Usage of SVM for a Triggering Mechanism for Higgs Boson Detection

Klemen Kenda, Dunja Mladenić

Artificial Intelligence Laboratory, JSI

October 9th, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

Introduction

- Higgs Boson Quest
- ATLAS Detector
- First evidence
- $H \rightarrow \tau^+ \tau^-$

2 Data

3 Machine Learning

- Problem Definition
- Metrics and evaluation

▲□ ▶ ▲ □ ▶ ▲ □

- 4 SVM based method
 - Feature generation
 - Linear SVM
 - Kernels
 - Evaluation

Data Machine Learning SVM based method Conclusions Higgs Boson Quest ATLAS Detector First evidence $H \rightarrow \tau^+ \tau^-$

Higgs Boson Quest

- 1964 existance predicted (Higgs, Englert, Brout)
- 2012 ATLAS and CMS
- 2013 Nobel Prize for Physics (Higgs, Englert)

Data Machine Learning SVM based method Conclusions Higgs Boson Quest ATLAS Detector First evidence $H \rightarrow \tau^+ \tau^-$

ATLAS Detector 1/2

Data Machine Learning SVM based method Conclusions Higgs Boson Ques ATLAS Detector First evidence $H \rightarrow \tau^+ \tau^-$

ATLAS 2/2 Detector

Data Machine Learning SVM based method Conclusions Higgs Boson Ques ATLAS Detector First evidence $H \rightarrow \tau^+ \tau^-$

$H \rightarrow \gamma \gamma$ in $H \rightarrow Z^0 Z^0 \rightarrow \ell \ell \ell \ell$

- 4 同 🕨 - 4 目 🕨 - 4 目

Data Machine Learning SVM based method Conclusions Higgs Boson Ques ATLAS Detector First evidence $H \rightarrow \tau^+ \tau^-$

$H \to \tau^+ \tau^-$

•
$$H \rightarrow \gamma \gamma$$

- incomplete final state
- special decay topology: first τ in e^- or μ^- and 2 ν , second τ into hadrons and 1 ν
- Public challenge HiggsML

< 同 ▶

- ₹ 🖹 🕨

-∢ ≣ →

Data

- ATLAS detector simulator
- 250.000 events (1/3 signal)
- 30 features (primary and derived)
- o id
- weight
- exploratory data analysis

Histograms of typical features.

< 🗇 > < 🖃 >

Exploratory Data Analysis

On x-axis there is the first, and on y-axis the coordinate of second component.

Feature correlations

Klemen Kenda, Dunja Mladenić SVM for a Triggering

SVM for a Triggering Mechanism for Higgs Boson Detection

Problem Definition Metrics and evaluation

Problem Definition

Training Set:
$$\mathcal{D} = \left\{ (\mathbf{x}^{(1)}, y^{(1)}, w^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}, w^{(n)}) \right\}$$

Legend

 $\mathbf{x}^{(i)} \in \mathbb{R}^d$; feature vector, d - number of features $y^{(i)} \in \{b, s\}$; label, b - background, s - signal $w^{(i)} \in \mathbb{R}^+$; weight - probability for an event

The Problem

We are looking for classifion function $g : \mathbb{R}^d \to \{b, s\}$, that will yield best classification $x^{(i)}$ on the training (validation) set according to the selected metrics.

Problem Definition Metrics and evaluation

Metrics and evaluation

• precision
$$PPV = \frac{TP}{TP+FP}$$

- recall $TPR = \frac{TP}{TP+FN}$
- F_1 score $F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR}$
- AMS₂ metrics

• splitting the training set

- 4 同 2 4 日 2 4 H

3

- test set
- overfitting

$$AMS = \sqrt{2\left(\left(s + b + b_{reg}\right)\ln\left(1 + \frac{s}{b + b_{reg}}\right) - s\right)}$$
$$s = \sum_{i \in S \cap \hat{\mathcal{G}}} w^{(i)} \quad b = \sum_{i \in B \cap \mathcal{G}} w^{(i)}$$

Feature generation Linear SVM Kernels Evaluation

Feature generation 1/2

- Non-linearity (boosting and deep learning give best results)
- One or two- features transformation,
- Functions: x², x³, e^x, √x, log(x), missing values
- Cluster id as a new feature
- Feature selection

- 4 同 6 4 日 6 4 日 6

SVM weights per feature with combinations of tranfsormations for 2 features

Feature generation Linear SVM Kernels Evaluation

Feature Generation 2/2

ld	Description
(1)	Original set.
(2)	Added missing values.
(3)	Filtered missing values and all e^{x} .
(4)	Filtered missing values and all x^2 .
(5)	Filtered missing values, x^2 and all x^3 .
(6)	Filtered missing values, x^2 , x^3 , e^x and all \sqrt{x} .
(7)	Filtered missing values, x^2 , x^3 , e^x , \sqrt{x} and all log(x).
(8)	Selection of best features by one transformed variable: missing values, x^2 , e^x , \sqrt{x} .
(9)	Unfiltered set by one variable transformed values.
(10)	Unfiltered set $x_i x_i$ (435 features).
(11)	Feature set from HiggsML Challenge winner - Tim Salimans.
(12)	Unfiltered set $x_i^2 + y_j^2$.
(13)	Unfiltered set $e_{i}^{x_{i}^{2}+y_{i}^{2}}$.
(14)	Unfiltered set $\sqrt{x_i^2 + y_i^2}$.
(15)	Unfiltered set $(1 + x_i x_i)^2$.
(16)	Filtered set of one and two-variable transformations.
(17)	(8) with added cluster id.

Table: Used feature sets for SVM.

- 4 同 6 4 日 6 4 日 6

Feature generation Linear SVM Kernels Evaluation

Linear SVM

Kernel (features)	true positive	true negative	false positive	false negative	precision	recall	accuracy	F ₁	AMS ₂
LIN (1)	18,9%	56,0%	9,5%	15,6%	0,665	0,548	0,749	0,600	1,999
LIN (3)	22,5%	58,0%	7,6%	11,9%	0,748	0,655	0,805	0,698	2,526
LIN (4)	22,5%	58,0%	7,6%	11,9%	0,748	0,654	0,805	0,698	2,528
LIN (5)	22,6%	57,6%	7,9%	11,8%	0,740	0,657	0,802	0,696	2,478
LIN (6)	23,5%	57,4%	8,2%	10,9%	0,743	0,683	0,809	0,712	2,547
LIN (7)	23,8%	56,9%	8,6%	10,7%	0,734	0,690	0,807	0,711	2,516
LIN (8)	23,1%	57,1%	8,5%	11,4%	0,732	0,670	0,802	0,700	2,482
LIN (10)	24,3%	57,2%	8,3%	10,1%	0,744	0,705	0,815	0,724	2,582
LIN (11)	20,1%	56,7%	8,9%	14,3%	0,694	0,584	0,768	0,634	2,201
LIN (12)	24,3%	57,2%	8,3%	10,1%	0,744	0,705	0,815	0,724	2,583
LIN (13)	24,4%	57,2%	8,4%	10,0%	0,744	0,709	0,816	0,726	2,581
LIN (14)	24,3%	57,2%	8,3%	10,1%	0,744	0,705	0,815	0,724	2,583
LIN (15)	24,4%	57,1%	8,4%	10,0%	0,744	0,710	0,816	0,726	2.578
LIN (16)	23.6%	57.3%	8.3%	10.9%	0,740	0,684	0.809	0,711	2,553

Table: Linear SVM results.

<ロト <部ト < 注ト < 注ト

3

Feature generatior Linear SVM Kernels Evaluation

Kernels

Kernel (features)	true positive	true negative	false positive	false negative	precision	recall	accuracy	F_1	AMS ₂
POLY, $c = 0$ (1)	19,1%	59,7%	5,9%	15,3%	0,764	0,555	0,787	0,643	2,345
POLY, $c = 1$ (1)	24,1%	57,6%	8,0%	10,4%	0,752	0,699	0,817	0,724	2,632
POLY ² , $c = 1$ (1)	23,8%	58,0%	7,5%	10,6%	0,759	0,691	0,818	0,723	2,633
$POLY^4$, $c = 1$ (1)	24,0%	57,0%	8,5%	10,4%	0,738	0,698	0,811	0,718	2,570
POLY, $c = 1$ (8)	24,5%	57,7%	7,8%	9,9%	0,758	0,711	0,822	0,734	2,704
POLY, $c = 1$ (11)	24,2%	58,0%	7,5%	10,3%	0,763	0,702	0,822	0,731	2,701
POLY, $c = 1$ (16)	24,3%	57,8%	7,8%	10,1%	0,757	0,706	0,821	0,731	2,640
RBF (1)	23,7%	58,1%	7,4%	10,7%	0,761	0,689	0,819	0,724	2,674
RBF (2)	23,8%	58,2%	7,4%	10,6%	0,763	0,691	0,820	0,725	2,688
RBF (8)	24,4%	58,2%	7,3%	10,0%	0,769	0,708	0,826	0,737	2,783
RBF (11)	23,5%	58,3%	7,2%	11,0%	0,766	0,682	0,819	0,721	2,703
RBF (16)	24,1%	58,3%	7,3%	10,3%	0,768	0,700	0,824	0,732	2,747
RBF (17)	24,7%	58,1%	7,5%	9,8%	0,767	0,716	0,827	0,740	2,772
*RBF (8)	24,7%	59,0%	6,5%	9,7%	0,791	0,718	0,837	0,752	2,940
*RBF (16)	24,5%	59.0%	6,6%	10.0%	0,787	0,711	0,834	0,747	2.916

Table: SVM results with different kernels.

Klemen Kenda, Dunja Mladenić SVM for a Triggering Mechanism for Higgs Boson Detection

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Feature generation Linear SVM Kernels Evaluation

Evaluation

Method (features)	true positive	true negative	false positive	false negative	precision	recall	accuracy	F_1	AMS ₂
simple window	28,4%	43,2%	22,3%	6,1%	0,560	0,824	0,716	0,667	1,579
log. regression (1)	18,4%	56,4%	9,1%	16,1%	0,668	0,535	0,749	0,594	2,015
SVM-LIN (16)	23,6%	57,3%	8,3%	10.9%	0,740	0,684	0,809	0,711	2,553
bag. SVM-RBF (8)	24,4%	58,7%	6,9%	10,0%	0,780	0,708	0,831	0,743	2,854
GBC (8)	24,2%	59,0%	6,5%	10,2%	0,787	0,703	0,832	0,742	2,856
SVM-RBF (8)	24,7%	59,0%	6,5%	9,7%	0,791	0,718	0,837	0,752	2,940
XGBoost (1)	27,8%	51,6%	14,0%	6,7%	0,665	0,806	0,793	0,729	3,735

Table: Comparision of results, based on different methods.

Klemen Kenda, Dunja Mladenić SVM for a Triggering Mechanism for Higgs Boson Detection

(日) (同) (三) (三)

Possible Improvements

Possible improvements:

- Additional threshold optimization
 - nearer to AMS metrics
- Taking feature similarity into account
- Fine tuning of SVM parameters
- SVM with AMS₂ metrics
- SVM threshold optimization:
 - $AMS_2 \approx 3.45$
 - better than initial ATLAS method *MultiBoost*

4 3 b

Possible Improvements

- Possible improvements:
 - Additional threshold optimization
 nearer to AMS metrics
 - Taking feature similarity into account
 - Fine tuning of SVM parameters
 - SVM with AMS₂ metrics

• SVM threshold optimization:

- $AMS_2 \approx 3.45$
- better than initial ATLAS method *MultiBoost*

- Introspection into Higgs boson search
- ATLAS detector data analysis
- Machine learning data engineer point of view
- Better results with SVM than others
- Standard metrics: our method works better than XGBoost; need for optimization
- XGBoost ($AMS_2 \approx 3.8$), MultiBoost ($AMS_2 \approx 3.34$), opt. SVM ($AMS_2 \approx 3.45$), GBC ($AMS_2 \approx 2.8$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you for your attention!

Klemen Kenda, Dunja Mladenić SVM for a Triggering Mechanism for Higgs Boson Detection

・ 同 ト ・ ヨ ト ・ ヨ

SVM

- Gap maximization
- Classification function g(x) = $sign\left(\sum_{i=1}^{n} \alpha y_i K(x^{(i)}, x) + b\right)$
- Kernels:

• linear:
$$K(x^{(i)}, x^{(j)}) = x^{(i)T}x^{(j)}$$

- polynomial:
 $$\begin{split} & \kappa(x^{(i)}, x^{(j)}) = (\gamma x^{(i)T} x^{(j)} + c)^d, \\ & \gamma > 0 \end{split}$$
- gaussian (radial basis function, RBF): $K(x^{(i)}, x^{(j)}) = \exp(-\gamma |x^{(i)} - x^{(j)}|^2),$ $\gamma > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Razvejitvena razmerja

Razpadni kanal	Razvejitveno razmerje
$H \rightarrow \gamma \gamma$	2.28×10^{-3}
$H \rightarrow Z^0 Z^0$	2.64×10^{-2}
$H \rightarrow W^+ W^-$	2.15×10^{-1}
$H \rightarrow \tau^+ \tau^-$	6.32×10^{-2}
$H \rightarrow b \bar{b}$	5.77×10^{-1}
$H \rightarrow Z^0 \gamma$	1.54×10^{-3}
$H \rightarrow \mu^+ \mu^-$	2.19×10^{-4}

Table: Razvejitvena razmerja zaHiggsov bozon z maso $m_H = 125 \, \text{GeV}$ po standardnemmodelu (vir: PDG).

Razpadni kanal	Razvejitveno razmerje
$\tau \to \pi^- \pi^0 \nu_{\tau}$	2.551×10^{-1}
$\tau \rightarrow e^- \bar{\nu}_e \nu_\tau$	1.785×10^{-1}
$\tau \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$	1.736×10^{-1}
$\tau \rightarrow \pi^- \nu_{\tau}$	1.091×10^{-1}
$\tau \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$	9.00×10^{-2}
$\tau \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$	2.70×10^{-2}

Table: Razvejitvena razmerja najpogostejših razpadnih načinov delca τ (vir: PDG).

・ 同 ト ・ ヨ ト ・ ヨ ト

SVM - izpeljava

- Maksimiziramo 2/||w||, kar pomeni, da minimiziramo ||w|| ali $||w^2||/2$. Robni pogoj $y^{(i)}(w^T x^{(i)} + b) > 1$ za i = 1, 2, ..., n. • $L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y^{(i)} (w^T x^{(i)} + b) - 1),$ $v^{(i)} \in \{-1, 1\}$ • $\frac{\partial}{\partial b}L(w, b, \alpha) = 0$ in $\frac{\partial}{\partial w}L(w, b, \alpha) = 0$ • $\sum_{i=1}^{n} \alpha_i y^{(i)} = 0$ in $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ • $L(w, b, \alpha) = \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)} - \sum_{i=1}^n \alpha_i y^{(i)} b + \sum_{i=1}^n \alpha_i = \sum_{i=1}^n \alpha_i - \frac{1}{2} ||w||^2$ Oualni problem:
 - Dualni problem: $D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle x^{(i)}, x^{(j)} \rangle, \ \alpha_i \ge 0 \text{ in}$ $\sum_{i=1}^{n} \alpha_i y^{(i)} = 0.$
- Minimiziramo D(α), da določimo α_i.

イロト イポト イヨト イヨト 二日

SVM - mehki razmik in jedra

Mehki razmik:

Minimiziramo ||w||² + C ∑_{i=1}ⁿ ξ_i, pri čemer velja robni pogoj y⁽ⁱ⁾(w^Tx⁽ⁱ⁾ + b) > 1 - ξ_i, za i = 1, 2, ..., n, kjer je ξ označuje mero za napačno klasifikacijo, C pa je parameter, ki nadzira vpliv ξ.

Jedra:

• Formulacija dualnega problema s pomočjo $W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x^{(i)}, x^{(j)}).$

- 4 周 ト - 4 月 ト - 4 月 ト - -

Pospeševanje (boosting)

$$g_0(x) = \gamma_0 \tag{1}$$

$$\gamma_0 = \arg\min_{\gamma} \sum_{i=1}^n L(y^{(i)}, \gamma).$$
(2)

$$r_{m}^{(i)} = -\left[\frac{\partial L(y^{(i)}, g(x^{(i)}))}{\partial g(x^{(i)})}\right]_{g(x)=g_{m-1}(x)}$$
(3)

$$\mathcal{D}_m = \{ (x^{(i)}, r_m^{(i)}) \}_{i=1}^n \to h_m(x)$$
(4)

$$g_m(x) = g_{m-1}(x) + \gamma_m h_m(x)$$
 (5)

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^{\gamma} L(y^{(i)}, g_{m-1}(x^{(i)}) + \gamma h_m(x^{(i)})$$
(6)

- 4 同 6 4 日 6 4 日 6

Logistična regresija

- Pri linearni regresiji minimiziramo $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$
- Pri logistični regresiji namesto sumanda uvedemo stroškovno funkcijo $Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{če je } y = 1 \\ -\log(1 h_{\theta}(x)) & \text{če je } y = 0 \end{cases}$

• Ker je
$$y \in \{0,1\}$$
, sledi ...

- $J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 y^{(i)}) \log(1 h_{\theta}(x^{(i)})) \right]$
- Gradientni spust $\rightarrow \frac{\partial}{\partial x_i} J(\theta)$
- Korak iteracije $\theta_j := \theta_j \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$

Odločitvena drevesa

• Entropija: $S(\mathcal{D}) = -p_+ \log_2 p_+ - p_- \log_2 p_-$

• Informacijski pribitek: $G(\mathcal{D}, Z) =$ $S(\mathcal{D}) - \sum_{v \in \mathcal{Z}_Z} \frac{|\mathcal{D}_v|}{|\mathcal{D}|} S(\mathcal{D}_v),$ kjer je Z izbrana značilka, $\mathcal{Z}_Z \text{ množica vrednosti}$ značilke Z, \mathcal{D}_v pa podmnožica \mathcal{D} s primerki z vrednostjo parametra Z = v.

Lagrange / Hamilton

•
$$\frac{\partial L}{\partial x_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_k} = 0$$

• Delec v EM polju:
 $L = \frac{1}{2}m\dot{r}^2 - e\varphi + evA$

•
$$H = T + V; H = H(q, p, t)$$

• $\frac{dp}{dt} = -\frac{\partial H}{\partial q}$
• $\frac{dq}{dt} = +\frac{\partial H}{\partial p}$

<ロト <部ト < 注ト < 注ト

3

Maxwell in ostale uporabne zveze

$$\nabla \cdot E = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot B = 0$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times B = \mu_0 j + \epsilon_0 \mu_0 \cdot \frac{\partial E}{\partial t}$$

$$B = \nabla \times A$$

$$E = -\nabla \varphi - \frac{\partial A}{\partial t}$$

$$\frac{\partial \rho}{\partial t} + \nabla j = 0$$

/□ ▶ < 글 ▶ < 글