Connections between random Boolean networks and their annealed model

Steffen Schober ${ }^{1}$ Georg Schmidt ${ }^{2}$

${ }^{1}$ Institute of Telecommunications and Applied Information Theory Ulm University, Germany
${ }^{2}$ Ubidyne GmbH, Ulm, Germany

European Conference on Complex Systems
October 1-5, 2007

Outline

(1) Introduction

- Boolean networks
- Random Boolean networks
- Annealed and quenched model
(2) Main Part
- Sensitivity of Boolean functions
- Analysis of the quenched model
- Analysis of the annealed model
(3) Summary

Boolean networks

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
000	0	0	0	0	0
001	1	1	1	0	0
010	1	1	1	0	0
011	1	0	0	1	0
100	0	0	1	0	0
101	1	1	1	1	0
110	1	1	0	1	0
111	1	1	1	1	1

- A Boolean network consists of N interconnected nodes i each capable of storing a binary value.
- Each node i has K input edges $j_{i_{1}}, \ldots, j_{i_{K}}$.
- To each node a Boolean function f_{i} is assigned.

Boolean networks

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
000	0	0	0	0	0
001	1	1	1	0	0
010	1	1	1	0	0
011	1	0	0	1	0
100	0	0	1	0	0
101	1	1	1	1	0
110	1	1	0	1	0
111	1	1	1	1	1

- Define $s_{i}(t)$ as the value stored by i at time t.

Then:

$$
s_{i}(t+1)=f\left(s_{i_{1}}(t), \ldots, s_{i_{K}}(t)\right)
$$

NK networks

NK networks: Random Boolean networks with N nodes, where:

- for each node a Boolean function is chosen among all equally likely functions with K arguments,
- for each function the K arguments are chosen among $\binom{N}{K}$ equally likely possibilities,
- finally a random initial state is chosen.

NK networks

NK networks: Random Boolean networks with N nodes, where:

- for each node a Boolean function is chosen among all equally likely functions with K arguments,
- for each function the K arguments are chosen among $\binom{N}{K}$ equally likely possibilities,
- finally a random initial state is chosen.

By numerical simulations S . Kauffman found that if $K \leq 2$, the networks show ordered behaviour:

- Large proportion of weak nodes.
- Large proportion of frozen nodes.
- Small attractor cycles.

Contrary if $K>2$ the networks are disordered or chaotic.

The ensemble: $\mathrm{RBN}(K, P)$

Here we consider the ensemble $\operatorname{RBN}(K, P)$:

- for each node a Boolean function f with K arguments is chosen as follows: each of the 2^{K} positions in the truth table of f is set to 1 with probability P.
- for each function the K arguments are chosen among $\binom{N}{K}$ equally likely possibilities,
- finally a random initial state is chosen.

Derridas annealed approximation

[Derrida \& Pomeau 1986] introduced the annealed model. In contrast to the classical model (the so called quenched model) the functions and connections are chosen at random at each time step.

Derridas annealed approximation

[Derrida \& Pomeau 1986] introduced the annealed model.
In contrast to the classical model (the so called quenched model) the functions and connections are chosen at random at each time step.

Theorem

Ordered behaviour, which means

$$
\frac{\mathbb{E}\left(d_{H}\left(\mathbf{s}_{1}(t), \mathbf{s}_{2}(t)\right)\right)}{N} \rightarrow 0,
$$

if and only if

$$
2 K P(1-P) \leq 1
$$

Lynchs analysis of the quenched model

Consider a network (with N nodes) with an arbitrary state.

- A node G is t-weak if a perturbation of G vanishes in t steps.

Lynchs analysis of the quenched model

Consider a network (with N nodes) with an arbitrary state.

- A node G is t-weak if a perturbation of G vanishes in t steps.

Theorem

Ordered behaviour, which means

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}(G \text { is } \alpha \log N \text {-weak })=1 \text {, }
$$

if and only if

$$
2 K P(1-P) \leq 1 .
$$

(α is a constant depending on K only)

Motivation

Question

- What is the connection between the two models?

l-Sensitivity

Definition

- The l-sensitivity $s_{f}^{l}(\mathbf{w})$ of a function f with argument $\mathbf{w} \in \mathbb{F}_{2}^{K}$ is the number of vectors \mathbf{x} in Hamming distance l to \mathbf{w}, for which $f(\mathbf{w}) \neq f(\mathbf{x})$.
- The average l-sensitivity s_{f}^{l} is the average of $s_{f}^{l}(\mathbf{w})$ of all \mathbf{w}.

l-Sensitivity

Definition

- The l-sensitivity $s_{f}^{l}(\mathbf{w})$ of a function f with argument $\mathbf{w} \in \mathbb{F}_{2}^{K}$ is the number of vectors \mathbf{x} in Hamming distance l to \mathbf{w}, for which $f(\mathbf{w}) \neq f(\mathbf{x})$.
- The average l-sensitivity s_{f}^{l} is the average of $s_{f}^{l}(\mathbf{w})$ of all \mathbf{w}.

Example:
$f\left(\left(w_{1}, w_{2}, w_{3}\right)\right)=w_{1} \oplus w_{2} \oplus w_{3}$

Argument space of $f, f=1$ marked red:

l-Sensitivity

Definition

- The l-sensitivity $s_{f}^{l}(\mathbf{w})$ of a function f with argument $\mathbf{w} \in \mathbb{F}_{2}^{K}$ is the number of vectors \mathbf{x} in Hamming distance l to \mathbf{w}, for which $f(\mathbf{w}) \neq f(\mathbf{x})$.
- The average l-sensitivity s_{f}^{l} is the average of $s_{f}^{l}(\mathbf{w})$ of all \mathbf{w}.

Example:
$f\left(\left(w_{1}, w_{2}, w_{3}\right)\right)=w_{1} \oplus w_{2} \oplus w_{3}$ for all \mathbf{w} :

$$
\begin{aligned}
& s_{f}^{1}(\mathbf{w})=3 \quad \text { and } \\
& s_{f}^{2}(\mathbf{w})=0
\end{aligned}
$$

Argument space of $f, f=1$ marked red:

Expectation of l-Sensitivity for random function

Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_{f} : The expectation of the l-sensitivity is given by

$$
\mathbb{E}\left(s_{f}^{l}(\mathbf{w})\right)=\sum_{f} p_{f} s_{f}^{l}(\mathbf{w})
$$

Expectation of l-Sensitivity for random function

Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_{f} : The expectation of the l-sensitivity is given by

$$
\mathbb{E}\left(s_{f}^{l}(\mathbf{w})\right)=\sum_{f} p_{f} s_{f}^{l}(\mathbf{w})
$$

Similar

$$
\mathbb{E}\left(s_{f}^{l}\right)=\sum_{f} p_{f} s_{f}^{l}
$$

Expectation of l-Sensitivity for random function

Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_{f} : The expectation of the l-sensitivity is given by

$$
\mathbb{E}\left(s_{f}^{l}(\mathbf{w})\right)=\sum_{f} p_{f} s_{f}^{l}(\mathbf{w})
$$

Similar

$$
\mathbb{E}\left(s_{f}^{l}\right)=\sum_{f} p_{f} s_{f}^{l}
$$

For $\operatorname{RBN}(K, P)$ it turns out that

Lemma

$$
\text { for all } \mathbf{w}: \mathbb{E}\left(s_{f}^{l}(\mathbf{w})\right)=\text { const. }=\mathbb{E}\left(s_{f}^{l}\right) \text {. }
$$

Expectation of l-Sensitivity for random function

Suppose that Boolean functions are chosen at random. The probability of choosing a function f is given by p_{f} : The expectation of the l-sensitivity is given by

$$
\mathbb{E}\left(s_{f}^{l}(\mathbf{w})\right)=\sum_{f} p_{f} s_{f}^{l}(\mathbf{w})
$$

Similar

$$
\mathbb{E}\left(s_{f}^{l}\right)=\sum_{f} p_{f} s_{f}^{l}
$$

For $\operatorname{RBN}(K, P)$ it turns out that

Lemma

$$
\mathbb{E}\left(s_{f}^{l}\right)=\frac{\binom{K}{l}}{K} \mathbb{E}\left(s_{f}^{1}\right)
$$

Lynchs order parameter

Suppose

- the probability for a function f is given by p_{f} and
- the mean activity is independent of time and given by a.

Lynchs order parameter

Suppose

- the probability for a function f is given by p_{f} and
- the mean activity is independent of time and given by a.

Definition (Lynch)

$$
\lambda=\sum_{f} p_{f} \sum_{\mathbf{w} \in \mathbb{F}_{2}^{K}} s_{f}(\mathbf{w}) a^{w_{H}(\mathbf{w})}(1-a)^{K_{i}-w_{H}(\mathbf{w})},
$$

Lynchs order parameter

Suppose

- the probability for a function f is given by p_{f} and
- the mean activity is independent of time and given by a.

Definition (Lynch)

$$
\lambda=\sum_{f} p_{f} \sum_{\mathbf{w} \in \mathbb{F}_{2}^{K}} s_{f}(\mathbf{w}) a^{w_{H}(\mathbf{w})}(1-a)^{K_{i}-w_{H}(\mathbf{w})}
$$

in general

Theorem (Lynch)

Ordered behaviour if and only if

$$
\lambda \leq 1 .
$$

Lynchs order parameter

Suppose

- the probability for a function f is given by p_{f} and
- the mean activity is independent of time and given by a.

Definition (Lynch)

$$
\lambda=\sum_{f} p_{f} \sum_{\mathbf{w} \in \mathbb{F}_{2}^{K}} s_{f}(\mathbf{w}) a^{w_{H}(\mathbf{w})}(1-a)^{K_{i}-w_{H}(\mathbf{w})}
$$

for $\operatorname{RBN}(K, p)$:

Theorem

$$
\lambda=\mathbb{E}\left(s_{f}^{1}\right)
$$

hence ordered behaviour if and only if

$$
\mathbb{E}\left(s_{f}^{1}\right) \leq 1
$$

Annealed analysis I

Consider two instances of the same random network (with N nodes) starting from two different initial states (s_{1}, s_{2}). Define the fractional overlap $a(t)=1-\frac{\mathbb{E}\left(d_{H}\left(\mathbf{s}_{1}(t), \mathbf{s}_{2}(t)\right)\right)}{N}$.

Annealed analysis I

Consider two instances of the same random network (with N nodes) starting from two different initial states (s_{1}, s_{2}). Define the fractional overlap $a(t)=1-\frac{\mathbb{E}\left(d_{H}\left(\mathbf{s}_{1}(t), \mathbf{s}_{2}(t)\right)\right)}{N}$.
At time t : Define a set of nodes A_{t} which store the same value in both instances (marked as yellow below).

yellow nodes: same value in both instances red nodes: different values in both instances

Annealed analysis I

Consider two instances of the same random network (with N nodes) starting from two different initial states (s_{1}, s_{2}). Define the fractional overlap $a(t)=1-\frac{\mathbb{E}\left(d_{H}\left(\mathbf{s}_{1}(t), \mathbf{s}_{2}(t)\right)\right)}{N}$.
At time t : Define a set of nodes A_{t} which store the same value in both instances (marked as yellow below).
 yellow nodes: same value in both instances red nodes: different values in both instances

Next time step: there are nodes (blue) that receive their input only from A_{t}. We expect $N a(t)^{K}$ blue nodes and $N\left(1-a(t)^{K}\right)$ other nodes at time $t+1$, the latter having probability P_{d} of being different. Therefore:

$$
a(t+1)=a(t)^{K}+\left(1-P_{d}\right)\left(1-a(t)^{K}\right)
$$

Annealed analysis II

Suppose that \mathbf{s}_{1} and \mathbf{s}_{2} are randomly chosen but different and f is a random function.

$$
P_{d}=\operatorname{Pr}\left(f\left(\mathbf{s}_{1}\right) \neq f\left(\mathbf{s}_{2}\right) \mid \mathbf{s}_{1} \neq \mathbf{s}_{2}\right)
$$

Annealed analysis II

Suppose that \mathbf{s}_{1} and \mathbf{s}_{2} are randomly chosen but different and f is a random function.

$$
P_{d}=\operatorname{Pr}\left(f\left(\mathbf{s}_{1}\right) \neq f\left(\mathbf{s}_{2}\right) \mid \mathbf{s}_{1} \neq \mathbf{s}_{2}\right)
$$

For $\operatorname{RBN}(K, P)$ it turns out that

$$
P_{d}=\frac{\mathbb{E}\left(s_{f}^{1}\right)}{K}
$$

Annealed analysis II

Therefore $a(t)$ evolves according a one-dimensional map

$$
a(t+1)=A(a(t))
$$

where

$$
A(x)=1+P_{d}\left(x^{K}-1\right)=1+\mathbb{E}\left(s_{f}^{1}\right)\left(x^{K}-1\right)
$$

Annealed analysis II

Therefore $a(t)$ evolves according a one-dimensional map

$$
a(t+1)=A(a(t))
$$

where

$$
A(x)=1+P_{d}\left(x^{K}-1\right)=1+\mathbb{E}\left(s_{f}^{1}\right)\left(x^{K}-1\right)
$$

Theorem

Stable fixed point $x_{0}=1$ (total overlap, hence ordered behaviour) if and only if

$$
\mathbb{E}\left(s_{f}^{1}\right) \leq 1
$$

Summery and comments

Due to the simple form of the expectation of the l-sensitivity:

- For RBN (K, P) the phase of both models, the annealed and the quenched, is determined by the expectation of the average sensitivity (order 1).
- This is also true for other ensembles (see paper).

Summery and comments

Due to the simple form of the expectation of the l-sensitivity:

- For $\operatorname{RBN}(K, P)$ the phase of both models, the annealed and the quenched, is determined by the expectation of the average sensitivity (order 1).
- This is also true for other ensembles (see paper).

Note:
It can be shown, that similar results hold, if the probability of a function is only dependent on the number of 1 in the truth table (not yet published).

Thank you

for your attention!

