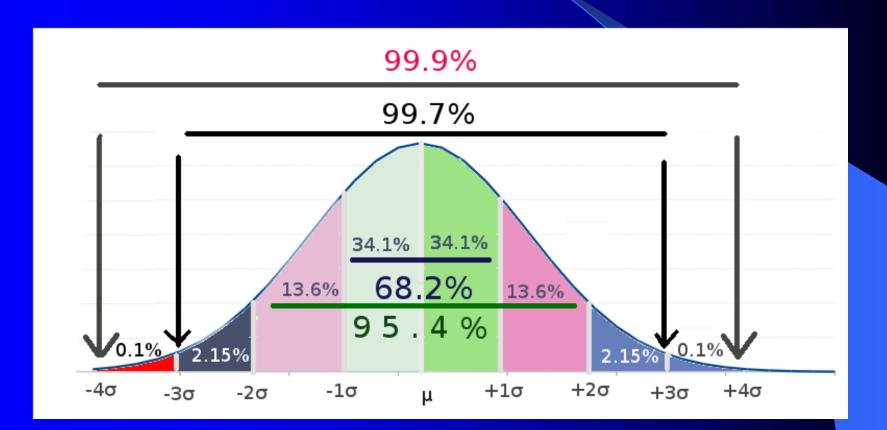
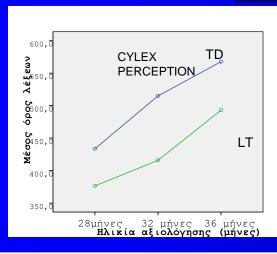
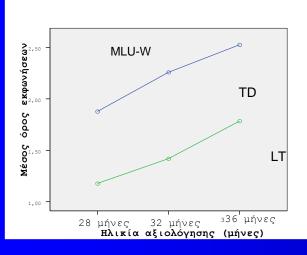


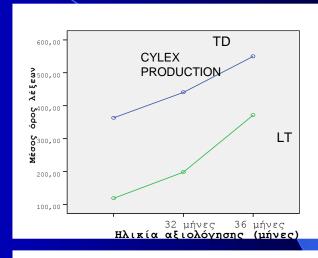
Kakia Petinou **School of Health Sciences Department of Rehabilitation Sciences Speech Therapy Program** Cyprus University of Technology Kakia.petinou@cut.ac.cy UNIVERSITY COLLEGE CORK DELAD WORKSHOP **15-17-11-2017 CORK IRELAND**

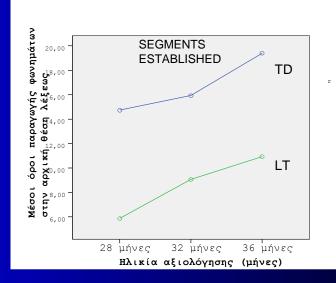

Introduction

- Research for the past 10 years with a focus on linguistic outcomes in LT toddlers longitudinally
- Phonological challenges occur in all cohorts crosslinguistically
- LT scenario maps on to
 - theoretical
 - research
 - clinical aspects


<u>Participants</u>


- Total Cohort of 74 TD toddlers
- Total of 24 LTs (14 boys and 10 girls) identified on the bases of restricted expressive vocabulary at intake (26-28 months)
- Matched 24 TDs (14 boys 10 girls)
- Monolingual Greek-Cypriot


ND Curve



Results [1] Overall comparisons

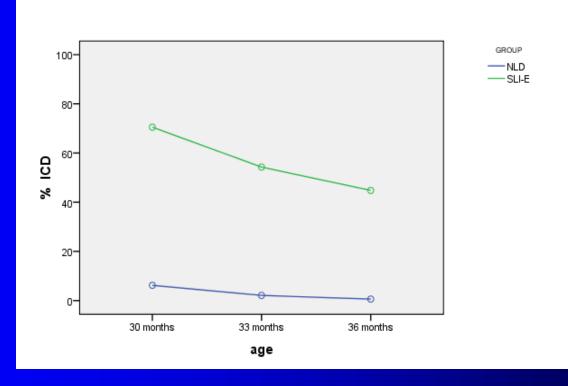
Phonological challenges

Persistent use of word initial onset deletion (WIOD) followed by regressive assimilation (RASS) or consonant harmony

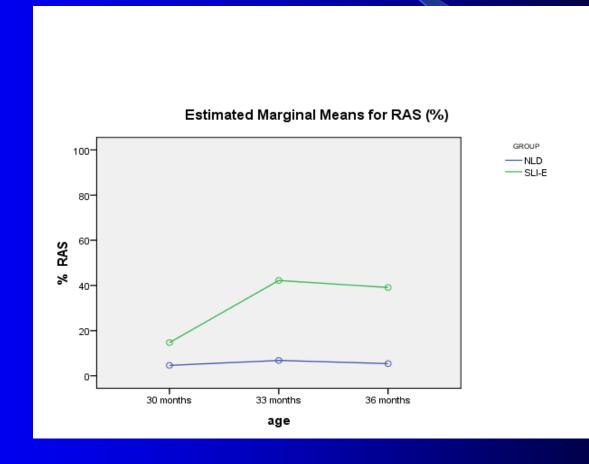
Example

['m i l o]->['i l o]->['l i l o]

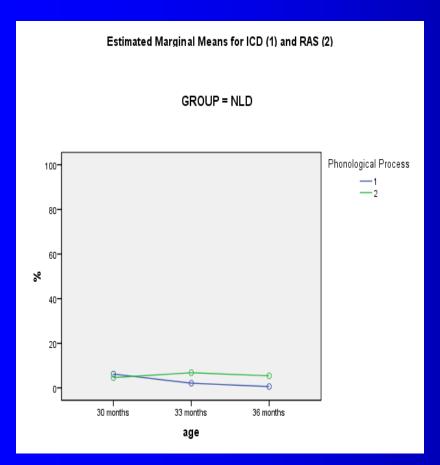
Results

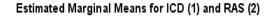

- A mixed-design ANOVA for percentage of phonological process occurrence was used
 - Group (TD vs. LT) as a between-subject variable
 - Age level (30, 33, 36 months) and Phonological process (WIOD, RAS) as within subject variables

Results [1]

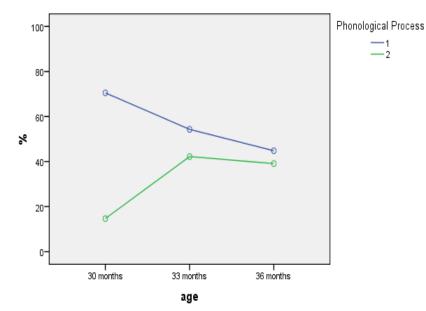

- Significant main effect of Group,
 - percentage of errors in phonological processes was significantly higher among participants in the LT compared to the TD group, F(1,22) = 32.73, p < .001.
- Significant main effect for Phonological Processes
 - higher percentage of WIOD cases compared to RAS across groups, F(1,22) = 7.86, p < .05.
- Significant interaction effect between Phonological Process and Group F(1,22) = 12.10, p < .01
 - indicated errors in Phonological Processes differed for TD and LT children.
- Significant interaction effect between Age and Phonological Process F(1.50, 26.92) = 25.44, p < .01,
 - percent of Phonological Processes differed across age levels.

WIOD for Group x Age

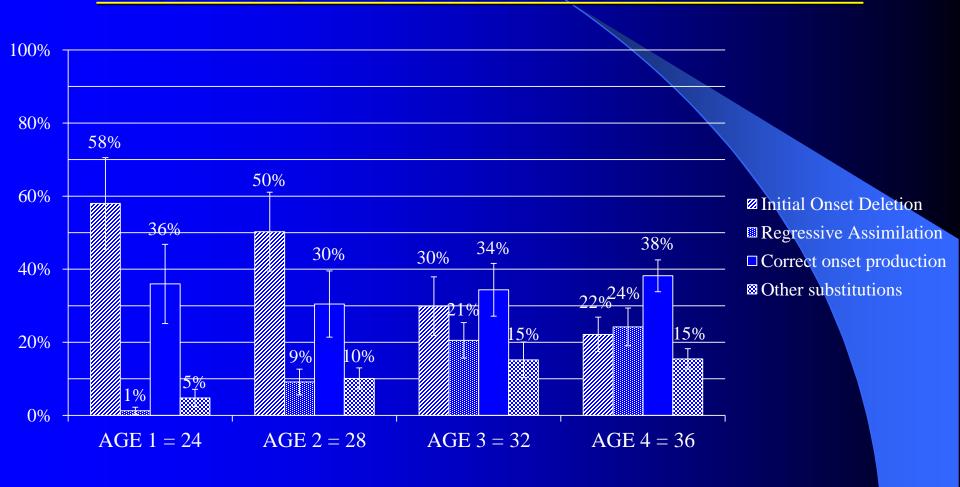

Estimated Marginal Mean of Initial Consonant Deletion (%)



RAS for Group x Age



Figures TD vs. LT for WIOD and RASS X age

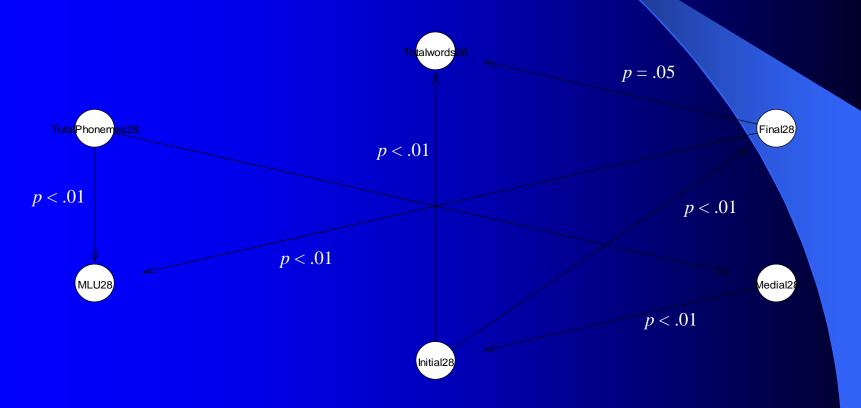


Additional phonological data-LTs set 2 (Petinou & Armostis, 2017)

- Examined an additional group of LTs
- Examined analyzed speech longitudinally at earlier developmental stages
- Mapped existence of PP use in the form of WIOND and RASS
 - 28 versus 36 months

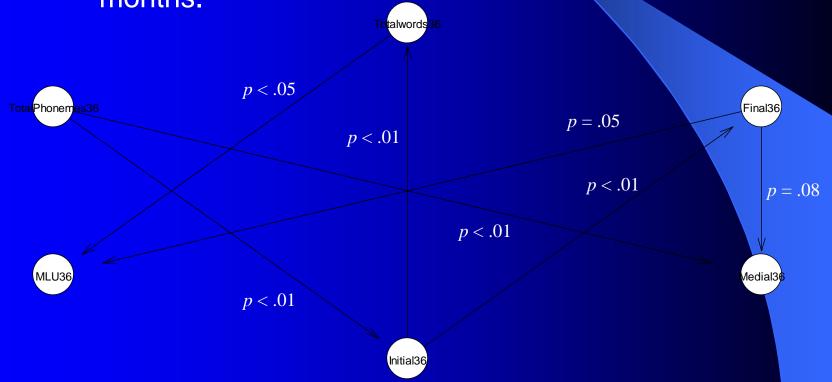
Results

PERCENTAGE OF PHONOLOGICAL PROCESS OCCURENCE



Interphases in Typically Developing Toddlers

- Do early phonetic abilities correlate with additional linguistic parameters, such as MLU-W and the Lexicon?
- If you have a rich PI what does it mean for your other skills?
- Is there a continuity?


Results [1]

Synchronic relationship between language skills @ 28 months

Results [2]

Synchronic relationship between language skills @ 36 months.

Summary [1]

- Interdependent relationship among linguistic subsystems 28 months
- Total number of phonemes correlate with
 - MLU and PI phonemes established in medial position (Petinou & Theodorou, 2015)
- Word Medial position correlates with
 - Phonemes initial position (Petinou & Okalidou, 2006)
- PI initial
 - Total number of words

Summary [2]

- Total number of phonemes correlates with
 - Word Medial
 - Word Initial
- Word Initial correlates with
 - Total number of different words
- Total number of different words correlates
 - MLU

THE ACADEMIC COMFORT ZONE

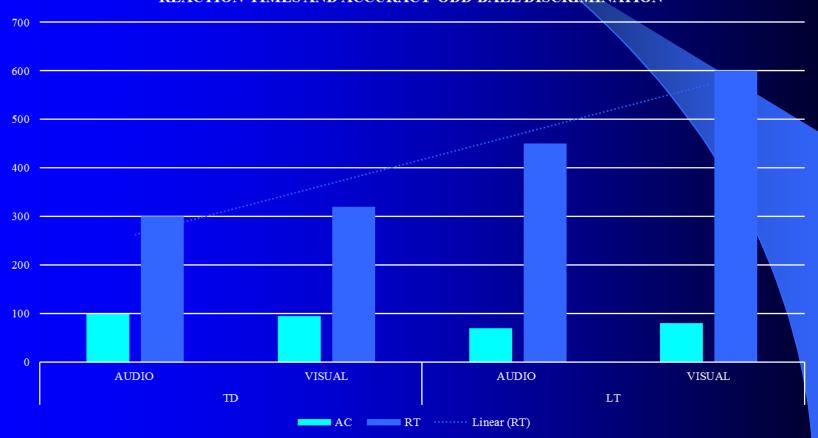
THE ACADEMIC COMFORT ZONE

Challenges

"So what's the problem here fellos? C'mon now -- it's only rocket science!"

Unexpected surprises

Neurophysiological data


- Neurophysiological paradigms allow the evaluation of neural underpinnings of chronic speech language and literacy challenges
- Converge to challenges related to phonological processing/discrimination difficulties
- LTs continue to show persistent phonological deficits as compared to lexical gains (Rescorla, 2011; Petinou & Okalidou, 2016)
- Persistent phonological challenges need to be addressed to identify underlying neurocognitive factors related to communication/literacy challenges

The present study

- Preliminary data on 6 year-olds with TD and LTs language history
- LTs diagnosed with persistent language delay and phonological impairment
- Examined phonological processing skills via ERP responses
- Odd ball paradigm including
 - Detection of phonological violations in real word minimal pair targets

Means for Audio & Visual responses

REACTION TIMES AND ACCURACY ODD BALL DISCRIMINATION

Single Subject Intervention

- Single case studies can provide valuable information regarding intervention efficacy outcomes in children with speech sound disorders (SSD).
- Intervention Studies increase our theoretical knowledge regarding underlying processes influencing speech outcomes (e.g. Baker, et al., 2001).

Intervention [2]

- The current study reports on phonological outcomes in a 5-year-old child diagnosed with SSD.
- A Focused Phonological Intervention regime incorporated
 - ✓ a macro (general phonological analysis), and
 - ✓ a micro (training on specific word targets)Increased intelligibility with a focus on decreasing phonological neighborhood density has been shown to have positive outcomes in children with phonological challenges (Storkel & Hoover, 2011).

Method

Phase 1:

Set of single words

Phase 2:

Wider range of single words

Phase 3: Connected speech

/kala'mari/
'squad'

/ka'lami/
'fishing rod'

/kala'maci/ 'straw'

Results

A. Phonetic Inventory

	Phones			Clusters	
	Initial	Medial	Final	Initial	Medial
	position	position	position	position	position
Pre Interv. Phase	p ^h , v, ð, s, t, c, ç,	m, t, t ^h , p, p ^h , f, Λ, l, n, γ, ν, δ, s, θ, k, j, c, c ^h , ç, r, z, ⁿ d, x, ts	s, n	-	vγ, rj
Post Interv. Phase		m, t, t ^h , p, f, Λ , l, n, γ v, δ , s, θ , k, k ^h , i , c, r , z, x, i d, ts	s, n	pt, st, sk ,pl, ps	st, ps, ft, fl,

Results

B. Phonological Processes

Structural					
	Pre Interv.	Post Interv.			
Syllable reduction	7,26%	0%			
Initial Consonant Deletion	9,50%	5,36%			
Medial Consonant Deletion	8,94%	8,93%			
Final Consonant Deletion	7,82%	8,93%			
Cluster Deletion	6,15%	7,14%			
Cluster Reduction	31,84%	39,29%			
Metathesis	0,56%	0%			
Syllable Reduplication	0,56%	0%			
Systematic					
Substitution	11,17%	17,86%			
Fronting	2,23%	1,79%			
Backing	5,59%	5,36%			
Devoicing	1,12%	3,57%			
Stopping	1,12%	0%			

Summary & Conclusion

- For some LTs phonological challenges continue way beyond the "recovery" period
- Patterns of phonological challenges may emerge
- Cross-language framework we need to identify and code commonalities and differences
- Develop a solid databank accessible to all in need
 - Theoretical perspective
 - Research
 - Intervention studies can be designed

Proposal [1]


- Speech Corpora are hard to obtain
- Confidentiality issues
- Heterogeneity of collection, coding analysis procedures
- Lack of knowledge regards to articulation, phonetics, phonology
- CUT databank corpora from 85 toddlers longitudinal data (TD, LTs, OME, CI)
- Logistics program for PCC, PP occurrence, PI, S STR data extraction
- Frequent Phonotactic Probability in child speech
- Extracting a database of Phonologically dense words

• EBP DMI

Proposal [2]

- Best practices in FAIR data storage
- Implementation of DELAD portal in CLARIN
 - Cyprus Research Foundation (Institution)
 - Provides pro gratis support and consulting services
- MSK Innovative Training Network
 - Data coding
 - Dissemination
 - Workshop
 - Educate practitioners

Thank you!!!

"Mr. Osborne, may I be excused? My brain is full."