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1 Introduction
Boolean networks
Random Boolean networks
Annealed and quenched model

2 Main Part
Sensitivity of Boolean functions
Analysis of the quenched model
Analysis of the annealed model

3 Summary
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A Boolean network consists of N interconnected nodes i each
capable of storing a binary value.

Each node i has K input edges ji1 , . . . , jiK .

To each node a Boolean function fi is assigned.
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Define si(t) as the value stored by i at time t.

Then:
si(t+ 1) = f(si1(t), . . . , siK (t))

.
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NK networks: Random Boolean networks with N nodes, where:

for each node a Boolean function is chosen among all equally
likely functions with K arguments,

for each function the K arguments are chosen among
(
N
K

)
equally likely possibilities,

finally a random initial state is chosen.

By numerical simulations S. Kauffman found that if K ≤ 2, the
networks show ordered behaviour:

Large proportion of weak nodes.

Large proportion of frozen nodes.

Small attractor cycles.

Contrary if K > 2 the networks are disordered or chaotic.
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Here we consider the ensemble RBN(K,P ):

for each node a Boolean function f with K arguments is
chosen as follows: each of the 2K positions in the truth table
of f is set to 1 with probability P .

for each function the K arguments are chosen among
(
N
K

)
equally likely possibilities,

finally a random initial state is chosen.
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Derridas annealed approximation ·  
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[Derrida & Pomeau 1986] introduced the annealed model.
In contrast to the classical model (the so called quenched model)
the functions and connections are chosen at random at each time
step.

Theorem

Ordered behaviour, which means

E(dH(s1(t), s2(t)))
N

→ 0,

if and only if
2KP (1− P ) ≤ 1.
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Lynchs analysis of the quenched model ·  
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Consider a network (with N nodes) with an arbitrary state.

A node G is t-weak if a perturbation of G vanishes in t steps.

Theorem

Ordered behaviour, which means

lim
N→∞

Pr(G is α logN -weak) = 1,

if and only if
2KP (1− P ) ≤ 1.

(α is a constant depending on K only)

Schober et al RBNs and their annealed model 7
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Motivation ·  
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Question

What is the connection between the two models?
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Definition

The l-sensitivity sl
f (w) of a function f with argument

w ∈ FK
2 is the number of vectors x in Hamming distance l to

w, for which f(w) 6= f(x).

The average l-sensitivity sl
f is the average of sl

f (w) of all w.

Example:
f((w1, w2, w3)) = w1 ⊕ w2 ⊕ w3

for all w:

s1f (w) = 3 and

s2f (w) = 0

.

Argument space of f , f = 1
marked red:

000 100

110010

001

011

101

111
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Expectation of l-Sensitivity for random function ·  
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Suppose that Boolean functions are chosen at random. The
probability of choosing a function f is given by pf : The
expectation of the l-sensitivity is given by

E
(
sl
f (w)

)
=
∑

f

pfs
l
f (w).

Similar
E
(
sl
f

)
=
∑

f

pfs
l
f .

For RBN(K,P ) it turns out that
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Suppose that Boolean functions are chosen at random. The
probability of choosing a function f is given by pf : The
expectation of the l-sensitivity is given by

E
(
sl
f (w)

)
=
∑

f

pfs
l
f (w).

Similar
E
(
sl
f

)
=
∑

f

pfs
l
f .

For RBN(K,P ) it turns out that

Lemma

for all w : E
(
sl
f (w)

)
= const. = E

(
sl
f

)
.
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E
(
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=
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f

pfs
l
f .

For RBN(K,P ) it turns out that

Lemma

E
(
sl
f

)
=

(
K
l

)
K

E(s1f )
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Lynchs order parameter ·  
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Suppose

the probability for a function f is given by pf and
the mean activity is independent of time and given by a.

Definition (Lynch)

λ =
∑

f

pf

∑
w∈FK

2

sf (w)awH(w)(1− a)Ki−wH(w),

Schober et al RBNs and their annealed model 11
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Suppose

the probability for a function f is given by pf and
the mean activity is independent of time and given by a.

Definition (Lynch)

λ =
∑

f

pf

∑
w∈FK

2

sf (w)awH(w)(1− a)Ki−wH(w),

in general

Theorem (Lynch)

Ordered behaviour if and only if

λ ≤ 1.
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Suppose

the probability for a function f is given by pf and
the mean activity is independent of time and given by a.

Definition (Lynch)

λ =
∑

f

pf

∑
w∈FK

2

sf (w)awH(w)(1− a)Ki−wH(w),

for RBN(K, p):

Theorem

λ = E(s1f )

hence ordered behaviour if and only if

E(s1f ) ≤ 1.
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Consider two instances of the same random network (with N
nodes) starting from two different initial states (s1,s2). Define the

fractional overlap a(t) = 1− E(dH(s1(t),s2(t)))
N .

At time t: Define a set of nodes At which store the same value in
both instances (marked as yellow below).

000 0 1 111t

t + 1

yellow nodes: same
value in both in-
stances
red nodes: differ-
ent values in both
instances

Next time step: there are nodes (blue) that receive their input only
from At. We expect Na(t)K blue nodes and N(1− a(t)K) other
nodes at time t+ 1, the latter having probability Pd of being
different. Therefore:

a(t+ 1) = a(t)K + (1− Pd)(1− a(t)K).
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Suppose that s1 and s2 are randomly chosen but different and f is
a random function.

Pd = Pr (f(s1) 6= f(s2) | s1 6= s2)

For RBN(K,P ) it turns out that

Pd =
E(s1f )
K

.
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Therefore a(t) evolves according a one-dimensional map

a(t+ 1) = A(a(t))

where

A(x) = 1 + Pd(xK − 1) = 1 + E(s1f )(xK − 1).

Theorem

Stable fixed point x0 = 1 (total overlap, hence ordered behaviour)
if and only if

E(s1f ) ≤ 1.
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Summery and comments ·  
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Due to the simple form of the expectation of the l-sensitivity:

For RBN(K,P ) the phase of both models, the annealed and
the quenched, is determined by the expectation of the average
sensitivity (order 1).

This is also true for other ensembles (see paper).

Note:
It can be shown, that similar results hold, if the probability of a
function is only dependent on the number of 1 in the truth table
(not yet published).
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Thank you ·  
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for your attention!
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