Impact of News Events on the Financial Markets

Miha Torkar, Dunja Mladenic Artificial Intelligence Laboratory Jozef Stefan Institute

SiKDD Conference, Ljubljana, Slovenia

Artificial Intelligence Laboratory Jozef Stefan Institute

Problem Setting

Goal: market analysis using world-wide events

Approach: observe the change in volume (price) between the closing value of today and the day after the event

- Extend traditional technical market analysis to include unstructured datasets
- Combine data sources
 - information from the news
 - historical market data

Usage:

- risk management tool against large market movements around news events
- trading strategy

Overview

- Data: Market and News
- Methods
- Results
- Conclusion and future work

Data

- Combine two sources:
 - 1. Historical Markets Data
 - 2. News events
- Analysis done on data of investment bank Goldman Sachs
- Period: 2.12.2013 30.12.2016
 - 777 trading days
 - 4336 news events from Event Registry

Δ

Market Data

- Open, close, high, low and volume value
- VIX index as measure of volatility
- Daily frequency
- Source : Yahoo Finance

Artificial Intelligence Laboratory Jozef Stefan Institute

Market data pre-processing

• Market change measured through change in volume and price:

(Volume Change)_t
$$\equiv VC_t = \frac{V_{t+1} - V_t}{V_t}$$
,

$$(\text{Returns})_t \equiv r_t = \frac{P_{t+1} - P_t}{P_t}.$$

- V_t , P_t are volume and price at time t
- Additionally calculated: Rolling mean and Exponential Moving Average (EMA) for 5 and 10 days of VC_t , r_t

News data

- News event:
 - Cluster of articles
 - Multilingual (100+ languages)
 - Extracted: concepts, topics, date, location, social score, ...
- Source: Event Registry

News data (cont.)

- To reduce noise lower boundary for relevance was set, left with 424 events
- For each event, past similar events were found
- Change of market on the dates of past similar events was used as dataset for making prediction about impact of current event
- Prediction from similar events used as a feature in the time series model

Similar Events - example

Artificial Intelligence Laboratory Jozef Stefan Institute

Artificial Intelligence Laboratory Jozef Stefan Institute

Methods – Time series model

• ARMA(p,q) model:

$$X_{t} = \mu_{t} + Z_{t},$$

$$\mu_{t} = \sum_{i=0}^{p} \alpha_{i} X_{t-i} + \sum_{j=1}^{q} \omega_{j} Z_{t-j}$$

$$Z_{t} = \sigma \epsilon \Rightarrow Z \sim N(0, \sigma^{2})$$

 $X_t \dots$ Target variable $\mu_t \dots$ Equation for the mean $\epsilon \dots$ Iid normaly distributed noise term $\sigma \dots$ Variance

Methods (cont.)

• Extend the ARMA model to non-constant variance, GARCH model:

$$\sigma_t^2 = \beta_0 + \sum_{i=1}^r \beta_i Z_{t-i}^2 + \sum_{j=1}^s \gamma_j \sigma_{t-j}^2$$

- Evaluation criteria
 - Stationarity assumption tested with Augmented Dicky Fuller and KPSS Test
 - Model selection with Akaike and Bayesian Information Criterion (AIC, BIC)

Results

- Relevant features:
 - Volatility VIX Close price
 - Rolling mean 5 and 10 days
 - Rolling EMA 5 and 10 days
 - Prediction of Returns from similar events
- Predictions from the similar events improve model
- Final Model: ARMA (2,2) GARCH (5,1)

Results (cont.)

- Improvement in AIC by 11 (drop in relative information lost when a given model is used)
- In terms of relative likelihood, the baseline model is 0.007 times as likely as the proposed model to minimize information loss

Forecast of 20 days Volume Change

14

cial Intelligence Laboratory Jozef Stefan Institute

Conclusion

- Approach to determining the impact of news events on the financial markets
- Complex news data source was used and combined with market data
- Predictions of returns from past similar events shown to be statistically significant improvement for modelling volume change
- Future work includes further analysis of network formed from similar events

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675044.

