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Motivations

Motivations for the study of networks

Networks. . .
Arise in many fields:
→ Biology, Chemistry
→ Physics, Internet.

Represent an interaction pattern:
→ O(n2) interactions
→ between n elements.

Have a topology which:
→ reflects the structure/function

relationship

From Barabási website
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An Explicit Random Graph Model Some Notations

Some Notations

Notations:
→ V a set of vertices in {1, . . . , n};

→ E a set of edges in {1, . . . , n}2;

→ X = (Xij) the adjacency matrix, with Xij the value of the edge
between i and j.

Random graph definition:
→ To describe the network, we need the joint distribution of the Xij.

Example:

1

2

3
1

2

4

V = {1, 2, 3}
E = {{1, 2}, {2, 3}, {3, 1}}

 . 4 1
. . 2
. . .


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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (vertices)

Vertices heterogeneity
→ Hypothesis: the vertices are distributed among Q classes with

different connectivity;

→ Z = (Zi)i; Ziq = 1{i ∈ q} are indep. hidden variables;

→ α = {αq}, the prior proportions of groups;

→ (Zi) ∼ M(1,α).

Example:
→ Example for 8 nodes and 3 classes with α = (0.25, 0.25, 0.5)
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (edges)

X distribution
→ conditional distribution : Xij|{i ∈ q, j ∈ `} ∼ f (., θq`);

→ θ = (θq`) is the connectivity paramater matrix;

→ ERMG : "Erdös-Rényi Mixture for Graphs".

Example:
→ Example for 3 classes with Bernoulli-valued edges;
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An Explicit Random Graph Model Explicit Random Graph Model

Random Edge Values

Classical Distributions:
→ f (., θq`) can be any probability distribution;

→ Bernoulli: presence/absence of an edge;

→ Multinomial: nature of the connection (friend, lover, colleague);

→ Poisson: in coauthorship networks, number of copublished
papers;

→ Gaussian: intensity of the connection (airport network);

→ Bivariate Gaussian: directed networks where forward and
backward edges are correlated;

→ Etc.

Mixture Model to easily generate graphs
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Parametric Estimation Log-likelihoods and Variational Inference

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
Complete data likelihood

L(X,Z) =
∑

i

∑
q

Ziq lnαq +
∑
i<j

∑
q,`

ZiqZj` ln fθq`(Xij)

with fθq`(Xij) likelihood of edge value Xij under i ∼ q and j ∼ `.
Observed data likelihood

L(X) = ln
∑

Z
expL(X,Z)

The observed data likelihood requires a sum over Qn terms, and is
thus untractable;

EM-like strategies require the knowledge of Pr(Z|X), also
untractable (no conditional independence) and thus also fail.
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Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple RX[Z] such that
KL(RX[Z],Pr(Z|X)) is minimal.

Optimize in RX the function J(RX) given by :

J(RX[Z]) = L(X) − KL(RX[Z],Pr(Z|X))

= H(RX[Z]) −
∑

Z
RX[Z]L(X,Z)

At best, RX = Pr(Z|X) and
J(RX[Z]) = L(X);

For simple RX, J(RX[Z]) is tractable.

Mariadassou (AgroParisTech) Uncovering Structure in Valued Graphs ECCS07 9 / 17



Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple RX[Z] such that
KL(RX[Z],Pr(Z|X)) is minimal.

Optimize in RX the function J(RX) given by :

J(RX[Z]) = L(X) − KL(RX[Z],Pr(Z|X))

= H(RX[Z]) −
∑

Z
RX[Z]L(X,Z)

At best, RX = Pr(Z|X) and
J(RX[Z]) = L(X);

For simple RX, J(RX[Z]) is tractable.

Mariadassou (AgroParisTech) Uncovering Structure in Valued Graphs ECCS07 9 / 17



Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple RX[Z] such that
KL(RX[Z],Pr(Z|X)) is minimal.

Optimize in RX the function J(RX) given by :

J(RX[Z]) = L(X) − KL(RX[Z],Pr(Z|X))

= H(RX[Z]) −
∑

Z
RX[Z]L(X,Z)

At best, RX = Pr(Z|X) and
J(RX[Z]) = L(X);

For simple RX, J(RX[Z]) is tractable. Pr(Z|X)

RX(Z)

Mariadassou (AgroParisTech) Uncovering Structure in Valued Graphs ECCS07 9 / 17



Parametric Estimation Iterative Algorithm

2 Step Algorithm

Step 1 Optimize J(RX[Z]) w.r.t. RX[Z]:
→ Restriction to a "comfortable" class of functions;
→ RX[Z] =

∏
i h(Zi; τi,X), with h(.; τi,X) the multinomial distribution;

→ τiq,X is a variational parameter to be optimized using a fixed point
algorithm:

τ̃iq,X ∝ αq

∏
j,i

Q∏
`=1

fθq` (Xij)τ̃j`,X

Step 2 Optimize J(RX[Z]) w.r.t. (α, θ):
→ Constraint:

∑
q αq = 1

α̃q =
∑

i

τ̃iq,X/n

θ̃q` = arg max
θ

∑
ij

τ̃iq,Xτ̃j`,X log fθ(Xij)

→ Closed expression of θ̃q` for classical distributions.
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Parametric Estimation Model Selection Criterion

Model Selection Criterion

We derive a statistical BIC-like criterion to select the number of
classes:

The likelihood can be split: L(X,Z|Q) = L(X|Z,Q) +L(Z|Q).

These terms can be penalized separately:

L(X|Z,Q) → penX|Z =
Q(Q + 1)

2
log

n(n − 1)
2

L(Z|Q) → penZ = (Q − 1) log(n)

ICL(Q) = max
θ
L(X, Z̃|θ,mQ) − 1

2

(
Q(Q+1)

2 log n(n−1)
2 − (Q − 1) log(n)

)
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Simulation Study Quality of the estimates

Simulation Setup

→ Undirected graph with Q = 3 classes;

→ Poisson-valued edges;

→ n = 100, 500 vertices;

→ αq ∝ aq for a = 1, 0.5, 0.2;
a = 1: balanced classes;
a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

→ Connectivity matrix of the form

 λ γλ γλ

γλ λ γλ

γλ γλ λ

 for

γ = 0.1, 0.5, 0.9, 1.5 and λ = 2, 5.
γ = 1: all classes equivalent (same connectivity pattern);
γ <> 1: classes are different;
λ: mean value of an edge;

→ 100 repeats for each setup.
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→ Poisson-valued edges;

→ n = 100, 500 vertices;

→ αq ∝ aq for a = 1, 0.5, 0.2;
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Simulation Study Quality of the estimates

Results

Root Mean Square Error (RMSE) =
√

Bias2 + Variance
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Simulation Study Quality of the estimates

Results

Root Mean Square Error (RMSE) =
√

Bias2 + Variance

RMSE for the αq RMSE for the λql

x-axis: α1, α2, α3 x-axis: λ11, λ22, λ33, λ12, λ13, λ23
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Simulation Study Number of Classes

Simulation Setup and Results

→ Undirected graph with Q? = 3 classes;

→ Poisson-valued edges;

→ n = 50, 100, 500, 1000 vertices;

→ αq = (57.1%, 28, 6%, 14, 3%) (or
a = 0.5);

→ λ = 2, γ = 0.5;

→ Retrieve Q that maximizes ICL;

→ 100 repeats for each value of n;

Q
n 2 3 4

50 82 17 1
100 7 90 3
500 0 100 0
1000 0 100 0

Frequency (in %) at which
Q is selected for various n.
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Summary

Summary

Flexibility of ERMG
A simple way to simulate networks;
Many distributions to model different networks;
Probabilistic model which captures features of real-networks (data
not-shown).

Estimation and Model selection
Variational approaches to compute approximate MLE when
dependencies are complex,
A statistical criterion to choose the number of classes (ICL).
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Discussion

E. Coli reaction network http://www.biocyc.org/

Dot-plot representation (605
nodes and 1, 782 vertices)
→ adjacency matrix (sorted)

Biological interpretation:
→ Groups 1 to 20 gather

reactions involving all the
same compound either as a
substrate or as a product,

→ A compound (chorismate,
pyruvate, ATP,etc) can be
associated to each group.

The structure of the metabolic
network is governed by the
compounds.
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Discussion

E. Coli reaction network http://www.biocyc.org/

→ Classes 1 and 16 constitute s
single clique corresponding to
a single compound (pyruvate),

→ They are split into two classes
because they interact
differently with classes 7
(CO2) and 10 (AcetylCoA)

→ Connectivity matrix (sample):
q, l 1 7 10 16
1 1.0
7 .11 .65
10 .43 .67
16 1.0 .01 ε 1.0

Adjacency matrix (sample)
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