

Overview of the talk

- Introduction
- Graph Laplacian operator
- Eigenfunction and graph structure
- Visualization techniques
- Qualitative classification of networks
- Conclusion and remarks

Overview of the talk

Introduction

- Graph Laplacian operator
- Eigenfunction and graph structure
- Visualization techniques
- Qualitative classification of networks
- Conclusion and remarks

Network construction

- ☐ Component ⇒ Vertex
- □ Interaction or relation ⇒ Edge

Degree of a vertex = number of its connected neighbors

Few examples of real networks

- 1. Protein-protein interaction network
 - Protein → Vertex
 - Direct physical interactions (binding) → Edges
- 2. Power grid network
 - Generator, transformers, substations → Vertices
 - High-voltage transmission lines → Edges
- 3. Neuronal network
 - Neuron → Vertex
 - Synaptic connections → Edges
- 4. Scientific collaboration network
 - Scientists → Vertices
 - Having joint publication → Edge
- 5. Food-web network
 - Species → Vertices
 - Predator-prey relation → Edge

Parameters for analyzing network structure

- 1. Degree distribution
- 2. Average path length
- 3. Diameter
- 4. Clustering coefficient
- 5. Betweenness centrality etc.

These invariants can not capture all qualitative aspects of a graph.

e.g. graphs with same degree distribution can have completely different structural (and dynamical) properties.

And two graphs with very different structure can have same clustering coefficient.

Power-law every where

Network	Size	(k)	κ	γ_{out}	Yin	ℓ_{real}	ℓ_{rand}	ℓ_{pow}	Reference	Nr.
www	325,729	4.51	900	2.45	2.1	11.2	8.32	4.77	Albert, Jeong, Barabási 1999	1
WWW	4×10^{7}	7		2.38	2.1				Kumar et al. 1999	2
www	2×10^{8}	7.5	4,000	2.72	2.1	16	8.85	7.61	Broder et al. 2000	3
WWW, site	260,000				1.94				Huberman, Adamic 2000	4
Internet, domain*	3,015 - 4,389	3.42 - 3.76	30 - 40	2.1 - 2.2	2.1 - 2.2	4	6.3	5.2	Faloutsos 1999	5
Internet, router*	3,888	2.57	30	2.48	2.48	12.15	8.75	7.67	Faloutsos 1999	6
Internet, router*	150,000	2.66	60	2.4	2.4	11	12.8	7.47	Govindan 2000	7
Movie actors*	212, 250	28.78	900	2.3	2.3	4.54	3.65	4.01	Barabási, Albert 1999	8
Coauthors, SPIRES*	56,627	173	1,100	1.2	1.2	4	2.12	1.95	Newman 2001b,c	9
Coauthors, neuro.*	209, 293	11.54	400	2.1	2.1	6	5.01	3.86	Barabási et al. 2001	10
Coauthors, math*	70,975	3.9	120	2.5	2.5	9.5	8.2	6.53	Barabási et al. 2001	11
Sexual contacts*	2810			3.4	3.4				Liljeros et al. 2001	12
Metabolic, E. coli	778	7.4	110	2.2	2.2	3.2	3.32	2.89	Jeong et al. 2000	13
Protein, S. cerev.*	1870	2.39		2.4	2.4				Mason et al. 2000	14
Ythan estuary*	134	8.7	35	1.05	1.05	2.43	2.26	1.71	Montoya, Solé 2000	14
Silwood park*	154	4.75	27	1.13	1.13	3.4	3.23	2	Montoya, Solé 2000	16
Citation	783, 339	8.57			3				Redner 1998	17
Phone-call	53×10^{6}	3.16		2.1	2.1				Aiello et al. 2000	18
Words, cooccurence*	460, 902	70.13		2.7	2.7				Cancho, Solé 2001	19
Words, synonyms*	22,311	13.48		2.8	2.8				Yook et al. 2001	20

R. Albert and A Barabási, Rev. of Modern Phys. 74, 47-97, 2002

How many invariants do we need to consider to investigate the systematic structural difference and similarities between the graphs from different classes?

For a given a particular structure, which of each features or qualities are universal, that is, shared by other structures?

What is unique and special for the structure from a particular class?

Are those invariants qualitatively good enough to identify the domain of a given an empirical graph?

So instead of focusing on particular and specific aspects and quantities in details, of a given a large and complex structure, we can try to obtain, at least at some rough level, a simultaneous representation of all its qualitative features.

Therefore, we are advocating here a tentative classification scheme for empirical networks based on underlying global qualitative properties detected through the *graph Laplacian spectrum* that,

on one hand, are complete qualitative characterization of a graph and on other hand, can be easily graphically represented and therefore visually analyzed and compared.

Overview of the talk

Introduction

Graph Laplacian operator

- Eigenfunction and graph structure
- Visualization techniques
- Qualitative classification of networks
- Conclusion and remarks

 Γ : A finite undirected graph with N vertices.

Vertices: $i, j \in \Gamma$ are connected $\Rightarrow i \sim j$

 $n_i \Rightarrow$ degree of vertex i

For any function $v:\Gamma \to \mathbb{R}$

$$\Delta v(i) := v(i) - \frac{1}{n_i} \sum_{j,j \sim i} v(j)$$

A.Banerjee, J.Jost, On the spectrum of the normalized graph Laplacian, submitted.

$$\mathcal{L}u(i) := u(i) - \frac{1}{n_i} \sum_{j,j \sim i} \frac{1}{\sqrt{n_i n_j}} u(j)$$

F.Chung, Spectral graph theory, 1997

$$a_{ij} = \begin{cases} 1, & \text{if } i = j \text{ and } n_i \neq 0 \\ -\frac{1}{\sqrt{n_i n_j}}, & \text{if } ij \text{ is an edge} \\ 0, & \text{otherwise.} \end{cases}$$

$$Lu(i) := n_i u(i) - \sum_{j,j \sim i} u(j)$$

A.Bollobás, Moden, graph theory, 1998

$$a_{ij} = \begin{cases} n_i, & \text{if } i = j \\ -1, & \text{if } ij \text{ is an edge} \\ 0, & \text{otherwise} \end{cases}$$

Properties of this operator

- This operator is symmetric about the product $(u,v):=\sum_{i\in\Gamma}n_iu(i)v(i)\Rightarrow ext{eigenvalues}$ are real
- $(\Delta u, u) \ge 0 \Rightarrow$ eigenvalues are non-negative
- $\Delta u = 0$ for $u = \text{constant} \Rightarrow \lambda_{min} = 0$

Eigenvalues of this operator

$$0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{N-1} \le 2$$

- Multiplicity of 0 ⇔ # components in the graph
- Eigenvalues λ_1 and λ_{N-1}
- $\lambda_{N-1} = 2 \Leftrightarrow$ graphs is bipartite
 - Spectrum is symmetric about 1
- Complete graph with N vertices ⇔

$$\lambda_1 = \lambda_2 = \dots = \lambda_{N-1} = \frac{N}{N-1}$$

Few example of spectral plots

1D regular ring lattices

Deg. of each node = 2

Deg. of each node = 6

Deg. of each node = 4

Deg. of each node = 10

2D square grids

Dimension = 5 X 2000

Dimension = 25 X 400

Dimension = 10 X 1000

Dimension = 100 X 100

2D square grid with one diagonal

Dimension = 5 X 2000

Dimension = 25 X 400

Dimension = 10 X 1000

Dimension = 100 X 100

Three generic models

Small world network (created from 2D grid)

Small-world network, created by rewiring 2-D square grid

Protein-protein interaction networks

Overview of the talk

- Introduction
- Graph Laplacian operator

Eigenfunction and graph structure

- Visualization techniques
- Qualitative classification of networks
- Conclusion and remarks

Let think of a graph, representing real data as a structure that has evolved from some simpler precursors.

Constructions with different graph operation related to the evolution of a network describe certain processes of graph formation that leave characteristic traces in the spectrum.

A solution u_k of the eigenvalue equation

$$\Delta u_k - \lambda_k u_k = 0$$

- can be localize
- can be global

Vertex doubling

Doubling a single vertex $j_0 \in \Gamma$ i_0 is double of j_0

-- generates eigenvalue 1 with an eigenfunction

$$u_1(i) = egin{cases} 1, ext{ for } i = j_0 \ -1, ext{ for } i = i_0 \ 0, ext{ otherwise} \end{cases}$$

High peak at 1: evolve by sequence of vertex duplication

Motif duplication

Motif: small sub-graph (where as the graph is supposed to be large) containing all edges of the graph between vertices of that subgraph

$$\frac{1}{n_i} \sum_{j \in \Gamma_1, j \sim i} u(j) = (1 - \lambda)u(i) \text{ for all } i \in \Gamma_1 \text{ and some } \lambda$$

Motif duplication

Motif: small sub-graph (where as the graph is supposed to be large) containing all edges of the graph between vertices of that subgraph

Another motif duplication

Motif: small sub-graph (where as the graph is supposed to be large) containing all edges of the graph between vertices of that subgraph

Increment of multiplicity of the eigenvalue 1 by m

Edge doubling

Doubling an edge that connects vertices j_1, j_2

-- produce eigenvalues

$$\lambda_\pm = 1 \pm rac{1}{\sqrt{n_{j_1}n_{j_2}}}$$

Symmetric about 1 and close to 1 when n_{j_1}, n_{j_2} are sufficiently large.

High peak at 1, but not too sharp

Edge doubling

Doubling an edge that connects vertices j_1, j_2 with $n_{j_1}n_{j_2}=4$

-- produce eigenvalues 3/2 and 1/2

Entire graph doubling

Double the entire graph Γ with vertices p_1, \ldots, p_N Γ' be copy of Γ with vertices q_1, \ldots, q_N and with same connection pattern.

Connect each q_{α} to all neighbors of p_{α}

New graph has the same eigenvalues as Γ , plus the eigenvalue 1 with the multiplicity N.

protein-protein interaction network do have high multiplicity, not of the order of half of the system size -- subsequent mutations after the genome duplication.

A.Banerjee, J.Jost, Laplacian spectrum and protein-protein interaction networks, preprint.

Motif joining

Motif: small sub-graph (where as the graph is supposed to be large) containing all edges of the graph between vertices of that subgraph

Motif joining

Motif: small sub-graph (where as the graph is supposed to be large) containing all edges of the graph between vertices of that subgraph

Triangle joining

Triangle joining

Generate not only eigenvalue 3/2, but also 1/2

Overview of the talk

- Introduction
- Graph Laplacian operator
- Eigenfunction and graph structure

Visualization techniques

- Qualitative classification of networks
- Conclusion and remarks

Convolve with a kernel

- •Gaussian: $\frac{1}{\sqrt{2\pi\sigma}}exp(-\frac{(x-m_x)^2}{2\sigma^2})$
- •Cauchy-Lorentz: $\frac{1}{\pi} \frac{\gamma}{(x-m)^2 + \gamma^2}$

$$f(x) = \int g(x,\lambda) \sum_{k} \delta(\lambda,\lambda_k) d\lambda = \sum_{k} g(x,\lambda_k).$$

Plots with different kernel values

Overview of the talk

- Introduction
- Graph Laplacian operator
- Eigenfunction and graph structure
- Visualization techniques
- Qualitative classification of networks
- Conclusion and remarks

Type I

Protein-protein interaction networks

Metabolic networks

Transcription networks

Autonomous Systems topology of the Internet

Word-adjacency networks

Type II

Network of hyperlinks between weblogs of US politics

Network of conformation space

Only conformations that are visited at least 20 times during the simulation are considered in the building of the network.

Food-web networks

E-mail interchanges network

E-mail interchanges between members of the Univeristy Rovira i Virgili (Tarragona)

Neural networks

C. elegans (animal N2U, adult hermaphrodite) in RVG region

Type III

Power-grid network

Topology of the Western States Power Grid of the United States

Networks of co-authorships

0.018 0.014 0.012 0.010 0.008 0.006 0.004 0.002

Scientists in high-energy theory

Scientists in network theory and experiment

Network of co-purchasing of books

Books about recent US politics sold by the online bookseller Amazon.com.

Network of US football games

American football games between Division IA colleges during regular season Fall 2000

Type IV

Networks in electronic circuits

Overview of the talk

- Introduction
- Graph Laplacian operator
- Eigenfunction and graph structure
- Visualization techniques
- Qualitative classification of networks

Conclusion and remarks

Thank you

