4^0 + \kappa_4^1 s^- (x_3, \theta_3^1) - \gamma_4 x_4$ $\dot{x}_3 = \kappa_0^3 + \kappa_1^3 s^- (x_4, \theta_1^1) - \gamma_3 x_3$ (\mathbf{Z}) $\dot{x}_2 = \kappa_0^2 + \kappa_2^2 f_2(x) + \kappa_2^2 s + (x_1, \theta_1) s^+ (x_2, \theta_2) f_2(x) - \gamma_2 x_2$ $\dot{x}_{1} = \kappa_{0}^{1} + \kappa_{1}^{1} f_{1}(x) + \kappa_{2}^{2} s^{+}(x_{1}, \theta_{1}^{1}) s^{-}(x_{2}, \theta_{2}^{2}) s^{+}(x_{3}, \theta_{1}^{3}) f_{1}(x) - \gamma_{1} x_{1}$ Asymptotic analysis of hierarchical PWA systems

The hierarchization of the interaction graph gives:

- The first subsystem (Σ_1) is the classical bi-stable switch.
- We have therefore to study 2 cases, according to the initial condition of the first

Generalization for other types of attractors:

The SCC computation allows to decompose a "big" PWA system into a hierarchy
 The SCC completed or uncoupled PWP subsystems.

 \rightarrow Model reduction technique

- It gives a practical way to analyze the qualitative behavior of the initial system
- The efficiency of this method strongly relies on the efficiency of the SCC

→ In some cases, this method can be improved

by a simple threshold elimination algorithm.

Threshold elimination and hierarchical decomposition

Application to a biological example:
 Application response network in e-coli
 [de Jong et al. Biosystems, 2006]

The principle of threshold elimination

- -γltnshnapnsq This can be performed in each direction inde-

 θ_{5}^{I}

 ${}^{\mathrm{I}}_{\mathrm{F}}\theta$

The principle of threshold elimination

- 1: Compute the interaction graph \mathcal{G}_Σ
- 2: Compute the hierarchical graph \mathcal{G}^{scc} {The SCC are denoted C_1, \ldots, C_m , they are hierarchically

ordered: if $1 \leq k_1 < k_2 \leq m$, then there is no edge from C_{k_2} to C_{k_1} .}

- ob m of $l = \lambda$ rof :
- 4: repeat
- 5. For i = 1 to l do
- $_{6:}$ Compute the set Φ of focal points :0
- $\gamma_{:}$ Perform elimination in direction j {Some edges are possibly cut.}
- 8: Compute the new interaction graph
- 9: Compute the new hierarchical graph
- to: Compute the new set Φ' of focal points
- זז: euq for
- $\Phi = {}^{\ }\Phi$ litin :21
- 13: end for
- 14: Build the reduced system (Σ')

elqmexe lesigoloid e of noifesilqqA

Extended model of carbon starvation response network in e-coli:

- 9 variables,
- Jinput variable

Application to a biologid e of noifeoilqqA

Interaction graph after threshold elimination and SCC decomposition:

Conclusion

- Models of gene regulatory networks:
- Hierarchical organization:
- it is a general model reduction technique, improving in certain cases the qualitative analysis
- The threshold elimination process can be improved, notably considering "discrete

discrete invariants \leftrightarrow SCC of the transition graph