

Current Research in Disordered Speech

Department of Speech & Hearing Sciences

A TRADITION OF INDEPENDENT THINKING

Research Interests in Speech & Speech Disorders

- Faculty members:
 - Nicole Muller
 - Alice Lee
 - Nicola Bessell
 - Fiona Gibbon (Emeritus Professor)
- Researcher / Postgraduate student:
 - Jennifer Harte
 - Deirdre O'Leary

Research Facilities

- Instrumentations for investigating speech disorders:
 - Electropalatography (EPG)
 - Ultrasound
 - Electroglottography (EGG)
 - Nasometer
 - Digital recorders, microphones, headphones, computers for Acoustic analysis
 - Portable Audiometers
- Speech & Hearing Lab (LG103); clinic rooms; audiology clinic/lab – for speech recordings & perceptual judgements of speech

Nicola Bessell

Dr. Nicola Bessell

- Clinical case study database
 - · Teaching, examining, research with clinicians, clinical training
 - · Phonetics and phonology
- Foreign Accent Syndrome
 - phonetic documentation and analysis protocols
 - · language processing models
 - develop Irish database
- Acoustics and articulation of varieties of Irish English
 - Munster dialects
 Cork county and city
 Clonakilty, Macroom
 - Newfoundland Irish English
- Fieldwork in indigenous languages and language documentation
 - Haida, Salish, Tlingit, Cant/Gammon

Alice Lee & Jennifer Harte

Research Interests/Expertise

- Typical speech production & speech disorders due to different causes
- Articulation, resonance, prosody
- Perceptual & instrumental investigation of speech
- Instrumental measures: electropalatography, ultrasound, acoustic analysis

Electropalatography (EPG) Studies

 Alice and Fiona has published together a number of EPG studies on typical speech production by children & adults and speech disorders in children (e.g. SSDs, cleft palate).

 Types of data for EPG studies: audio files, EPG data files

Ultrasound Study

- Research interests:
 - Speech disorders in different clinical populations
 - Use of ultrasound for biofeedback in speech intervention
- We've collected data from 2 children with speech sound disorders & 2 age-matched typically developing (TD) children
- Types of data for ultrasound studies: video files, audio files

Prosodic Skills in Children

- Project: Profiling Receptive and Expressive Prosodic Skills in Children with Spina Bifida and Hydrocephalus (SBH)
 - PI: Alice Lee
 - Co-I: Fiona Gibbon
 - Collaborators: Damhnait Ní Mhurchú, Olivia
 O'Mahony
 - Consultant: Sue Peppé
 - Research Assistant(s): Jennifer Harte, (Deirdre O'Leary)

Prosodic Skills in Children

- To identify the strengths and weaknesses of expressive and receptive prosodic skills in children with SBH.
- 2. To discover if there are differences in prosodic ability between children with SBH and TD children (age- & language age-matched).
- 3. To find out if prosodic skills are correlated to language skills in children with SBH.
- 4. To describe the phonetic and perceptual features of expressive prosody in children with SBH.

Prosodic Skills in Children with Spina Bifida

- Tool: Profiling Elements of Prosody in Speech-Communication (PEPS-C) (Peppé & McCann, 2003)
- A computerised test that assesses the perception and production of (1) turnend; (2) affect; (3) boundary; (4) stress; (5) intonation & prosody.
- Types of data of this project: PEPS-C scores, language test scores (can be summarised in spreadsheet or MS Word), audio files (for acoustic analysis)

Prosodic Skills in Children

Accent Comprehension in Children with Speech Sound Disorder

Session 1:

Language Ax. CELF-P (Core)

Audiological screening test

Session 3: Accent Task

Cognitive Ax.

(Raven's test of Progressive coloured Matrices)

Speech & Oromotor Ax. (DEAP)

Deirdre O'Leary

deirdre.ol@uc.ie

Speech Intelligibility in Down syndrome

Deirdre O' Leary, Dr Alice Lee Dr Ciara O' Toole, Prof Fiona Gibbon A TRADITION OF INDEPENDENT THINKING

Speech Intelligibility

How much of the speech output that a listener can understand

Assessment of Intelligibility

Perceptual Methods

- Listener's judgement
- Rating scales
- Transcription

WORDS UNDERSTOOD

(Hustad, 2007; Keuning et al., 1999; Magnus et al., 2011)

Assessment of Intelligibility

Acoustic Methods

- Objective evaluation
- Specialised software
- Specific properties
- Frequency; amplitude, duration, etc
- The relationship between acoustic parameters and speech intelligibility is then investigated

Aims of Study

- To assess the 1. perceptual features and 2. the acoustic features of each speech component in Down syndrome, and their influence on speech intelligibility
- To investigate the impact of listener experience on speech intelligibility scores in Down syndrome
- To investigate the relationship between speech intelligibility and language ability in Down syndrome

Participants

(N=30 in each group)

Speakers with DS (N=30)

- Aged 16 year+
- DS as only diagnosis
- Communicate in spoken sentences
- Monolingual English speakers
- Mild-moderate range of ID

Typical Speakers (N=30)

- Matched for age (year) and gender
- Monolingual English speakers
- Pass hearing screen

Provide various speech samples for analysis

Speech Analysis

Participants

- Typical adults
- Monolingual English speakers
- Live in Ireland for three years
- Pass hearing screen

Naive Listeners (n=20)

No training in judgement of speech disorders

No regular contact with individuals with an ID

Experienced Listeners (n=10)

SLTs working full time with individuals who have speech difficulties, for ≥3 years

Listener Tasks

Rating

- Hear a short speech sample
- Rate on a visual analogue scale how clear/unclear the speaker's speech is

Extremely 100% clear unclear speech speech

Intelligibility score = score out of 100

Transcription

- Hear sentences from repetition/reading sample
- One repetition allowed
- Write down what they hear
- Researcher will compare to target

Intelligibility score = (number of words correctly transcribed/total number of words) x 100

Data

Recordings of:

- Spontaneous speech sample
- Prolonged vowels /a/ /i/
- Vowels /i/, /u/, /æ/, /α/, /ʊ/, /ε/ (hVd)
- Plosives /b/, /p/, /d/, /t/, /g/, /k/ (plosive + /i/)
- Fricatives /s/, /f/, /v/, /ʃ/, /z/ (plosive + /i/)
- Sentences (read/repeated) from Assessment of Intelligibility of Dysarthric Speech (AIDS)

(produced in carrier phrase "I see _____ again")

Data

Recordings of:

- Single words elicited from Goldman-Fristoe Test of Articulation-3 (GFTA-3)
- CAPE-V scores (voice assessment)

Plus:

- Rating and transcription scores of speech intelligibility from naïve and experienced listeners
- Scores from Robbins & Klee oro-motor assessment
- Perceptual rating scores for respiration, resonance and prosody (based on Darley et al. parameters)
- Hearing levels (obtained from audiological examination)
- Scores from Test for Auditory Comprehension of Language (TACL-4)

Thank You!

A TRADITION OF INDEPENDENT THINKING

