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Introduction

‣ game theory often assumes perfect rationality 

‣ all agents know all payoff structures 

‣ they assume their opponents play fully rationally

‣ outcomes: Nash equilibria

‣ no player has an incentive to deviate unilaterally

‣ agents with bounded rationality

‣ need to learn which strategies to use

‣ dynamical behaviour

‣ might fail to converge to NE 

Learning dynamics



Questions to be addressed here

‣ circumstances under which learning process converges

‣ in case of no convergence: chaotic behaviour ?

‣ influence of finite-memory of agents

‣ statistics of strategy use: all or only a few ?

➡ modified replicator equations

➡ analysis with tools from statistical mechanics



The Model

‣ 2 players, X and Y

‣ each have N strategies at their disposal

‣ payoff matrices A and B

‣ say X plays strategy i and Y plays strategy j

‣ payoff for X will be 

‣ payoff for Y will be 

aij

bji



Example

‣ rock-papers-scissors game

‣ N=3 strategies

‣ payoff matrices are 3x3

i, j ∈ {R,P, S}

A = −BT =




0 −1 1
1 0 −1
−1 1 0







Learning dynamics: 
Sato-Crutchfield replicator equations

‣ player keeps a ‘score’ for each of his strategies

ui(t + 1) = ui(t) + ai,j(t) − αui(t)

‣ plays strategy i with probability

pi(t) =
eβui(t)

Z

memory loss rate



Learning dynamics: 

Leads to modified replicator equations

d

dt
pX

i = pX
i




∑

j

aijp
Y
j − α ln pX

i − fX + αSX





d

dt
pY

j = pY
j

[
∑

i

bjip
X
i − α ln pY

j − fY + αSY

]

[Sato+Crutchfield, PRE 2003]



Sato+Akiyama+Farmer ‘02, Crutchfield +Sato ‘03, Sato+Akiyama+Crutchfield ‘05

Rock-paper-scissors game



Question: what about ‘generic games’ ?

d

dt
pX

i = pX
i




∑

j

aijp
Y
j − α ln pX

i − fX + αSX





d

dt
pY

j = pY
j

[
∑

i

bjip
X
i − α ln pY

j − fY + αSY

]

Study S-C equations with random payoff matrices

aij , bij

aijbij =
Γ
N

Gaussian with correlations:

a2
ij = b2

ij =
1
N
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Bifurcation diagram at Γ = −1
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Conclusions

‣ learning of random games exhibits complex dynamical features

‣ non-convergence to NE appears to be present in generic large games 

‣ 2 regimes separated by transition, solvable by stat mechanics methods

‣ fixed point regime 
‣ all strategies approximately equally often played
‣ not sensitive to initial conditions

‣ dynamics remains volatile
‣ condensation on few strategies
‣ sensitive to initial conditions, potentially chaotic

low accuracy of learning (small memory)

large accuracy of learning (long memory)
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