# Complexity of Coupled Map Lattices 

T. Kahle, E. Olbrich, J.Jost, S.Jalan and N. Ay

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany
October 1, 2007

## Complexity Measure

N. Ay et al. proposed a vector valued complexity measure

$$
I:=\left(I_{1}, \ldots I_{N}\right)
$$

which is computed from a discrete time series.
$I_{k}$ quantifies the dependencies between $k$ units, that cannot be explained by dependencies of any $k-1$ nodes.

- The exponential family $\mathcal{E}_{k}$ contains only distributions with interactions between at most $k$ units.
- Components $I_{k}$ are defined as Kullback-Leibler distances between projections to $\mathcal{E}_{k}$ and $\mathcal{E}_{k-1}$.
- Theoretical result: $I_{2}$ equals the multi-information and is maximal in synchronization.
We call a dynamics complex, if it has high values of $I_{k}$ for $k \geq 3$.
Our aim : To identify complex dynamics in a coupled map lattice.


## Model System: Coupled Tent Maps

- coupled tent maps on a graph with adjacency matrix $\left(g_{i j}\right)$
- discrete time $t=0,1,2, \ldots$ and real values $x_{i}(t) \in[0,1]$.
- simultaneous updates according to

$$
x_{i}(t+1)=\epsilon \sum_{j} \frac{g_{i j}}{k_{i}} f\left(x_{j}(t)\right)+(1-\epsilon) f\left(x_{i}(t)\right)
$$

where $f$ is the tent map.


Main Example: Circle of 10 Nodes

## Symbolic Dynamics of 10 -circle

Assign to each node a symbol $\left\{\begin{array}{ll}0 & \text { if } x_{i}(t) \leq \frac{1}{2} \\ 1 & \text { otherwise }\end{array}\right.$.


$$
\epsilon=0.05
$$





$\epsilon=0.47$ : partial synchronization


$$
\epsilon=0.464
$$



$$
\epsilon=0.84
$$

## Special Regime of 10 Node Circle at $\epsilon=0.47$



$$
\begin{gathered}
t \longrightarrow \\
\epsilon=0.47
\end{gathered}
$$

Partial synchronization.

- 2 nodes constant
- 4 node almost quasiperiodic with large amplitude
- 4 nodes almost quasiperiodic with smaller amplitude
Partial Synchronization of 10 nodes


## Results



- Vector $I$ detects the synchronization
- "Complex Dynamics" on the edge of synchronization

Poster (\#301): $I_{4}, I_{5}, I_{6}$, full graph, $\ldots$

