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Motivation

Individuals and �rms interact to share information and resources,
exchange goods and credit, make new friendships or partnerships etc;

The structure of the network through which interactions take place
may impact on the success of the individual or the productivity of the
�rm;

The network of interactions among socioeconomic agents plays an
important role for the stability and e¢ ciency of socioeconomic
systems;

Theories about how such interaction networks form are thus essential
for a deeper understanding of the development and organization of
society as a whole.
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Two cultures

Physics:
Characterization of the structure of real networks;
Dynamic models (probabilistic), capable of reproducing the observed
geometrical structures (Poisson, stretched exponential and scale-free);
Shortcoming: network growth mechanisms (e.g. preferential
attachment) rely on node degree, which may be only one of the factors
determining attachment in social networks;

Economics:
Equilibrium networks;
Network formation mechanisms based on utility maximization and costs
minimization;
Aim at identifying, among the set of equilibrium networks, the
geometry that optimizes e¢ ciency in the sense of social bene�t;
Interested in the stability of equilibrium networks under link deletion,
addition or rewiring;
Shortcoming: symmetries in the payo¤ functions mean that equilibrium
networks are often too simple in their geometry (stars, complete
networks, interlinked starts, etc.);
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Jackson and Wolinsky Model

Agents derive bene�t both from their nearest neighbours and from
faraway nodes;

Utility of node i :

ui = wii +∑
j 6=i
wijδ

dij � ∑
j2V(i )

cij (1)

Jackson and Wolinsky study pairwise stability when agents can only
update one link at a time;

Bala and Goyal allow agents to rearrange all their connections at once;

A con�guration is accepted if it increases the utility of the agent;

In Bala and Goyal, the star network is both e¢ cient and stable for a
wide range of the parameters when δ = 1. Multiplicity of network
architectures for 0 < δ < 1 which could be Nash.
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Our model

Simpli�ed version of Jackson and Wolinsky (wij = 1, wii = 0 and
cij = c):

ui =
l (i )max

∑
l=1

∑
fk jdik=lg

δl � ∑
j2V(i )

c =
l (i )max

∑
l=1

δlz (i )l � cz (i )1 (2)

Our approach:

Accept a (real world?) network topology (Poisson, scale-free): how
does average utility rank compared to other networks?
Network growing mechanisms: preferential attachment by node utility;
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Analytical results for random networks

Average utility in generic random networks

u (δ) =
l

∑
l=1

δlzl (3)

The generating function formalism leads to:

zl =
�
z2
z1

�l�1
z1 (4)

Replacing (4) in (3) yields:

u (δ) =
δz1

�
(δZ )l � 1

�
δZ � 1 (5)

where Z = z2/z1 and

l =
ln[(N � 1) (Z � 1) /z1 + 1]

ln (Z )
(6)
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Analytical results for random networks
Star and Poisson random networks

Average utility of a star network:

u� (δ) = δz1

�
1+ δ

N � 2
2

�
(7)

where z1 = 2 (N � 1) /N. For N large, z1 ' 2 and u� (δ) � Nδ2;

Poisson random networks are characterized by z1 = pN and z2 = z21 ,
thus:

uP (N, δ, z1) =
z1δ

�
(δz1)

ln(N+ 1�N
z1
)/ ln(z1) � 1

�
δz1 � 1

(8)
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Analytical results for random networks
Scale-free Networks

pk (γ, a) =
1

ζ (γ, 1+ a)
(a+ k)�γ , a � 0 (9)

uSF (N, δ,γ, a) =
δz1 (γ, a)

�
(δZ (γ, a))lSF (N ,γ,a) � 1

�
δZ (γ, a)� 1 (10)

lSF (N,γ, a) =
ln
�
� (a+2)(N�1)

z1(γ,a)
+ z1(γ�1,a)ζ(γ�1,a+1)(N�1)

z1(γ,a)2ζ(γ,a+1) + 1
�

ln
�
�a+ z1(γ�1,a)ζ(γ�1,a+1)

z1(γ,a)ζ(γ,a+1)
� 1

�

z1 (γ, a) =
Φ(1,γ� 1, a+ 1)� aΦ(1,γ, a+ 1)

ζ(γ, a+ 1)
(11)

z2 (γ, a) =
ζ(γ� 1, a+ 1)

ζ(γ, a+ 1)
z1 (γ� 1, a)� (a+ 1)z1 (γ, a) (12)
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Analytical results for random networks
Scale-free Networks: z1 and z2

Figure: z1 (γ, a) and z2 (γ, a) in networks with scale-free degre distribution. We
plot z1 (γ, a) (full curves) and z2 (γ, a) (dashed curves) for a = 0 (black), 1
(blue), 2 (green) and 3 (red).
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Analytical results for random networks
Average utility in scale-free and Poisson networks
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Figure: Scaled average utility in networks with power-law (full curves) and
Poisson (dashed curves) degree distributions as a function of δ, z1 and γ for
N = 105. Curves have been shifted vertically for clarity.
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Evolving networks
Preferential attachment

In the classic Barabási�Albert model, a network is grown by adding,
at every time step, a new node that attaches to m existing nodes with
a probability proportional to their degree, Π(ki ) = ki/ ∑N

j=1 kj ;

Preferential attachment generates a scale-free probability density of
incoming links that leads to the stationary result p(k) = 2m2/kγ,
with γ = 3 independently of m;

The linear preferential attachment hypothesis is very sensitive, as the
scale-free nature of the network is destroyed by a non-linear
attachment rule Π(ki ) � kα

i ;

There are now several extensions of the preferential attachment
mechanism. Of particular relevance to our approach are �tness
models:

Π(ki ) �
fiki

∑N
j=1 fjkj

. (13)
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Evolving networks
An extension to the model of Jackson and Wolinksy

Our contribution: preferential attachment by (time-dependent) node
utility: Πi =

ui
∑N
k=1 uk

;

All nodes have the same utility for δ = 0 and δ = 1:�
ui = 0 8i when δ = 0
ui = N 8i when δ = 1

(14)

so attachment happens randomly in these cases and we recover an
exponential distribution of node degree;
The preferential attachment rule is invariant up to multiplicative
factors:

u
0
i =

ui
δ
= ki +

l (i )max

∑
l=2

∑
k2Vki

δl (15)

where ki is the degree of node i . Thus, as δ ! 0 our model converges
to the Barabási-Albert model and the network becomes scale-free.
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Evolving networks
Algorithm optimizations

Nodes i at a higher distance than a certain lmax from new node j
receive a contribution ∆ui = δd (j ,i ) < 10�precison which is less than
the number of signi�cant digits that the computer can store. This
maximal distance lmax is de�ned as

10�precision > δlmax , lmax > �
precision
log10 δ

(16)
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Evolving networks
Average utility
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Figure: u/N for our model (solid curve and symbols) and the BA model (solid
curve, open symbols) for m = 1 (z1 = 2), 2 (z1 = 4) and 5 (z1 = 10). Analytical
curves for average utility in Poisson (dotted curve) and scale-free (dashed curve)
networks for z1 = 2, 4 and 10 and γ = 3.1 (for scale-free networks).
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Evolving networks
Rich-get-richer, �t-get-rich and exponential regimes

δ ! 0 � Rich-get-richer regime. Preferential attachment by degree is
indistinguishable from preferential attachment by utility (for δ = 0 the
degree distribution becomes exponential);

δ ' 0.15 (N = 105) � Fit-get-rich regime.
Properties:

minimum of average path length and assortativity by degree;
strati�cation of utility values (distribution of utility shows a step-like
behaviour);

The neighbours of the utility hubs have high utility, but low degree
(degree assortativity is minimal), so the network grows from a relatively
isolated core of high utility nodes linked to nodes which have low
connectivity;

δ = 1 � Exponential regime. The degree distribution becomes
exponential.
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Evolving Networks
Assortativity
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Evolving Networks
Average path length and clustering coe¢ cient
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Figure: Average clustering coe¢ cient, a), and path length, b), for the simulation
results when m = 1, 2 and 5. Curves were scaled by, respectively, average path
length and clustering coe¢ cient for δ = 1 (Poisson network). Coloured bands
around the curves are 95% con�dence intervals.
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Evolving Networks
Network Layouts
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Evolving networks
Cumulative distributions
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Discussion

We have studied models of socioeconomic networks with long-range
interactions inspired by the work of Jackson and Wolinsky;
Average utility in Poisson and scale-free networks:

Scale-free networks have higher u for the range of parameters that is of
signi�cance in real-world networks (z1 � 2);
When z1 = 2, the star has the highest utility of the networks studied
here... but the star is of little practical relevance;

We have proposed a natural extension of the Barabási�Albert
preferential attachment by degree to preferential attachment by
utility;
For small δ, preferential attachment by utility is stronger than by
degree: the neighbours of the utility hubs have high utility, but low
degree, so the network grows from a "core" of high utility around the
utility hubs;
We have identi�ed three regimes as δ is varied: rich-get-richer
(δ ! 0), �t-get-richer (δ small) and exponential (δ = 1);
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Thanks

Thank you for your attention.

To �nd more:

http://www.casa.ucl.ac.uk/rui

http://www.giuliaiori.com
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