Complexity of Coupled Map Lattices

T. Kahle, E. Olbrich, J.Jost, S.Jalan and N. Ay

Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

October 1, 2007

T. Kahle, E. Olbrich, J.Jost, S.Jalan and N. Ay

Complexity of CTM

• • • • • • • • • • • •

Complexity Measure

N. Ay et al. proposed a vector valued complexity measure

 $I:=(I_1,\ldots I_N),$

which is computed from a discrete time series.

 I_k quantifies the dependencies between k units, that cannot be explained by dependencies of any k-1 nodes.

- The exponential family \mathcal{E}_k contains only distributions with interactions between at most k units.
- Components *I_k* are defined as Kullback-Leibler distances between projections to *E_k* and *E_{k-1}*.
- Theoretical result: *I*₂ equals the multi-information and is maximal in synchronization.

We call a dynamics *complex*, if it has high values of I_k for $k \ge 3$.

Our aim : To identify complex dynamics in a coupled map lattice.

Model System: Coupled Tent Maps

- coupled tent maps on a graph with adjacency matrix (g_{ij})
- discrete time t = 0, 1, 2, ... and real values $x_i(t) \in [0, 1]$.
- simultaneous updates according to

$$x_i(t+1) = \epsilon \sum_j \frac{g_{ij}}{k_i} f(x_j(t)) + (1-\epsilon)f(x_i(t))$$

where f is the tent map.

Main Example: Circle of 10 Nodes

T. Kahle, E. Olbrich, J.Jost, S.Jalan and N. Ay

Complexity of CTM

Symbolic Dynamics of 10-circle

Special Regime of 10 Node Circle at $\epsilon = 0.47$

Partial Synchronization of 10 nodes

 $t \longrightarrow \epsilon = 0.47$

Partial synchronization.

- 2 nodes constant
- 4 node almost quasiperiodic with large amplitude
- 4 nodes almost quasiperiodic with smaller amplitude

Results

- Vector I detects the synchronization
- "Complex Dynamics" on the edge of synchronization

Poster (#301): I_4, I_5, I_6 , full graph, ...