

Vipava March 22, 2018

Chemical Technology, Ljubljana EN-FIST Centre of Excellence, Ljubljana e-mail: janez.plavec@ki.si

Slovenian NMR Centre Slovenian NMR Centre

- Institute facility
- National research infrastructure academic & industrial users
- Centre of Excellence
 http://www.enfist.si
- CENTRE OF EXCELLENCE
- CERIC partner facility
 http://www.c-eric.eu

http://www.slonmr.si

600 MHz Agilent DD2 spectrometer equipped with ¹H and ¹³C enhanced triple resonance salt tolerant (HCN) cryogenic probe head

600 MHz Varian VNMRS spectrometer equipped with wide range of solid-state and liquid probe heads

Signal intensity

Chemical shift

Scalar (J) couplings

Signal intensity Chemical shift

Scalar (J) couplings

Ho

ò

Studies of structure and dynamics of biomolecules

DNA quadruplex

small molecules in liquid and solid state

RNA duplex

>80 programs and projects in 2018

• Structure of proteins and their interactions,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,
- Studies of complex enzymatic reactions,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,
- Studies of complex enzymatic reactions,
- New porosous material with phosphate basis, synthesis and characterization of large-pore phosphatebased molecular sieves,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,
- Studies of complex enzymatic reactions,
- New porosous material with phosphate basis, synthesis and characterization of large-pore phosphatebased molecular sieves,
- Characterization of energy storage materials,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,
- Studies of complex enzymatic reactions,
- New porosous material with phosphate basis, synthesis and characterization of large-pore phosphatebased molecular sieves,
- Characterization of energy storage materials,
- Polymer nets novel materials for surface treatment, coats and adhesives, polyurethane solutions and polyurethane ionomers,

- Structure of proteins and their interactions,
- Nucleic acid structures and their interactions with metal ions,
- Stability of equilibrium intermediates in protein folding,
- Molecular structure and dynamics of various Active Pharmaceutical Ingredient (API) in relation with their biological effect,
- Polymorphs of API, interactions with excipients in drug formulations, cocrystals,
- Structural characterization of biosimilars,
- Conformational analysis of drugs and their metabolites,
- Studies of complex enzymatic reactions,
- New porosous material with phosphate basis, synthesis and characterization of large-pore phosphatebased molecular sieves,
- Characterization of energy storage materials,
- Polymer nets novel materials for surface treatment, coats and adhesives, polyurethane solutions and polyurethane ionomers,
- Autheniticty and origin of wine, ...

International events

Guanine nucleos(t)ides

Guanine nucleos(t)ides

Guanine nucleos(t)ides

H-bonded ribbon

Guanine nucleos(t)ides

G-quadruplexes require cations for structural integrity; K⁺, Na⁺

5'- G_{3-5} N_{L1} G_{3-5} N_{L2} G_{3-5} N_{L3} G_{3-5} -3'

46

5'- $G_{3-5} N_{L1} G_{3-5} N_{L2} G_{3-5} N_{L3} G_{3-5}$ '

Connecting loops

edge wise loop

double chain reversal loop

diagonal loop

Connecting loops

edge wise loop

diagonal loop

double chain reversal loop

Polymorphism of G-quadruplexes

antiparallel topology

topology

antiparallel topology

mixed topology

50

topology

topology

Loop orientations in G-quadruplexes

${\bf G}_{3\text{-}5} \; {\bf N}_{\text{L}1} \; {\bf G}_{3\text{-}5} \; {\bf N}_{\text{L}2} \; {\bf G}_{3\text{-}5} \; {\bf N}_{\text{L}3} \; {\bf G}_{3\text{-}5}$

1 < N_{L1-3} < 7

pdb id: 2LOD

M. Marušič, L. Bauer, P. Šket, V. Viglasky and J. Plavec, Nucleic Acids Res. 2012, 40, 6946.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

The Nobel Prize in Physiology or Medicine 2009 Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

DNA polymerases can not replicate the ends of linear molecules and 50–200 bases of telomeric DNA is lost on each cell division – *molecular clock*

The Nobel Prize in Physiology or Medicine 2009 Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

Telomeres are protein-DNA complexes, which protect the chromosomes against nuclease degradation, recombination and end-to-end fusion.

DNA polymerases can not replicate the ends of linear molecules and 50–200 bases of telomeric DNA is lost on each cell division – *molecular clock*

The Nobel Prize in Physiology or Medicine 2009 Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

Small molecular drugs stabilize G-quadruplex and downregulate telomerase maintainance in tumor cells \rightarrow *cancer therapy*

Multiple repeats of short G-rich units in telomers are located at the end of chromosomes; *e.g.* d(TTAGGG) in mammals, d(TTTTGGGG) in *Oxytricha*.

cell

2.5 μm

The Nobel Prize in Physiology or Medicine 2009 Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak

Telomerase is able to reverse the process of cell death.

Many cancer cells become immortal by a mechanism of upregulating telomerase.

Telomerase inhibition by a G-quadruplex interactive compounds.

lomerase maintainance in tumor cells \rightarrow *cancer*

G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nat. Chem. 2013, 5, 182.

 $G_{3\text{-}5}\,N_{L1}\,G_{3\text{-}5}\,N_{L2}\,G_{3\text{-}5}\,N_{L3}\,G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CT<mark>GGG</mark>CCT<mark>GGG</mark>

_GCGCCTGTCACCGGGG____GCGCGGGGGC

GUCCCTGTT_ GUCCGG_ GGGGGGGG GCTAGGGG

 $G_{3\text{-}5}\,N_{L1}\,G_{3\text{-}5}\,N_{L2}\,G_{3\text{-}5}\,N_{L3}\,G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CTGGGCCTGGG

GCCCTGTCACCCGGTGGTGGCCGCGGCGCGCCALGCGCG

GCCCCTGTT_ GCCCCG__GCGCCCG__GCTACCCG__

376 000 putative quadruplex sequences

 $G_{3\text{-}5}\,N_{L1}\,G_{3\text{-}5}\,N_{L2}\,G_{3\text{-}5}\,N_{L3}\,G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CTGGGCCTGGG

GCCCCTGTCACCCGGTGGTGGCCCGGCCATGCCGG

376 000 putative quadruplex sequences

average incident of ~1 quadruplex every 10k bases = a density of 0.13/kb in genomic DNA

 $G_{3\text{-}5} \ N_{L1} \ G_{3\text{-}5} \ N_{L2} \ G_{3\text{-}5} \ N_{L3} \ G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CTGGGCCTGGG

GCCCTGTCACCCGGT SCI GCCCCGC ACCCCCC

GCCCCTCTT_ CCCCCc__CCCCCCC__CCTACCCCC

376 000 putative quadruplex sequences

average incident of ~1 quadruplex every 10k bases = a density of 0.13/kb in genomic DNA

 $G_{3\text{-}5} \ N_{L1} \ G_{3\text{-}5} \ N_{L2} \ G_{3\text{-}5} \ N_{L3} \ G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CTGGGCCTGGG

GCCCTGTCACCCGGTestGCCCCGGCCALCCCG

GCCCCTGTT_ GCCCCc___CTACCCG

376 000 putative quadruplex sequences

average incident of ~1 quadruplex every 10k bases = a density of 0.13/kb in genomic DNA

density increases to 0.77/kb within 1kb upstream from TSS, and to 28.6/kb in promoters

 $G_{3\text{-}5} \ N_{L1} \ G_{3\text{-}5} \ N_{L2} \ G_{3\text{-}5} \ N_{L3} \ G_{3\text{-}5}$

 $1 < N_{L1-3} < 7$

<mark>GGG</mark>CCT<mark>GGG</mark>GCT<mark>GGG</mark>CCT<mark>GGG</mark> GGGCCTG<mark>GGG</mark>CTGGGCCTGGG

GCCCTGTCACCCGGT SCI GCCCCGC ACCCCCC

density increases to 0.77/kb within 1kb upstream from TSS, and to 28.6/kb in promoters

Balasubramanian et al. Nat. Biotech . 2015, 33, 877.

Balasubramanian et al. Nat. Biotech . 2015, 33, 877.

The importance of cations: d[AGGG(TTAGGG)₃]

Patel et al. Structure 1993, 1, 263.

Neidle et al. Nature 2002, 417, 876.

The importance of cations: d[AGGG(TTAGGG)₃]

Patel et al. Structure 1993, 1, 263.

Neidle et al. Nature 2002, 417, 876.

Polymorphism of human telomer repeat: d[(TTAGGG)₄]

Power of NMR in structural elucidation

Power of NMR in structural elucidation

htel1-ΔG23 - a four repeat human telomere sequence

Four-repeat human telomere sequence htel1 5'-TAGGG TTAGGG TTAGGG TTAGGG-3'

➤ Truncated version of the human telomere sequence htel1-△G23 5'-TAGGG TTAGGG TTAGGG TTAGGG_-3'

Folding process of *htel1* in the presence of K⁺ ions

htel1: 5'-TAGGG TTAGGG TTAGGG TTAGGG-3'

Intensity of the imino peaks of residues as a function of time.

¹H NMR spectra; c = 1 mM, 10 mM KCl, pH 6, 25 °C.

Folding process of *htel1* in the presence of K⁺ ions

htel1: 5'-TAGGG TTAGGG TTAGGG TTAGGG-3'

Intensity of the imino peaks of residues as a function of time.

¹H NMR spectra; c = 1 mM, 10 mM KCl, pH 6, 25 °C.

Folding process of *htel1* in the presence of K⁺ ions

htel1: 5'-TAGGG TTAGGG TTAGGG TTAGGG-3'

Intensity of the imino peaks of residues as a function of time.

¹H NMR spectra; c = 1 mM, 10 mM KCl, pH 6, 25 °C.

Folding of *htel1-\Delta G23* in the presence of K⁺ ions

¹H NMR spectra, c =1 mM per strand, pH 7, 25 °C.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D ¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D ¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D ¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

Topology of TD form

- monomeric structure
- antiparallel basket-type topology
- contains two G-quartets
- 5 guanine residues in syn

conformation

different orientation of H-bonds

Identification of another form of *htel1-*ΔG23

Population of **KD** form increases significantly upon lowering pH to 5.0.

The observed imino protons indicate formation of a new G-quadruplex structure termed as **KDH**⁺.

KD form can be considered as a prefolded state on the way to KDH⁺.

1D¹⁵N- and 2D¹³C-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N- and 2D¹³C-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

1D¹⁵N- and 2D¹³C-edited HSQC NMR spectra of guanine residue-specifically ¹⁵N,¹³C labelled (8% enriched) oligonucleotides.

KDH⁺ form

TD form

Anticlockwise (upper G-quartet)

KDH⁺ form

TD form

Anticlockwise (upper G-quartet)

KDH⁺ form

TD form

Anticlockwise (upper G-quartet)

Both forms exhibit the same directionalities of hydrogen bonds.

TD form

G3 G10 G16[∛] G22 dR

KDH⁺ form

Both forms exhibit the same directionalities of hydrogen bonds.

TD form

G3 G10 G16[∛] G22 dR

KDH⁺ form

Both forms exhibit the same directionalities of hydrogen bonds.

KDH⁺ form

TD form

Anticlockwise (upper G-quartet)

Both forms exhibit the same directionalities of hydrogen bonds.

TD form

Anticlockwise (upper G-quartet)

KDH⁺ form

Both forms exhibit the same directionalities of hydrogen bonds.

The actual donor→acceptor directionalities of a given guanine residue are different.

Clockwise (lower G-quartet)

G22

CD signatures and thermal stability

A 'clean' antiparallel G-quadruplex.

DOSY NMR spectra

Identical translation diffusion coefficients $(1.40 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1})$ at 25 °C.

Monomeric structures.

CD spectra at 298 K, $c = 15 \mu M$ of TD form (20 mM Kpi, pH 7 + 20 mM KCl) and KDH⁺ form (20 mM Li-citrate, pH 5, + 70 mM KCl).

UV melting curves at 295 nm, 0.3 °C min⁻¹, $c = 80 \mu M$ of TD form (20 mM Kpi, pH 7 + 20 mM KCl) and KDH⁺ form (20 mM Li-citrate, pH 5, + 70 mM KCl).

Comparison of both topologies

KDH⁺ form

-ld+l arrangement*

+ld-l

P. Galer, B. Wang, P. Šket, J. Plavec, Angew. Chem. Int. Ed. 2016, 55, 1993.

^{*}M. Webba da Silva, *Chem. Eur. J.* **2007**, *13*, 9738.

Populations of TD and KDH⁺ forms are controlled by pH

Condition: c =1 mM, 25 °C

P. Galer, B. Wang, P. Šket, J. Plavec, Angew. Chem. Int. Ed. 2016, 55, 1993.

Populations of TD and KDH⁺ forms are controlled by pH

Condition: c =1 mM, 25 °C

P. Galer, B. Wang, P. Šket, J. Plavec, Angew. Chem. Int. Ed. 2016, 55, 1993.

Populations of TD and KDH⁺ forms are controlled by pH

P. Galer, B. Wang, P. Šket, J. Plavec, Angew. Chem. Int. Ed. 2016, 55, 1993. Could be reversibly switched for over 10 times.

Proto-oncogene c-myc

5'-d[TAGGGAGGGTAGGGAGGGT]-3'

G-quadruplex formation in NHE III₁ region upstream of P1 promoter

Proto-oncogene c-myc

G-quadruplex formation in NHE III₁ region upstream of P1 promoter

Proto-oncogene c-myc

¹H NMR spectrum of CMA in the presence of K⁺ ions 0.2 mM CMA per starnd, 10 mM cacodilate buffer, 100 mM KCl, H₂O:²H₂O=9:1, pH 7.0, 25 °C, 600 MHz spectrometer.

Visualisation of G-quadruplexes (in cells)

Ligand DAOTA-M2

600 MHz spectrometer.

Visualisation of G-quadruplexes (in cells)

Ligand DAOTA-M2

0.5 mM DAOTA-M2, 10 mM cacodylate buffer, 100 mM KCl, pH 7.0, 25 °C, H₂O:²H₂O=9:1, 600 MHz spectrometer.

G4

(6 models)
Titration with DAOTA-M2

- new signals corresponding to ligand-G-quadruplex complex
- 1:2 stoichiometry of binding

Imino and methyl regions of ¹H NMR spectra of CMA during titration with ligand DAOTA-M2 (L).

0.2 mM CMA per strand, 20 mM phosphate buffer, 100 mM KCl, H_2O :² H_2O =9:1, pH 7.0, 25 °C, 600 MHz spectrometer.

Binding of ligand DAOTA-M2 with G-quadruplex

Imino-imino region of NOESY spectrum of CMA at 1:0.5 ratio of CMA : ligand Diagonal cross-peaks are marked with black, cross-peaks attributted to exchange are marked with red, violet and blue. Spectrum acquired at 0.2 mM CMA conc. per strand, 20 mM phosphate buffer, 100 mM KCl, H₂O:²H₂O=9:1, pH 7.0, 25 °C, 80 mixing time on 600 MHz NMR spectrometer.

Structure of DAOTA-M2 - G-quadruplex

Kotar A., Wang B., Shivalingam A., Gonzalez-Garcia J., Vilar R., Plavec J., *Angew. Chem. Int. Ed. Engl.*, **2016**, *55*, 12508.

PLEKHG3 in 14th human chromosome

PLEKHG3 in 14th human chromosome

-GGG-A-GCG-A-GGG-A-GCG-A-GCG-A-GGG-A-GCG-A

PLEKHG3 in 14th human chromosome

-GGG-A-GCG-A-GGG-A-GCG-A-GGG-A-GCG-A-GCG-A-GGG-A-GCG-A

PLEKHG3 in 14th human chromosome

-GGG-A-GCG-A-GGG-A-GCG-A-GGG-A-GCG-A-GCG-A-GGG-A-GCG-A

VK1

d(GGG-A-GCG-A-GGG-A-GCG)

PLEKHG3 in 14th human chromosome

-GGG-A-GCG-A-GGG-A-GGG-A-GCG-A-GGG/A-GCG-A-GGG-A-GCG-A

VK1

d(GGG-A-GCG-A-GGG-A-GCG)

PLEKHG3 in 14th human chromosome

-GGG-A-GCG-A-GGG-A-GGG-A-GCG-A-GGG/A-GCG-A-GGG-A-GCG-A

VK34

d(GGG-A-GCG-A-GGG-A-GCG)

d(GCG-A-GGG-A-GCG-A-GGG)

Possible folds adopted by d(GGGAGCG) repeats

- VK1: d(GGG-A-GCG-A-GGG-A-GCG)
- VK34: d(GCG-A-GGG-A-GCG-A-GGG)

Possible folds adopted by d(GGGAGCG) repeats

Possible folds adopted by d(GGGAGCG) repeats

Folding in the presence of Li⁺ cations

Sequential assignment

VK1 G1-G2-G3-A4-G5-C6-G7-A8-G9-G10-G11-A12-G13-C14-G15

Sequential assignment

VK1 G1-G2-G3-A4-G5-C6-G7-A8-G9-G10-G11-A12-G13-C14-G15

d(GGG-A-GCG-A-GGG-A-GCG)

d(GGG-A-GCG-A-GGG-A-GCG)

V. Kocman and J. Plavec, Nat. Commun. 2014, 5: 5831.

d(GGG-A-GCG-A-GGG-A-GCG)

d(GGG-A-GCG-A-GGG-A-GCG)

V. Kocman and J. Plavec, Nat. Commun. 2014, 5: 5831.

PDB id: 2MJJ

Fingerprints in NOESY spectra of VK1 and VK2

Aromatic-anomeric region of 2D NOESY spektra, $\tau_m = 80$ ms, 2.8 mM VK1, 1.0 mM VK2, 100 mM LiCl, 0 °C, pH 6

VK1: G1-G2-G3-A4-G5-C6-G7-A8-G9-G10-G11-A12-G13-C14-G15

VK2: VK1-A16-VK1

A16 connects 'two units' of the monomeric fold

VK1: G1-G2-G3-A4-G5-C6-G7-A8-G9-G10-G11-A12-G13-C14-G15

VK2: VK1-A16-VK1

-GGG-A-GCG-A-GGG-A-GGG-A-GCG-A-GGG-A-GCG-A-GGG-A-GCG-A

VK1

VK34

d(GGG-A-GCG-A-GGG-A-GCG)

d(GCG-A-GGG-A-GCG-A-GGG)

What is the structure of VK34?

d(GCG-A-GGG-A-GCG-A-GGG)

Dimeric structure of VK34 with GAGA core

VK34: G1-C2-G3-A4-G5-G6-G7-A8-G9-C10-G11-A12-G13-G14-G15

Dimeric structure of VK34 with GAGA core

VK34: G1-C2-G3-A4-G5-G6-G7-A8-G9-C10-G11-A12-G13-G14-G15

Adenines connect VK34 in dimeric and monomeric folds

(VK34-A-VK34-A-VK34-A-VK34)

2x (VK34-A-VK34)

-GGG-A-GCG-A-GGG-A-GCG-A

AGCGA repeats in the genome

...-GGG-AGCGA-GGG-AGCGA-GGG-AGCGA-GGG-AGCGA-GGG-AGCG-...

AGCGA repeats in the genome

...-GGG-AGCGA-GGG-AGCGA-GGG-AGCGA-GGG-AGCGA-GGG-AGCG-...

AGCGA-N₁₋₂₀-AGCGA-N₁₋₂₀-AGCGA-N₁₋₂₀-AGCGA

Neurodevelopment and neurological disorders

Abnormal cartilage and bone formations

Different cancers

Basic cellular processes

V. Kocman and J. Plavec, Nat. Commun. 2017, 8: 15355.

pdb id: 5LQG

pdb id: 5LQH

d(GGG-A-GCG-A-GGG-A-GCG); pdb id: 2MJJ

d(GCG-A-GGG-A-GCG-A-GGG); pdb id: 5M1L

pdb id: 5LQG

pdb id: 5LQH

pdb id: 5LIG

pdb id: 5LQG

pdb id: 5LQH

pdb id: 5LIG

pdb id: 5LQG

d(GGG-A-GCG-A-GGG-A-GCG); pdb id: 2MJJ

pdb id: 5LQH

pdb id: 5LIG

d(GCG-A-GGG-A-GCG-A-GGG); pdb id: 5M1L

Acknowledgments

V. Kocman, A. Kotar, B. Wang, P. Šket, M. Lenarčič Živković, J. Brčić

P1-0242 & J1-6733

BI-JP/15-17-002, BI-TR/14-16-009, BI-IN/15-17-005

CMST COST Action CM1105 Functional metal complexes that bind to biomolecules

Acknowledgments

V. Kocman, A. Kotar, B. Wang, P. Šket, M. Lenarčič Živković, J. Brčić

Prof. Jurij Lah UL FKKT, Ljubljana, SI

Prof. Boris Rogelj IJS Ljubljana, SI

Prof. Naoki Sugimoto FIBER, Konan University, JP

Prof. Ramon Vilar Imperial Colleage London, GB

Prof. Luigi E. Xodo University of Udine, I

Prof. Marie-Paule Teulade-Fichou Universitaire Paris, Orsay, F

Prof. Mateus Webba da Silva University of Ulster, Coleraine, UK

Prof. Valerie Gabelica IECB, Univ. Bordeaux, Pessac, F

Prof. Viktor Viglasky P. J. Safarik University, Kosice, SK

Prof. Rakesh N. Veedu University of Queensland, Brisbane, AU

P1-0242 & J1-6733

BI-JP/15-17-002, BI-TR/14-16-009, BI-IN/15-17-005

CMST COST Action CM1105 Functional metal complexes that bind to biomolecules

Acknowledgments

V. Kocman, A. Kotar, B. Wang, P. Šket, M. Lenarčič Živković, J. Brčić

YOUR INTEREST AND ATTENTION!

P1-0242 & J1-6733

BI-JP/15-17-002, BI-TR/14-16-009, BI-IN/15-17-005

CMST COST Action CM1105 Functional metal complexes that bind to biomolecules

Prof. Jurij Lah UL FKKT, Ljubljana, SI

Prof. Boris Rogelj IJS Ljubljana, Sl

Prof. Naoki Sugimoto FIBER, Konan University, JP

Prof. Ramon Vilar Imperial Colleage London, GB

Prof. Luigi E. Xodo University of Udine, I

Prof. Marie-Paule Teulade-Fichou Universitaire Paris, Orsay, F

Prof. Mateus Webba da Silva University of Ulster, Coleraine, UK

Prof. Valerie Gabelica IECB, Univ. Bordeaux, Pessac, F

Prof. Viktor Viglasky P. J. Safarik University, Kosice, SK

Prof. Rakesh N. Veedu University of Queensland, Brisbane, AU