Uncovering Latent Structure in Valued Graphs

M. Mariadassou, S. Robin

UMR AgroParisTech/INRA MIA 518, Paris

ECCS07, October 2007

Outline

- Motivations
- An Explicit Random Graph Model
 - Some Notations
 - Explicit Random Graph Model
- Parametric Estimation
 - Log-likelihoods and Variational Inference
 - Iterative Algorithm
 - Model Selection Criterion
- Simulation Study
 - Quality of the estimates
 - Number of Classes

Motivations for the study of networks

Networks...

- Arise in many fields:
 - → Biology, Chemistry
 - → Physics, Internet.
- Represent an interaction pattern:
 - $\rightarrow O(n^2)$ interactions
 - \rightarrow between *n* elements.
- Have a topology which:
 - → reflects the structure/function relationship

From Barabási website

Some Notations

Notations:

- $\rightarrow V$ a set of vertices in $\{1, \dots, n\}$;
- $\rightarrow E$ a set of edges in $\{1, \ldots, n\}^2$;
- \rightarrow **X** = (X_{ij}) the adjacency matrix, with X_{ij} the value of the edge between i and j.

Random graph definition:

 \rightarrow To describe the network, we need the joint distribution of the X_{ij} .

• Example:

Some Notations

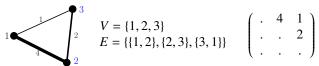
Notations:

- $\rightarrow V$ a set of vertices in $\{1, \dots, n\}$;
- $\rightarrow E$ a set of edges in $\{1, \ldots, n\}^2$;
- \rightarrow **X** = (X_{ij}) the adjacency matrix, with X_{ij} the value of the edge between i and j.

Random graph definition:

 \rightarrow To describe the network, we need the joint distribution of the X_{ij} .

• Example:



Vertices heterogeneity

- → Hypothesis: the vertices are distributed among Q classes with different connectivity;
- \rightarrow **Z** = (**Z**_i)_i; $Z_{iq} = \mathbb{1}\{i \in q\}$ are indep. hidden variables
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups;
- $\rightarrow (\mathbf{Z}_i) \sim \mathcal{M}(1, \alpha).$

• Example:

 \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$

Vertices heterogeneity

- → Hypothesis: the vertices are distributed among Q classes with different connectivity;
- \rightarrow **Z** = (**Z**_i)_i; $Z_{iq} = \mathbb{1}\{i \in q\}$ are indep. hidden variables;
- $\rightarrow \alpha = {\alpha_q}$, the *prior* proportions of groups;
- \rightarrow (\mathbf{Z}_i) $\sim \mathcal{M}(1, \alpha)$.

• Example:

 \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among Q classes with different connectivity:
- \rightarrow **Z** = (**Z**_i)_i; $Z_{iq} = \mathbb{1}\{i \in q\}$ are indep. hidden variables;
- $\rightarrow \alpha = \{\alpha_a\}$, the *prior* proportions of groups;
- \rightarrow (\mathbf{Z}_i) $\sim \mathcal{M}(1, \alpha)$.

• Example:

 \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$



X distribution

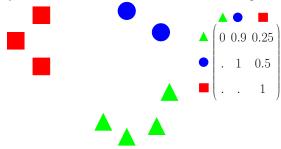
- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell});$
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell});$
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

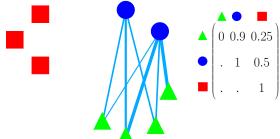
• Example:



X distribution

- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell})\}$;
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG: "Erdös-Rényi Mixture for Graphs".

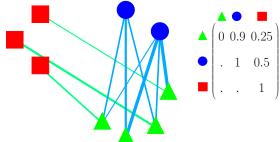
• Example:



X distribution

- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell})\}$;
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG: "Erdös-Rényi Mixture for Graphs".

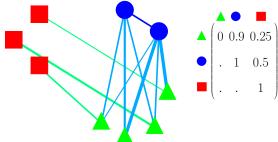
• Example:



X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell});$
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG: "Erdös-Rényi Mixture for Graphs".

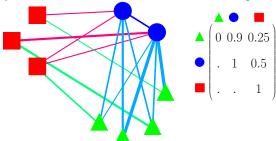
• Example:



X distribution

- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in \ell\} \sim f(., \theta_{q\ell})\}$;
- $\rightarrow \theta = (\theta_{q\ell})$ is the connectivity paramater matrix;
- → ERMG: "Erdös-Rényi Mixture for Graphs".

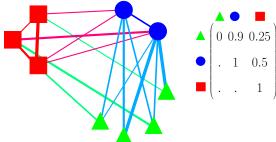
• Example:



X distribution

- \rightarrow conditional distribution : $X_{ii}|\{i \in q, j \in \ell\} \sim f(., \theta_{a\ell})\}$;
- $\rightarrow \theta = (\theta_{a\ell})$ is the connectivity paramater matrix;
- → ERMG: "Erdös-Rényi Mixture for Graphs".

• Example:



• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge
- → Multinomial: nature of the connection (friend, lover, colleague)
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc.

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc.

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc.

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc.

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc.

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- → Etc

Mixture Model to easily generate graphs

7/17

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

Mixture Model to easily generate graphs

7/17

• Classical Distributions:

- $\rightarrow f(., \theta_{q\ell})$ can be any probability distribution;
- → Bernoulli: presence/absence of an edge;
- → Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- → Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_q + \sum_{i < j} \sum_{q, \ell} Z_{iq} Z_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

with $f_{\theta_{q\ell}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim \ell$.

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- The observed data likelihood requires a sum over Qⁿ terms, and is thus untractable;
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_q + \sum_{i < j} \sum_{q, \ell} Z_{iq} Z_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

with $f_{\theta_{q\ell}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim \ell$.

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- The observed data likelihood requires a sum over Q^n terms, and is thus untractable;
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_q + \sum_{i < j} \sum_{q, \ell} Z_{iq} Z_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

with $f_{\theta_{q\ell}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim \ell$.

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- The observed data likelihood requires a sum over Q^n terms, and is thus untractable;
- EM-like strategies require the knowledge of $\Pr(\mathbf{Z}|\mathbf{X})$, also untractable (no conditional independence) and thus also fail.

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated $\Pr(\mathbf{Z}|\mathbf{X})$ by a simple $\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]$ such that $KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{array}{rcl} \mathcal{J}(\mathcal{R}_{X}[\mathbf{Z}]) & = & \mathcal{L}(\mathbf{X}) - \mathit{KL}(\mathcal{R}_{X}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ & = & \mathcal{H}(\mathcal{R}_{X}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{X}[\mathbf{Z}] \mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{array}$$

- At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X});$
- For simple $\mathcal{R}_{\mathbf{X}}$, $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ is tractable.

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated $\Pr(\mathbf{Z}|\mathbf{X})$ by a simple $\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]$ such that $KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$ is minimal.

 \bullet Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{split} \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) &= \mathcal{L}(\mathbf{X}) - \mathit{KL}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] \mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{split}$$

- At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X});$
- For simple $\mathcal{R}_{\mathbf{X}}$, $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ is tractable.

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated $\Pr(\mathbf{Z}|\mathbf{X})$ by a simple $\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]$ such that $KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$ is minimal.

ullet Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{array}{rcl} \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) & = & \mathcal{L}(\mathbf{X}) - \mathit{KL}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ & = & \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] \mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{array}$$

- At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$:
- For simple \mathcal{R}_X , $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ is tractable.

2 Step Algorithm

- Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[Z])$ w.r.t. $\mathcal{R}_X[Z]$:
 - → Restriction to a "comfortable" class of functions;
 - $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \boldsymbol{\tau}_{i,\mathbf{X}})$, with $h(.; \boldsymbol{\tau}_{i,\mathbf{X}})$ the multinomial distribution;
 - o $au_{iq,\mathbf{X}}$ is a variational parameter to be optimized using a fixed point algorithm:

$$\tilde{\tau}_{iq,\mathbf{X}} \propto \alpha_q \prod_{j \neq i} \prod_{\ell=1}^{Q} f_{\theta_{q\ell}}(X_{ij})^{\tilde{\tau}_{j\ell,\mathbf{X}}}$$

- Step 2 Optimize $\mathcal{J}(\mathcal{R}_X[Z])$ w.r.t. (α, θ) :
 - \rightarrow Constraint: $\sum_{q} \alpha_{q} = 1$

$$\begin{array}{rcl} \tilde{\alpha}_{q} & = & \sum_{i} \tilde{\tau}_{iq,\mathbf{X}}/n \\ \\ \tilde{\theta}_{q\ell} & = & \arg\max_{\theta} \sum_{ij} \tilde{\tau}_{iq,\mathbf{X}} \tilde{\tau}_{j\ell,\mathbf{X}} \log f_{\theta}(X_{ij}) \end{array}$$

ightarrow Closed expression of $ilde{ heta}_{q\ell}$ for classical distributions

2 Step Algorithm

- Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[Z])$ w.r.t. $\mathcal{R}_X[Z]$:
 - → Restriction to a "comfortable" class of functions;
 - $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \boldsymbol{\tau}_{i,\mathbf{X}}), \text{ with } h(.; \boldsymbol{\tau}_{i,\mathbf{X}}) \text{ the multinomial distribution;}$
 - o $au_{iq,\mathbf{X}}$ is a variational parameter to be optimized using a fixed point algorithm:

$$\tilde{\tau}_{iq,\mathbf{X}} \propto \alpha_q \prod_{j \neq i} \prod_{\ell=1}^{Q} f_{\theta_{q\ell}}(X_{ij})^{\tilde{\tau}_{j\ell,\mathbf{X}}}$$

- Step 2 Optimize $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ w.r.t. (α, θ) :
 - \rightarrow Constraint: $\sum_{q} \alpha_q = 1$

$$\tilde{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq,\mathbf{X}}/n$$

$$\tilde{\theta}_{q\ell} = \arg \max_{\theta} \sum_{ij} \tilde{\tau}_{iq,\mathbf{X}} \tilde{\tau}_{j\ell,\mathbf{X}} \log f_{\theta}(X_{ij})$$

 \rightarrow Closed expression of $\tilde{\theta}_{q\ell}$ for classical distributions.

Model Selection Criterion

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q)$.
- These terms can be penalized separately:

$$\mathcal{L}(\mathbf{X}|\mathbf{Z},Q) \rightarrow \text{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2}$$

$$\mathcal{L}(\mathbf{Z}|Q) \rightarrow \text{pen}_{\mathbf{Z}} = (Q-1) \log(n)$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_{Q}) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

Model Selection Criterion

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q)$.
- These terms can be penalized separately:

$$\mathcal{L}(\mathbf{X}|\mathbf{Z},Q) \rightarrow \text{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2}$$

$$\mathcal{L}(\mathbf{Z}|Q) \rightarrow \text{pen}_{\mathbf{Z}} = (Q-1) \log(n)$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

- \rightarrow Undirected graph with Q = 3 classes;

- - a = 1: balanced classes:
 - a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- - - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma <> 1$: classes are different:
 - λ: mean value of an edge;

- \rightarrow Undirected graph with Q = 3 classes;
- → Poisson-valued edges:
- - a = 1: balanced classes:
 - a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- - - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma <> 1$: classes are different:
 - λ: mean value of an edge;

- \rightarrow Undirected graph with Q = 3 classes;
- → Poisson-valued edges:
- $\rightarrow n = 100, 500 \text{ vertices}$:
- - a = 1: balanced classes:
 - a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- - - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma <> 1$: classes are different:
 - λ: mean value of an edge;

- \rightarrow Undirected graph with Q = 3 classes;
- → Poisson-valued edges:
- $\rightarrow n = 100, 500 \text{ vertices}$:
- $\rightarrow \alpha_a \propto a^q$ for a = 1, 0.5, 0.2;
 - a = 1: balanced classes:
 - a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- - - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma <> 1$: classes are different:
 - λ: mean value of an edge;

- \rightarrow Undirected graph with Q = 3 classes;
- → Poisson-valued edges:
- $\rightarrow n = 100, 500 \text{ vertices}$:
- $\rightarrow \alpha_a \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes:
 - a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- $\rightarrow \text{ Connectivity matrix of the form} \left(\begin{array}{ccc} \lambda & \gamma \lambda & \gamma \lambda \\ \gamma \lambda & \lambda & \gamma \lambda \\ \gamma \lambda & \gamma \lambda & \lambda \end{array} \right) \text{ for }$
 - $\gamma = 0.1, 0.5, 0.9, 1.5 \text{ and } \lambda = 2, 5.$
 - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma <> 1$: classes are different;
 - λ : mean value of an edge:
 - 100 repeats for each setup.

Results

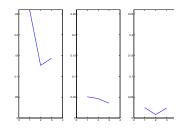
• Root Mean Square Error (RMSE) = $\sqrt{Bias^2 + Variance}$

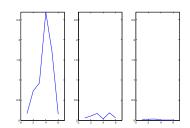
Results

• Root Mean Square Error (RMSE) = $\sqrt{Bias^2 + Variance}$

RMSE for the α_q *x*-axis: $\alpha_1, \alpha_2, \alpha_3$

RMSE for the λ_{ql} *x*-axis: λ_{11} , λ_{22} , λ_{33} , λ_{12} , λ_{13} , λ_{23}





 (n,λ,γ,a) from left (hard) to right (easy): (100,2,0.9,0.2), (100,2,0.5,0.5), (500,5,0.1,1)

Simulation Setup and Results

- → Undirected graph with $Q^* = 3$ classes;
- → Poisson-valued edges;

$$\rightarrow n = 50, 100, 500, 1000 \text{ vertices};$$

$$\rightarrow \alpha_q = (57.1\%, 28, 6\%, 14, 3\%)$$
 (or $a = 0.5$);

$$\rightarrow \lambda = 2, \gamma = 0.5;$$

- → Retrieve Q that maximizes ICL;
- \rightarrow 100 repeats for each value of *n*;

	Q			
n	2	3	4	
50	82	17	1	
100	7	90	3	
500	0	100	0	
1000	0	100	0	

Frequency (in %) at which Q is selected for various n

Simulation Setup and Results

- → Undirected graph with $Q^* = 3$ classes;
- → Poisson-valued edges;

$$\rightarrow n = 50, 100, 500, 1000 \text{ vertices};$$

$$\rightarrow \alpha_q = (57.1\%, 28, 6\%, 14, 3\%)$$
 (or $a = 0.5$);

$$\rightarrow \lambda = 2, \gamma = 0.5;$$

- → Retrieve Q that maximizes ICL;
- \rightarrow 100 repeats for each value of *n*;

		Q	
n	2	3	4
50	82	17	1
100	7	90	3
500	0	100	0
1000	0	100	0

Frequency (in %) at which Q is selected for various *n*.

Summary

Flexibility of ERMG

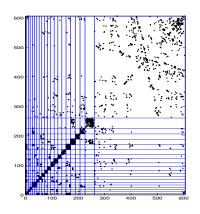
- A simple way to simulate networks;
- Many distributions to model different networks;
- Probabilistic model which captures features of real-networks (data not-shown).

Estimation and Model selection

- Variational approaches to compute approximate MLE when dependencies are complex,
- A statistical criterion to choose the number of classes (ICL).

E. Coli reaction network http://www.biocyc.org/

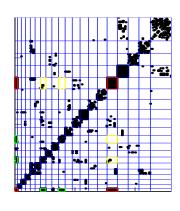
- Dot-plot representation (605 nodes and 1,782 vertices)
 - → adjacency matrix (sorted)
- Biological interpretation:
 - → Groups 1 to 20 gather reactions involving all the same compound either as a substrate or as a product,
 - → A compound (chorismate, pyruvate, ATP,etc) can be associated to each group.
- The structure of the metabolic network is governed by the compounds.



E. Coli reaction network http://www.biocyc.org/

- → Classes 1 and 16 constitute s single clique corresponding to a single compound (pyruvate),
- → They are split into two classes because they interact differently with classes 7 (CO2) and 10 (AcetylCoA)
- → Connectivity matrix (sample):

q, l	1	7	10	16
1	1.0			
7	1.0 .11 .43 1.0	.65		
10 16	.43		.67	
16	1.0	.01	ϵ	1.0



Adjacency matrix (sample)