Annotating documents with relevant Wikipedia concepts Janez Brank, Gregor Leban, Marko Grobelnik

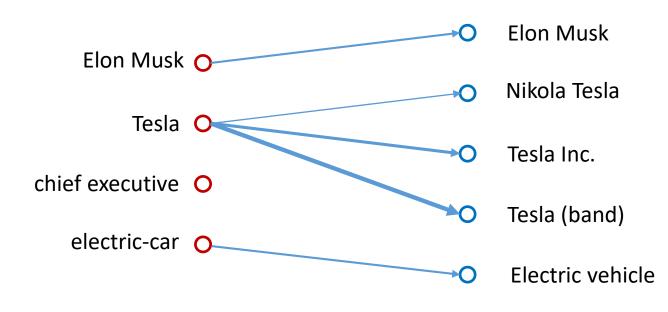
Motivation

- Semantic annotation / enrichment
- Wikification
 - Wikipedia pages ≈ Concepts
 - Text and links provide contextual information about each concept and relations between concepts
 - Multilingual, cross-language links between concepts
 - General-purpose, freely available
- Disambiguation
- Paralellization
- Main application: NewsFeed / EventRegistry
 - To augment documents with concepts before furter processing (e.g. clustering)

Mentions and candidate annotations

- Given an input document (that we want to annotate), which words/phrases refer to some concept from the Wikipedia?
- Use the internal links from the Wikipedia to identify such phrases
 - If some Wikipedia page contains a link with the anchor text *a* and target page *t*...
 - Whenever a occurs in our input document, we consider that as a (possible) mention of the concept t, and t is a candidate annotation for this input document

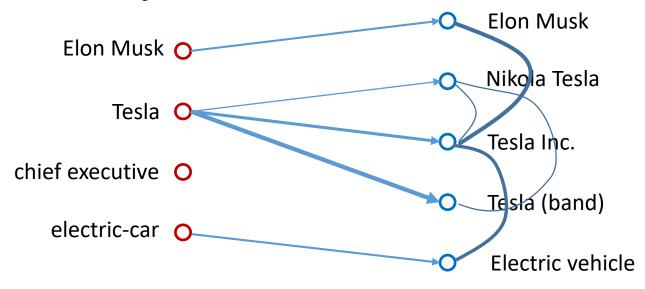
Disambiguation


- Problem: links with the same anchor text a can point to different targets t
- If a appears as a mention in our input document, which of those target concepts should we annotate the document with (if any)?
- Two approaches to disambiguation
 - Local disambiguation: disambiguate each mention separately
 - Global disambiguation: disambiguate all the mentions in the input document together
 - Intuition: the document as a whole is about some topic, therefore the annotations should (mostly) be about that topic as well
 - Document is about cars \rightarrow "Tesla Inc." is more likely than "Tesla (band)"
- Our wikifier uses a pagerank-based global disambiguation approach described by Zhang and Rettinger (2014)

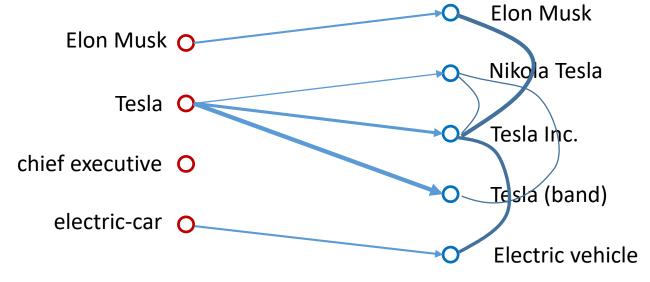
Targets

Links with the anchor text **Tesla** point to the following pages. Click one of them to see where those links occur.

Target page		Show sources
Tesla (band)	240	>>
Tesla, Inc.	122	>>
<u>Tesla (unit)</u>	32	>>
<u>Nikola Tesla</u>	29	<u>>></u>
<u>Nvidia Tesla</u>	23	>>
Tesla (Czechoslovak company)	21	<u>>></u>
Tesla (microarchitecture)	18	>>
Tesla (crater)	7	<u>>></u>
Corral Hollow	7	>>
<u>Tesla</u>	6	<u>>></u>
<u>Tesla coil</u>	3	>>
<u>Tesla Model S</u>	3	<u>>></u>
Tesla Roadster	3	>>
Tesla, West Virginia	3	>>


- Construct a mention-concept graph
 - Bipartite graph: left vertices = mentions, right vertices = concepts
 - Transition probabilities: $P(a \rightarrow t) = [$ number of links with anchor text a and target t] / [number of links with anchor text a]

In Pivotal Moment, Tesla Unveils Its First Mass-Market Sedan


- Add concept-concept links
 - Transition probabilities: $P(c \rightarrow c') \propto SR(c, c')$
 - SR ="semantic relatedness" = $1 \frac{\ln \max(|L_c|, |L_{c'}|) \ln |L_c \cap L_{c'}|}{\ln N \ln \min(|L_c|, |L_{c'}|)}$,

where L_c is the set of Wikipedia pages that contain a link to c

In Pivotal Moment, Tesla Unveils Its First Mass-Market Sedan

- Compute pagerank
 - Iteration: $PR_{new}(u) = \tau PR_0(u) + (1 \tau) \Sigma_v PR_{old}(v) P(v \rightarrow u)$
 - Baseline pagerank: $PR_0(u) = 0$ if u is a concept vertex
 - For a mention vertex: $PR_0(u) \propto [$ number of Wikipedia pages containing u as the anchor-text of a link] / [number of Wikipedia pages containing u].

In Pivotal Moment, Tesla Unveils Its First Mass-Market Sedan

- If a mention has several candidate annotations, use the one with the highest pagerank
 - We say that this mention supports this annotation
- Intuition: pagerank flows into a concept vertex *c*
 - From mentions *a* for which links with the anchor-text *a* often point to the target page *c*
 - And from other concepts c' that are semantically closely related to c
- Thus a set of semantically related concepts (that are adequately supported by some mentions) will boost each other and come out on top
 - ...which is just what global disambiguation is about

Target PR Tesla, Inc. 0.0182 Nikola Tesla 0.0179 Tesla Model S Tesla Roadster Tesla coil Tesla (band) 0.0093 In Pivotal Moment, Tesla Unveils Its First Mass-Market Sedan Elon Musk, Tesla's chief executive, delivered 30 cars to

inks with the anchor text **country** point to the following pages. lick one of them to see where those links occur.

Highly ambiguous mentions

- Some mentions appear as the anchor text of links to a very large number of different pages
 - Including all these pages as concept vertices in the mention-concept graph would introduce noise
 - The graph would become huge and pagerank computation would be too slow
- Heuristics to deal with this:
 - If the entropy H(link target | anchor text = a) is above a certain threshold (e.g. 3 bits), ignore the mention as being too ambiguous
 - Use only the 20 most frequently occurring concepts
 - If the mention consists entirely of stopwords (e.g. top 200 most frequent words in the language), ignore it
 - Ignore concepts that belong to certain WikiData categories (e.g. lists)

sources
5091
487
91
27
24
23
17
14
11
11
9
9
7
7
7
7
7
7
7
7
6
6
6
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Miscellaneous heuristics

- Alternative definitions of semantic relatedness:
 - Instead of comparing sets of immediate predecessors in the Wikipedia link graph, we can use immediate successors or all neighbours (predecessors + successors)
- Two-stage disambiguation process:
 - Use a second scoring function to re-rank the top e.g. 20 candidates (by pagerank) before choosing which one to use as the annotation
 - $score(c|a) = w_1 f(P(c|a)) PR(c) + w_2 S(c, d) + s_3 LS(c, a)$
 - *f*(*x*) = 1 or *x* or log(*x*)
 - P(c|a) = probability that the target of a link is c given that its anchor text is a
 - *S*(*c*, *d*) = cosine similarity between the input document *d* and the Wikipedia page for *c*
 - LS(c, a) = cosine similarity between the context of a (in d) and the context of links to c (in the Wikipedia)

Implementation

- Suitable for parallel processing
 - Multiple input documents can be processed in parallel, independently of each other
- Can work with any language for which a (sufficiently large) Wikipedia is available
- Our implementation is available on http://wikifier.org/
 - Currently handling about 500,000 requests per day (total length of input documents: 1.2 GB per day) with plenty of CPU time to spare
 - Supports 134 languages (all languages for which a Wikipedia of at least 1000 pages is available)
 - This is too small for good coverage, but ~60 languages have a Wikipedia of at least 100,000 pages, which can already be useful
 - Can optionally return WikiData/DbPedia class memberships

Comparison of different wikifiers

- Manually annotated set of 1393 news articles, originally prepared by the authors of AIDA
- For a given wikifier w, consider its set of annotations A_w = { (d, c) : the wikifier w has annotated the document d with the concept c }.
 - We can use the F₁-measure (or precision, recall, etc.) to compare two such sets to measure the agreement between wikifiers and/or the gold standard.
- Overall there is little agreement between different wikifiers, which suggests that wikification as a task is too poorly/vaguely defined
 - What does it mean for a concept *c* to be relevant to /mentioned in the document *d*?
 - What sort of concepts do we want? Just entities? Everything?

	Gold	JSI	AIDA	Waikato	Babelfy	Illinois	Spotlight
Gold	1.000	0.593	0.723	0.372	0.323	0.476	0.279
JSI		1.000	0.625	0.527	0.431	0.489	0.363
AIDA			1.000	0.372	0.352	0.434	0.356
Waikato				1.000	0.481	0.564	0.474
Babelfy					1.000	0.434	0.356
Illinois						1.000	0.376
Spotlight							1.000

Table 1: F_1 measure of agreement between the various wikifiers and the gold standard.

Conclusions and future work

- Efficient, highly parallel implementation of wikification based on global disambiguation
- Planned and/or possible future extensions:
 - Ignore a user-specified set of pages and/or categories when processing the Wikipedia
 - Allow the user to define additional sets of annotations (unrelated to the Wikipedia), along with phrases (mentions) that trigger them
 - Combine local and global disambiguation approaches
 - Local = e.g. based on the similarity between the context of a mention and of links that point to the candidate concept
 - Perhaps using word2vec instead of a plain bag-of-words representation
 - Improved handling of languages whose Wikipedia is small and has poor coverage
 - Use links from other-language Wikipedias to generate candidate annotations
 - Use cross-language information from WikiData to combine link-graphs of different-language Wikipedias into a common large link-graph