
Evolutionary dynamics in finite populations: Oscillations, diffusion, and drift reversal

Jens Christian Claussen

1. Lizards, E.coli, Mice, . . . and Rock-Paper-Scissors.

2. Evolutionary game theory. Coevolution.

How to describe coevolutionary dynamics in finite populations?

3. Microscopical processes: Moran process, Local update.

Mean-field theory in finite populations:

Derive replicator equations (and FPEs for internal fluctuations).

4. Consequences: Drift reversal in asymmetric conflicts.
Claussen & Traulsen, Phys. Rev. E 71, 025101 (R) (2005)

Traulsen, Claussen & Hauert, Phys. Rev. Lett. 95, 238701 (2005); Phys. Rev. E 74, 011901 (2006)
Claussen & Traulsen, submitted (2007), Claussen, submitted (2007)
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Cyclic coevolution: Side-blotched Lizards(Uta stansburiana)

Cyclical games: Lizards “playing” a rock-scissors-paper gamec

Orange-throated males establish large territories holding several females.
Can be invaded by yellow-striped males (“sneakers”), not contributing to defense

c
Zamudio & Sinervo, PNAS 97, 14427 (2000), Sinervo & Lively, Nature 380, 240 (1996).
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Cyclic coevolution: Side-blotched Lizards(Uta stansburiana)

Cyclical games: Lizards “playing” a rock-scissors-paper gamec

Orange-throated males establish large territories holding several females.
Can be invaded by yellow-striped males (“sneakers”), not contributing to defense

Yellow-striped populations can be invaded by blue-striped males,
which defend a small territory that can hold one female and defend it against sneakers.

Once sneakers are rare, i.e. blue-striped have taken over,
it is advantageous to defend a large territory holding several females.

This allows for cyclic invasion O → Y → B → O

c
Zamudio & Sinervo, PNAS 97, 14427 (2000), Sinervo & Lively, Nature 380, 240 (1996).
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Cyclic games

(0, 0) (-1, 1) (1, -1)

(1, -1) (0, 0) (-1, 1)

(-1, 1) (1, -1) (0, 0)
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Cyclic coevolution: E.coli “play” RPS in vitro

Kerr, Riley, Feldman, Bohannan,
Nature 428, 412 (2004)
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Cyclic coevolution: E.coli “play” RPS in vitro ... and in mic e!
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Kerr, Riley, Feldman, Bohannan,
Nature 428, 412 (2004)

Kirkup and Riley,
Nature 428, 412 (2004)
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Cyclic games

“Chemical warfare between microbes promotes biodiversity ”
(Czárán, Hoekstra, Pagie, PNAS 99, 786 (2001))

RSP replicator dynamics - same, but small interaction cost - spatial system
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Stability of evolutionary cycles: Possible mechanisms?

What determines the (in)stability of the fixed point (=coexistence)?

Payoff (fitness) values (for non-zero-sum games)

Spatial structure (stabilizes coexistence)

Finiteness of population (usually destabilizes coexistence)

Dynamics of the (microscopic) interaction process
(and resulting replicator equations)

Jens Christian Claussen – p.6/17



Stability of evolutionary cycles: Possible mechanisms?

What determines the (in)stability of the fixed point (=coexistence)?

Payoff (fitness) values (for non-zero-sum games)

Spatial structure (stabilizes coexistence)

Finiteness of population (usually destabilizes coexistence)

Dynamics of the (microscopic) interaction process
(and resulting replicator equations)

What happens in reality?

E.coli (mixed system): Fixates to border.

Lizards: damped oscillations → stable fixed point.

Social strategies: Many strategies do coexist.

Mating (& parental care) behaviour: Fixates to border (typically).
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Coevolutionary dynamics in finite populations? Meanfield theory.

Main questions:

How do (“microscopic”) evolutionary processes
and replicator equations ẋ = x(1 − x)(πA(x) − πB(x)) relate?

Deterministic limit for N→ ∞. What happens in finite populations?

Is the discretization stochasticity simply Gaussian noise?

Methods and Approach:

Use explicitely (“microscopic”) dynamics:
Moran process and Local update

Analyze meanfield (“macroscopic”) equations of motion

Perform N→ ∞ explicitely yielding replicator-type equations

What are the dynamical 1/N corrections?
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Microscopic processes: Moran process and local update
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The frequency-dependentMoran Processab

N individuals

Choose an individual at random proportional to its payoff

Create identical offspring

Remove one random individual

a
Moran, The Statistical Processes of Evolutionary Theory (1962).

b
M.A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature 428, 646 (2004),

Jens Christian Claussen – p.8/17



Moran evolution dynamics in 2×2 games

Arbitrary payoff matrix:

P =

0

@

a b

c d

1

A . E.g.: Pc =

0

@

a a

c c

1

A, PCG =

0

@

0 1

1 0

1

A, PPD =

0

@

3 0

5 1

1

A

Frequency-dependenta Moranb process:
Every agent interacts with a representative sample of the population:

πA(i) =
a(i − 1) + b(N − i)

N − 1

πB(i) =
c i + d(N − 1 − i)

N − 1
,

With probability πA(i)/〈π〉, a copy of an A agent replaces a randomly chosen individual.

a
M.A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature 428, 646 (2004),

b
P.A.P. Moran, The Statistical Processes of Evolutionary Theory, Oxford (1962).
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Local update: a local microscopic process

Moran process requires perfect global information via 〈πi〉

Local update: Microscopic process entirely based on local information
A randomly chosen individual b compares its payoff to the payoff of a (also randomly chosen).
It switches with probability

pb→a =
1

2
+

w

2

πa − πb

∆πmax
A

B AA A

B

Pure “2-particle” interaction

Transition matrix:

T+(i) =

 

1

2
+

w

2

πA
i − πB

i

∆πmax

!

i

N

N − i

N

T−(i) =

 

1

2
+

w

2

πB
i − πA

i

∆πmax

!

i

N

N − i

N
.

Jens Christian Claussen – p.10/17



Meanfield dynamics
. . . and finite-size scaling: Fokker-Planck equation
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Derivation of the FPE

Master equation P τ+1(i) − P τ (i) = P τ (i − 1)T+(i − 1) − P τ (i)T−(i)

+P τ (i + 1)T−(i + 1) − P τ (i)T+(i)

For N ≫ 1: Taylor expansion of T and ρ(x, t) = N P τ (i) (x = i/N , t = τ/N )

Fokker-Planck equation:

d

dt
ρ(x, t) = − d

dx
[a(x)ρ(x, t)] + 1

2

d
2

dx2

[

b2(x)ρ(x, t)
]

with a(x)=T+(x) − T−(x) and b(x)=
√

1

N
[T+(x) + T−(x)].

Corresponding Langevin equation: ẋ = a(x) + b(x)ξ

What about the limit N → ∞ ?
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Microscopic processes and replicator equations

For N → ∞, b(x) vanishes with 1√
N

, yielding deterministic equations:

Microscopic process Deterministic equation

Moran process Adjusted replicator equation

pB→A = 1−w+w πA
i

1−w+w 〈πi〉
ẋ = x(1 − x)πA(x)−πB

i

Γ+〈πi〉

Local update (ordinary) Replicator equation

pB→A = 1
2 +w

2
πA

i
−πB

i

∆πmax
ẋ = κx(1 − x)(πA(x) − π

B(x))

Fermi process a nonlinear Replicator equation (TNP)

pB→A = 1

1+e∓w(πA
i

−πB
i

)
ẋ = κx(1 − x)tanh(πA(x) − π

B(x))

Speed of evolution: Moran process fixates faster

Consequence: Drift reversal in asymmetric conflicts
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Consequences:
Drift reversal in asymmetric conflicts
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Battle of the Sexes(Richard Dawkins)

Payoff benefit for a child: b = 15

Total cost of raising an offspring: −2c = −20, covered by both parents
(except philanderer males meet fast females)

Prolonged courtship (coy females insist on) costs both a burden of −a = −3

Philanderer

Faithful
Male

Coy Fast
Female

-

� ?6
0

0
15

−5
2

2
5

5

Philanderer

Faithful
Male

Coy Fast
Female

-

� ?6
−1

+1
+1

−1
+1

−1
−1

+1

The normalized payoff matrix qualitatively preserves the cyclic dominance.
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Asymmetric conflicts: BOTS Px =
“ +1 −1

−1 +1

”

= −Py

Standard replicator equations:

ẋ = −2 w x(1 − x)(2y − 1)

ẏ = +2 w y(1 − y)(2x − 1)

Constant of motion H = −x(1 − x)y(1 − y): → Closed trajectories.

Adjusted replicator equations:

ẋ = −2
x(1 − x)(2y − 1)

1−w
w

+(2y − 1)(2x − 1)

ẏ = +2
y(1 − y)(2x − 1)

1−w
w

−(2y − 1)(2x − 1)

Ḣ ≤ 0. For t → ∞: Nash eq. ( 1

2
, 1

2
) Qualitatively different behavior!
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Finite-size influence in asymmetric conflicts
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Battle of the sexes for fi-
nite population size N .
(1 − w = backgr. fitn.)

Replicator dynamics (N → ∞) predicts eternal oscillations... Spurious result!

Local update (N): System spirals to the absorbing boundaries 〈∆H〉 > 0.

Moran process (◦): For N > Nc a drift reversal occurs towards the Nash eq. ( 1
2
, 1

2
).

In finite populations, the Battle of the Sexes always comes to rest.

Jens Christian Claussen – p.15/17



Drift reversal: when and why?

Claussen (2007), submitted

Again, consider the zero-sum “Battle of the Sexes” with (+1,−1) payoffs.
Average drift can be calculated analytically!

Neutral case (payoffs zero): 〈△H〉neutral = 1
18N2 , drift → outwards.

Can be overriden by a o(1/N) term ↔ ∃Nc where sign changes ↔ “drift reversal”.

Local update (& pairw.comp.), Fermi, ... (quite general class!!!): no drift reversal

Now consider two limits of weak selection!

(Frequency-dependent) Moran process ΦA
m = 1−w+wπA

1−w+w〈πm〉
drift reversal occurs!

(and can be calculated by expanding in o(w) properly, confirming numerics...)

Moran process, linearized at process level, ΦA
m = 1 + w(πA − 〈πm〉) no drift reversal!

→ For asymmetric conflicts, stability subtly depends on the underlying process.
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Drift reversal also in RPS?

For the zero-sum game with (+1,−1) payoffs drift always goes outwards.

For (+1,−s) payoffs (and s < 1) again a drift reversal occurs!

〈∆H〉N2

0 100 200 300 400 500

-0.04

-0.02

0

0.02

0.04

N

(Claussen & Traulsen 2005/2007)

Can be calculated analytically! – Linear processes (dashed) fit well.

Drift reversal (due to “cooperative” payoffs) occurs for all processes (but Nc varies)
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Summary

Coexistence is determined by: Payoffs, spatial structure, dynamics, and
population size!
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Summary

Coexistence is determined by: Payoffs, spatial structure, dynamics, and
population size!

Systematic approach (“unified theory of coevolutionary processes”):
Moran process → adjusted replicator equation

Local update → ordinary replicator equation

Answers an open question asked by John Maynard Smith (1982)!

First-order corrections have the form of a Fokker-Planck equation
Noise is multiplicative and frequency-dependent!
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Summary

Coexistence is determined by: Payoffs, spatial structure, dynamics, and
population size!

Systematic approach (“unified theory of coevolutionary processes”):
Moran process → adjusted replicator equation

Local update → ordinary replicator equation

Answers an open question asked by John Maynard Smith (1982)!

First-order corrections have the form of a Fokker-Planck equation
Noise is multiplicative and frequency-dependent!

Different scenarios result! – Finite-size dependent drift reversal.
For finite populations, the Battle of the sexes always comes to rest.

Claussen & Traulsen PRE 71, 025101(R) (2005), Traulsen & Claussen PRE 70, 046128 (2004)
Traulsen, Claussen & Hauert PRL 95, 238701 (2005) & PRE 74, 011901 (2006)
Claussen & Traulsen, submitted (2007), Claussen submitted (2007).
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The Raleigh particle: an analogy from physics

Stochastic motion of a large particle (mass M )

driven by collisions with small particles (mass m)a

Einstein/Perrin: D = RT
6πνaNA

(R = gas constant, ν = viscosity, a = particle radius)

Motion of the large particle for large (but finite) M/m:

Can be described with a Fokker Planck equation

with a fluctuations term scaling with
p

m/M (van Kampen)

For M/m → ∞ again a deterministic trajectory is obtained.
a

J. B. Perrin, Les Atomes, Paris, Alcan, 1913.
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Dawkins Battle of the Sexes

Dawkins Battle of the Sexes
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(π|, π~) A~ B~

A| (+1,−1) (−1, +1)

B| (−1, +1) (+1,−1)

If males (|) are philanderers (B|), it pays for females (~) to be coy (A~),
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Insisting on a long courtship period to make males invest more in the offspring.
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Insisting on a long courtship period to make males invest more in the offspring.

However, once most males are faithful (A|), fast females are favored (B~) avoiding the
costs of courtship.
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Dawkins Battle of the Sexes
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(π|, π~) A~ B~

A| (+1,−1) (−1, +1)

B| (−1, +1) (+1,−1)

If males (|) are philanderers (B|), it pays for females (~) to be coy (A~),

Insisting on a long courtship period to make males invest more in the offspring.

However, once most males are faithful (A|), fast females are favored (B~) avoiding the
costs of courtship.

Subsequently, the male investment into the offspring is no longer justified, philanderers are
again favored (B|), and the cycle continues. Corresponds to ‘Matching pennies”.

Qualitatively different dynamics for adjusted/standard replicator equations!
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