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Network construction

L Component = Vertex
O Interaction or relation = Edge

Degree of a vertex = number of its connected neighbors



1.

2.

3.

4.

5.

Few examples of real networks

Protein-protein interaction network
Protein — Vertex
Direct physical interactions (binding) — Edges
Power grid network
Generator, transformers, substations — Vertices
High-voltage transmission lines — Edges
Neuronal network
Neuron — Vertex
Synaptic connections — Edges
Scientific collaboration network
Scientists — Vertices
Having joint publication — Edge
Food-web network
Species — Vertices
Predator-prey relation — Edge
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Food Web of Smallmouth Bass
Little Rock Lake (Cannibal)

~
1st Tropic Level =¥ ¢
Mostly Phytoplankton 2nd Trophic Level
Many Zooplankton
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Parameters for analyzing network
structure

Degree distribution
Average path length
Diameter

Clustering coefficient
Betweenness centrality
etc.



These invariants can not capture all
gualitative aspects of a graph.

e.g. graphs with same degree distribution can
have completely different structural (and
dynamical) properties.

And two graphs with very different structure
can have same clustering coefficient.
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How many invariants do we need to
consider to investigate the systematic )
structural difference and similarities %o
between the graphs from different
classes?




For a given a particular structure, which of
each features or qualities are universal, that
IS, shared by other structures?

What Is uhique and special for the structure
from a particular class?



Are those invariants qualitatively good enough
to identify the domain of a given an empirical
graph?



So instead of focusing on particular and
specific aspects and quantities in detalls, of
a given a large and complex structure,

we can try to obtain, at least at some rough
level, a simultaneous representation of all its
gualitative features.



Therefore, we are advocating here a tentative
classification scheme for empirical networks
based on underlying global qualitative properties
detected through the graph Laplacian spectrum

that,

on one hand, are complete qualitative
characterization of a graph and on other hand,

can be easily graphically represented and
therefore visually analyzed and compared.
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[' : A finite undirected graph with N vertices.
Vertices: 2,7 € I' are connected = ¢~}

n; = degree of vertex 1

For any function v: 1" - R

Av(i) == v(i) — — (j)

n;

1 1
Lu(i) :=u(i)— — ) u(4)

F.Chung, Spectral graph theory,1997

1, fi=jand n #0 1,
Qi; = - ,.,: = if ij is an edge . if ij is an edge

0. otherwise. . otherwise




Properties of this operator

e This operator is symmetric about the product

(u,) := Y _nsu(i)v(i) = eigenvalues are real
i€l
e (Au,u) > 0 = eigenvalues are non-negative

e Au=0 for u=constant= Amin =0



Eigenvalues of this operator
O0=X <A1 <. < Any-1 52

Multiplicity of 0 « # components in the graph

Eigenvalues X\; and A\ _;
AN_1 = 2 < graphs is bipartite
— Spectrum is symmetric about 1

Complete graph with N vertices <

N
A — A‘ i B — A r__  —



Few example of spectral plots
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2D square grids

0.01 0.012
0.009
0.01
0.008
0.007
0.008
0.006
0.005 0.006
0.004
0.004} »
0.003
0.002
0.002
0.001
0 0
Q 0.5 1 1.5 2 25 3 35 4 0 05 1 15 2 25 3 35

Dimension =5 X 2000 Dimension = 10 X 1000

0.012
0.012

0.01
0.01

0.008
0.008

0.006
0.006

0.004
0.004

0.002
0.002

0
Q 0.5 1 1.5 2 25 3 35 4 0

Q 0.5 1 1.5 2 25 3 35

Dimension = 25 X 400 Dimension = 100 X 100



2D square grid with one diagonal
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Dimension = 25 X 400 Dimension = 100 X 100
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Small world network (created from 2D grid)
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Small-world network, created by rewiring 2-D square grid



Protein-protein interaction networks

S. cerevisiae
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C. elegans
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Let think of a graph, representing real data as a
structure that has evolved from some simpler
precursors.

Constructions with different graph operation
related to the evolution of a network describe
certain processes of graph formation that leave
characteristic traces in the spectrum.



A solutionuy of the eigenvalue equation
Aup — Apup = 0

e can be localize
e can be global

A.Banerjee, J.Jost, Discrete Applied Mathematics, to appear.



Vertex doubling

Doubling a single vertex jo € I’
t0is double of Jjo

-- generates eigenvalue 1 with an eigenfunction

1, for i = j9
u1(2) = < —1, for i = g

0, otherwise

High peak at 1: evolve by sequence of vertex duplication



Motif duplication

Motif: small sub-graph (where as the graph is supposed to be large)
containing all edges of the graph between vertices of that subgraph

1
— Z u(7) = (1 — A)u(z) for all ¢ € I'; and some A

n.
L jET,j~i



Motif duplication

Motif: small sub-graph (where as the graph is supposed to be large)
containing all edges of the graph between vertices of that subgraph

£
b
|

u, on I'y
—u. on the double of I';



Another motif duplication

Motif: small sub-graph (where as the graph is supposed to be large)
containing all edges of the graph between vertices of that subgraph

Increment of multiplicity of the eigenvalue 1 by m



Edge doubling

Doubling an edge that connects vertices J1, J2

-- produce eigenvalues
1

WALI ISP

Ay =1+

Symmetric about 1 and close to 1 when 7j,,7j, are sufficiently
large.

High peak at 1, but not too sharp



Edge doubling

Doubling an edge that connects vertices J1, J2
with ng,njg, = 4

-- produce eigenvalues 3/2 and 1/2




Entire graph doubling

Double the entire graph 1T with vertices pi1,...,PN

I be copy of I with vertices 91 ---; 4N and with same
connection pattern.

Connect each g« to all neighbors of pa

New graph has the same eigenvalues as I, plus the
eigenvalue 1 with the multiplicity N.

protein-protein interaction network do have high
multiplicity, not of the order of half of the system size --
subsequent mutations after the genome duplication.

A.Banerjee, J.Jost, Laplacian spectrum and protein-protein interaction networks, preprint.



Motif joining
Motif: small sub-graph (where as the graph is supposed to be large)
containing all edges of the graph between vertices of that subgraph

u*(jo) = 0
jo [~




Motif joining
Motif: small sub-graph (where as the graph is supposed to be large)
containing all edges of the graph between vertices of that subgraph

0. elsewhere

{u", on I



Triangle joining

1, for i = 7,
ugo(1) = ¢ —1, for i = j,

0, otherwise



Triangle joining

i /\/\j2

10 Jo

Generate not only eigenvalue 3/2, but also 1/2
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Convolve with a kernel

Gaussian: \/21?63317(—

(2-mo)?
202 )

«Cauchy-Lorentz: % (m_m};aﬂz

F@) = [ 9@ N 360 M) dh = 3 g(a. we).
k k



Plots with different kernel values
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Protein-protein interaction networks
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Metabolic networks
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Transcription networks
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Autonomous Systems topology of the
Internet

AS graph of 1997/11/08 AS graph of 1999/07/02

AS graph of 2001/03/16



Word-adjacency networks
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Network of hyperlinks between weblogs
of US politics
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Network of conformation space
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Only conformations that are visited at least 20 times during the simulation are
considered in the building of the network.
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E-mail interchanges network
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Neural networks
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Power-grid network

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002|

Topology of the Western States Power Grid of the United States



Networks of co-authorships
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Network of co-purchasing of books
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Network of US football games
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