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The Digital Territory (DT)

• Artificial Intelligence: The focus is towards emergence of

“intelligence” in a single, complex individual

• Artificial Life: The focus is the emergence of global “intelli-

gence” based on interactions of simple individuals

• A new “artificial” concept, the Digital Territory: this con-

cept integrates Artificial Life with Artificial Intelligence – it

describes worlds with moving agents which, however, move in

complex terrains which contain elements of both the phys-

ical and digital world as well as “real” intelligence since it

integrates devices with human beings in a complex pattern

of interactions.
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Defining a DT

Definition. (an attempt ...) A DT is a spherical region in

some d-dimensional space (e.g. 2-dimensional or 3-dimensional

Euclidean spheres) composed of moving entities which appear

or disappear in an unpredictable manner (uniformly at random)

within the region. Around each of the entities another region is

defined composed of the space points lying within a prespecified

distance from the entity (this models the sensing and communi-

cation capabilities of the entity).

We are interested in describing the activities of the entities within

this region using a mathematical formalism and mapping the

elements of the formalism into currently available technological

devices.
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The technological basis of DTs

• Mobile devices

• 4G (harmonizing 3G, WiFi, WiMax, and Bluetooth)

• Location awareness

• Sensor technology (Radiation, Gas, Temperature, Mechan-
ical strain, Position and Proximity, Sound, Magnetic field,

Humidity, Speed, Acceleration etc.)

• RFID (Radio Frequency IDentification)

• Wearable computing devices

• Bio-implants
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Modeling Appearance, Proximity and
Interactions - Random Graphs models

In what follows, by n we will denote the number of network

nodes and by Ω the set of all possible
(

n
2

)

edges (i.e. pairwise

interactions) between these nodes.

• Model Gn,m: select the m edges of G by selecting them uni-

formly at random, independently of one another from Ω.

• Model Gn,p: include each edge of Ω in G independently of

the others and with probability p.
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• Model Gn,R0,d : generate n points in some d-dimensional met-

ric space uniformly at random and draw an edge between two

points only if their distance is at most R0. This is the fixed

radius model.

• Model Gn,m,p: each node i of the n available creates a set Si

by selecting uniformly at random each of the available m ob-

jects with probability p. Then an edge is formed between two

nodes i, j only if Si ∩ Sj 6= ∅. This is the random intersection

graph model.
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• Model Gn,m,g: According to this model, each of n available

network nodes selects uniformly and independently of the

others to have degree s, where s is either 0 (i.e. the node

chooses to be disconnected from the rest of the network)

or it ranges from 1 ≤ m ≤ n − 1, which is the minimum

degree other than 0 that is allowed in the network, up to

n − 1. The probabilities with which these choices are made

are defined through the following probability density function,

where 2 < g < 3:

p(k) = {

(g − 1)m(g−1)k(−g), m ≤ k ≤ n

0,1 ≤ k < m
(

m
n

)g−1
, k = 0.

We set P(k) = Pr[degree = k] =
∫ k+1
t=k p(t)dt, with 0 ≤ k ≤ n−

1. After the degree choices are made, the graph to which the

degree sequence corresponds (up to isomorphism) is formed

to be the random graph based on the chosen degrees of the

nodes.
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Theorem. 1 (Arratia & Liggett, 2005, case(d)) Let D be a

positive integer valued random variable and let D1, D2, . . . , Dn be

an i.i.d. (independent, identically distributed) sequence of ran-

dom variables with the distribution of D. Let Λ be the set of limit

points of the sequence of probabilities Pr[(D1, D2, . . . , Dn) is graphical].

Suppose that 0 < Pr[D is even] < 1. Then the following state-

ment holds (only case (d) of the theorem is stated below ):

If for the expectation of the random variable D, E[D], the in-

equality E[D] < ∞ is true or if supn n lognPr[D ≥ n] < ∞ then

Λ = {1
2}.
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Lemma. The random variable k with distribution as defined in

the model Gn,m,g satisfies the first condition of case (d) of the

Theorem of Arratia and Liggett, i.e. E[k] < ∞.

Proof. We compute E[k] as follows:

E[k] =
∫ n

t=0
tp(t)dt

=

∫ 1

t=0

(

m

n

)g−1)
dt +

∫ n

t=m
t(g − 1)mg−1t−gdt

=

(

m

n

)g−1
+

m(g − 1) + (g − 1)(mg−1n2−g)

g − 2
, (1)

which is finite (since g > 2) if m does not tend to infinity along

with n. �
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The alphabet of the first order language of graphs consists of

the following:

• Infinite variable symbols, e.g. z, w, y . . . representing graph

vertices.

• The binary relations “==” (equality between graph vertices)

and “∼” (adjacency of graph vertices) which can relate only

variable symbols, e.g. “x ∼ y” means that the graph vertices

represented by the variable symbols x, y are adjacent.

• Universal, ∃, and existential, ∀, quantifiers (applied only to

singletons of variable symbols).

• The Boolean connectives used in propositional logic, i.e.

∨,∧,¬,=⇒.
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Definition. (Extension statement Ar,s) The extension state-

ment Ar,s, for given values of r, s, states that for all distinct

x1, x2, . . . , xr and y1, y2, . . . , ys there exists distinct z adjacent to

all yis but no xjs.

The importance of the extension statement Ar,s lies in the fol-

lowing. When applied to the first order language of graphs,

if Ar,s (for all r, s) holds for a random graph G (in some ran-

dom graph model) with probability tending to 1 asymptotically

with the number of vertices of the graph, then for every state-

ment A written in the first order language of graphs either

limn→∞Pr[G(n, p) has A] = 0 or limn→∞Pr[G(n, p) has A] = 1.
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Let Ai be the event that for the ith formed set of s + t vertices,

with 1 ≤ i ≤
(

s+t
s

)(

n
s+t

)

, a vertex z cannot be found that is

connected to all s vertices and to none of the t vertices. Then

Pr[As,t fails in G] = Pr[A1 ∨ A2 . . . A
(s+t

s )( n
s+t)

]

≤

(s+t
s )( n

s+t)
∑

i=1

Pr[Ai]. (2)



Lemma. The probability that the extension statement As,t fails

for a random graph of the G model is bounded from above as

follows:

Pr[As,t fails in G] ≤
(s + t

s

)( n

s + t

) [

1 − P s
e (1 − Pe)

t
]n−(s+t)

with Pe the probability of an edge G, assuming that the edges

appear in the graph independently of each other.
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Theorem. 2 For the random model Gn,m,g with m = Ω
(

n
logn

)

the extension statements hold with probability tending to 1.
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In applying the Lemma to the Gn,m,g random graph model, the

difficulty lies in the fact that the probabilities that an edge exists

between a vertex and a number of other vertices are not inde-

pendent because the degrees of vertices are fixed once they are

chosen. To see this, consider three vertices z, x, y with degrees

dz, dx and dy respectively. Then we consider the probability that

an edge exists between vertices z, x (denoted by z−x) given that

an edge exists between z, y (denoted as z − y):
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Pr[z − x|z − y] =
n−1
∑

dy=m

n−1
∑

dz=m

Pr[z − x|z − y, dy, dz]P(dy)P(dz)

=
n−1
∑

dy=m

n−1
∑

dz=m

Pr[z − x|z − y, dy, dz]P(dy)P(dz)

=
n−1
∑

dy=m

n−1
∑

dz=m

(

dz − 1 + dx

n − 1
−

(dz − 1)dx

(n − 1)2

)

P(dy)P(dz)

<
n−1
∑

dy=m

n−1
∑

dz=m

(

dz + dx

n − 1
−

dzdx

(n − 1)2

)

P(dy)P(dz) = Pr[z − x].

Thus, the events that edges exist between a vertex z and a

number of other vertices are negatively correlated. In view of

this fact, we will proceed as follows:
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Pr[As,t fails in Gn,m,g] ≤
(s + t

s

)( n

s + t

)

exp[−Pr[z − y1, z − y2, · · · , z − ys, z 6 −x1, z 6 −x2, . . . , z 6 −xt](n − (s + t))].

The notation “−′′ means “existence of an edge” while the nota-

tion “ 6 −′′ means “absence of an edge”.
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We set A = z − y1, z − y2, · · · , z − ys and B = z 6 −x1, z 6 −x2, . . . , z 6

−xt. Then it is easy to see that A, B are positively correlated

events, since knowing that z is not connected to any of the

vertices x1, x2, . . . , xt results in an increase of the probability that

it is connected to all of the yis. Thus, Pr[AB] > Pr[A]Pr[B].

And since the function e−x is monotone decreasing with x we

can write

Pr[As,t fails in Gn,m,g] ≤
(s + t

s

)( n

s + t

)

exp[−Pr[z − y1, z − y2, · · · , z − ys]Pr[z 6 −x1, z 6 −x2, . . . , z 6 −xt](n − (s + t))].

20



We will now consider the event A alone. The events whose

conjunction A is, are negatively correlated and, thus, we cannot

replace Pr[z−y1, z−y2, · · · , z−ys] with the product Pr[z−y1]Pr[z−

y2] · · ·Pr[z−ys] and, still, have a valid inequality. We will, instead,

compute exactly the probability Pr[z−yi|z−S] with z−S denoting

the event that z is connected to all vertices in S ⊆ {y1, . . . , ys}

subject to the constraint ys 6∈ S.

The same remark about negative dependence holds with the

events in Pr[z 6 −x1, z 6 −x2, . . . , z 6 −xt]
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This probability is

Pr[z − yi|z − S] =
n−1
∑

dy=m

n−1
∑

dz=m

(

dz − |S| + dy

n − 1
−

(dz − |S|)dy

(n − 1)2

)

P(dy)P(dz) (3)

because the conditional z−S simply excludes |S| possible vertices

that could connect z to yi. Since |S| ≤ s, a constant, we can

see that the presence of |S| does not significantly affect the

result of the computation as n tends to infinity. Thus, we can

approximate Pr[z − y1, z − y2, · · · , z − ys] with the product Pr[z −

y1]Pr[z − y2] · · ·Pr[z − ys], as n tends to infinity.

In the same way, we can replace Pr[z 6 −x1, z 6 −x2, . . . , z 6 −xt]

with the product of the individual probabilities.

After doing this, we can see that setting m to be Ω
(

n
logn

)

gives

the desired convergence to 1 of the probability that the extension

statements hold
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The “catch”: the random graph formed with m = Ω
(

n
logn

)

may

not be realizable since now the degree expectation tends to in-

finity and, thus, the theorem of Arratia & Liggett cannot prove

realizability

We conjecture that the graph is not realizable when m = Ω
(

n
logn

)

and, thus, (reversing the argument), realizable Gn,m,g graphs do

not exhibit 0/1 behaviour for properties written in the first order

language of graphs
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Interesting questions

• Define random graph models suitable for modeling DT con-

texts that have/do not to have 0/1 probability laws for prop-

erties defined using the first order language of graphs

• Find conditions for having

Pr[As,t fails in G] = Pr[A1 ∨ A2 . . . A
(s+t

s )( n
s+t)

]

exhibit, itself, a threshold behaviour. This requires the use of

advanced methods for approximating conjunctions/disjunctions

of dependent probabilities (e.g. McDiarmid’s, Suen’s and

Janson’s inequalities) – we have a “two-level” dependency: in

computing Ai = Pr[z−y1, z−y2, · · · , z−ys, z 6 −x1, z 6 −x2, . . . , z 6

−xt] and, then, Pr[A1 ∨ A2 . . . A
(s+t

s )( n
s+t)

]
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• Define random graph models that allow “non-homogeneity”

in the produced graph

• What happens when properties are considered that cannot

be written in the first order language of graphs? It can be

proved that there exist such properties that do not have a

0/1 behaviour



THANK YOU!
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