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Motivations

Motivations for the study of networks

Networks. . .

@ Arise in many fields:
— Biology, Chemistry
— Physics, Internet.

@ Represent an interaction pattern:
— O(n?) interactions
— between n elements.

@ Have a topology which:

— reflects the structure/function
relationship

From Barabasi website
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An Explicit Random Graph Model Some Notations

Some Notations

@ Notations:
— V aset of vertices in {1, ...,n};

— Easetofedgesin{l,...,n}?;

— X = (X;) the adjacency matrix, with X;; the value of the edge
between i and j.

@ Random graph definition:

— To describe the network, we need the joint distribution of the X;;.
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An Explicit Random Graph Model Some Notations

Some Notations

@ Notations:
— V aset of vertices in {1, ...,n};

— Easetofedgesin{l,...,n}?;

— X = (X;) the adjacency matrix, with X;; the value of the edge
between i and j.

@ Random graph definition:
— To describe the network, we need the joint distribution of the X;;.

@ Example:

2.3) . 4 ;
1,2},{2,3}, {3, 1}} o
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (vertices)
@ Vertices heterogeneity

— Hypothesis: the vertices are distributed among Q classes with
different connectivity;
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (vertices)

@ Vertices heterogeneity
— Hypothesis: the vertices are distributed among Q classes with
different connectivity;

— Z =(Z));; Zi; = 1{i € ¢} are indep. hidden variables;

— a = {a,}, the prior proportions of groups;
- (Z) ~ M1, ).
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (vertices)

@ Vertices heterogeneity
— Hypothesis: the vertices are distributed among Q classes with
different connectivity;

— Z =(Z));; Zi; = 1{i € ¢} are indep. hidden variables;

— a = {a,}, the prior proportions of groups;
- (Z) ~ M1, ).

@ Example:
— Example for 8 nodes and 3 classes with a = (0.25,0.25,0.5)
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (edges)

@ X distribution
— conditional distribution : Xl{i € g,j € €} ~ f(., 040);

— 6 = (8,) is the connectivity paramater matrix;
— ERMG : "Erdds-Rényi Mixture for Graphs”.
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (edges)
@ X distribution
— conditional distribution : Xl{i € g,j € €} ~ f(., 040);
— 6 = (8,) is the connectivity paramater matrix;

— ERMG : "Erdds-Rényi Mixture for Graphs".

@ Example:
— Example for 3 classes with Bernoulli-valued edges;

B o o=
u ® 0 0.9 0.25

. ®| . 1 05

|1
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Explicit Random Graph Model (edges)

@ X distribution
— conditional distribution : Xl{i € g,j € €} ~ f(., 040);

— 6 = (8,) is the connectivity paramater matrix;
— ERMG : "Erdds-Rényi Mixture for Graphs”.

@ Example:
— Example for 3 classes with Bernoulli-valued edges;
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An Explicit Random Graph Model Explicit Random Graph Model

Explicit Random Graph Model (edges)

@ X distribution
— conditional distribution : Xl{i € g,j € €} ~ f(., 040);

— 6 = (8,) is the connectivity paramater matrix;
— ERMG : "Erdds-Rényi Mixture for Graphs”.

@ Example:
— Example for 3 classes with Bernoulli-valued edges;
o N
0 0.9 0.25
® . 1 05
|
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@ Classical Distributions:

— f(.,60,) can be any probability distribution;
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An Explicit Random Graph Model Explicit Random Graph Model

Random Edge Values

@ Classical Distributions:
— f(.,604¢) can be any probability distribution;

— Bernoulli: presence/absence of an edge;
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An Explicit Random Graph Model Explicit Random Graph Model

Random Edge Values

@ Classical Distributions:
— f(.,604¢) can be any probability distribution;
— Bernoulli: presence/absence of an edge;

— Multinomial: nature of the connection (friend, lover, colleague);
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An Explicit Random Graph Model Explicit Random Graph Model

Random Edge Values
@ Classical Distributions:
— f(.,604¢) can be any probability distribution;
— Bernoulli: presence/absence of an edge;
— Multinomial: nature of the connection (friend, lover, colleague);

— Poisson: in coauthorship networks, number of copublished
papers;

— Gaussian: intensity of the connection (airport network);

— Bivariate Gaussian: directed networks where forward and
backward edges are correlated;

— Etc.
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An Explicit Random Graph Model Explicit Random Graph Model

Random Edge Values

Classical Distributions:

— f(.,604¢) can be any probability distribution;

-

-

-

Bernoulli: presence/absence of an edge;
Multinomial: nature of the connection (friend, lover, colleague);

Poisson: in coauthorship networks, number of copublished
papers;

Gaussian: intensity of the connection (airport network);

Bivariate Gaussian: directed networks where forward and
backward edges are correlated;

Etc.

Mixture Model to easily generate graphs
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Parametric Estimation Log-likelihoods and Variational Inference

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

LX,Z) = Z Z Zignag+ > " ZigZie Infy, (X;)

i<j gt

with f(X;) likelihood of edge value X;; underi ~ g andj ~ ¢.
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Parametric Estimation Log-likelihoods and Variational Inference

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

LX,Z) = Z Z Zignag+ > " ZigZie Infy, (X;)

i<j gt

with f(X;) likelihood of edge value X;; underi ~ g andj ~ ¢.
@ Observed data likelihood

LX) =1n Z exp L(X,Z)
VA
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Parametric Estimation Log-likelihoods and Variational Inference

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

LX.Z) = Z Z Zignay + > > ZigZieInfy, (Xy)
i<j gt
with f(X;) likelihood of edge value X;; underi ~ g andj ~ ¢.
@ Observed data likelihood

LX) =1n Z exp L(X,Z)
Z
@ The observed data likelihood requires a sum over Q" terms, and is
thus untractable;

@ EM-like strategies require the knowledge of Pr(Z|X), also
untractable (no conditional independence) and thus also fail.
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Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.
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Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.

@ Optimize in Rx the function J(Rx) given by :

JRxI[Z)) L(X) - KL(Rx[Z], Pr(ZIX))

HRXIZD) - ) RxIZ1L(X, Z)
Z

Mariadassou (AgroParisTech) Uncovering Structure in Valued Graphs ECCS07 9/17



Parametric Estimation Log-likelihoods and Variational Inference

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.

@ Optimize in Rx the function J(Rx) given by :

JRxIZ)) = LX) - KLRx[Z], PrZIX))
= HRxIZ)) - ) RxIZ1L(X,Z)
VA

@ At best, Rx = Pr(Z|X) and
JRx[Z]) = LX);

@ For simple Rx, J(Rx[Z)) is tractable.
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Parametric Estimation Iterative Algorithm

2 Step Algorithm

@ Step 1 Optimize J(Rx[Z]) w.r.t. Rx[Z]:
— Restriction to a "comfortable” class of functions;
— Rx[Z] = [1; i(Z;; Tix), With h(.; T;x) the multinomial distribution;
— Ti;x is a variational parameter to be optimized using a fixed point
algorithm:

0
fux < ay | [ [fac ™

j# =1
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Parametric Estimation Iterative Algorithm

2 Step Algorithm

@ Step 1 Optimize J(Rx[Z]) w.r.t. Rx[Z]:
— Restriction to a "comfortable” class of functions;
— Rx[Z] = [1; i(Z;; Tix), With h(.; T;x) the multinomial distribution;
— Ti;x is a variational parameter to be optimized using a fixed point

algorithm:

0
fux < ay | [ [fac ™

j# =1

@ Step 2 Optimize J(Rx[Z]) w.r.t. (a, 6):
— Constraint: 3, o, = 1

b, = Z%iq,X/n

1

g, arg max Z TigxTjex log fo(X;)

i

S
<
|

>
Y
<
1

— Closed expression of éq[ for classical distributions.
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Parametric Estimation Model Selection Criterion

Model Selection Criterion

@ We derive a statistical BIC-like criterion to select the number of

classes:
@ The likelihood can be split: £L(X,Z|Q) = LX|Z, Q) + L(Z|Q).

@ These terms can be penalized separately:

1 -1
LXZ.0) — penyy = Q(Q2+ )10g n(n2 )

LZIQ) — peng =(Q - 1)log(n)
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Parametric Estimation Model Selection Criterion

Model Selection Criterion

@ We derive a statistical BIC-like criterion to select the number of
classes:

@ The likelihood can be split: £L(X,Z|Q) = LX|Z, Q) + L(Z|Q).

@ These terms can be penalized separately:

1 -1
LXZ.0) — penyy = Q(Q2+ )10g n(n2 )

LZIQ) — peng =(Q - 1)log(n)

ICL(Q) = méle(X, 216, mg) - 5 (44 1og "2 — (0 - 1) log(n))
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— Undirected graph with Q = 3 classes;

— Poisson-valued edges;
— n =100, 500 vertices;

— a,xalfora=1, 0.5, 0.2;
@ a = 1: balanced classes;
@ a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
A yd yAa
— Connectivity matrix of the form| y4 a2 ya |for

yl yd A
y=0.1, 0.5, 09, 1.5and 2 =2, 5.

e y = 1: all classes equivalent (same connectivity pattern);
e y <> l: classes are different;
e A: mean value of an edge;

— 100 repeats for each setup.
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— Undirected graph with Q = 3 classes;
— Poisson-valued edges;
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— Undirected graph with Q = 3 classes;
— Poisson-valued edges;

— n =100, 500 vertices;
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Simulation Study Quality of the estimates

Simulation Setup

— Undirected graph with Q = 3 classes;
— Poisson-valued edges;

— n =100, 500 vertices;

— agxalfora=1, 0.5, 0.2;
@ a = 1: balanced classes;
@ a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
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Simulation Study Quality of the estimates

Simulation Setup

— Undirected graph with Q = 3 classes;
— Poisson-valued edges;

— n =100, 500 vertices;

— agxalfora=1, 0.5, 0.2;
@ a = 1: balanced classes;
@ a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
Ayl ya
— Connectivity matrix of the form| y4 a1 ya4 |for
yd yd A
v=0.1, 0.5, 09, 1.5and 1 =2, 5.
e v = 1: all classes equivalent (same connectivity pattern);
e vy <> 1: classes are different;
@ 1: mean value of an edge;

— 100 repeats for each setup.
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@ Root Mean Square Error (RMSE) = VBias? + Variance

it
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Simulation Study Quality of the estimates

Results

@ Root Mean Square Error (RMSE) = VBias? + Variance

RMSE for the ay RMSE for the Ayl
x-axis: ay, @2, a3 x-axis: Ay, 422, 433, 412, 413, 423
\
T
~

(n,4,y,a) from left (hard) to right (easy):
(100,2,0.9,0.2), (100,2,0.5,0.5), (500,5,0.1,1)
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Simulation Study Number of Classes

Simulation Setup and Results

— Undirected graph with 0* = 3 classes;
— Poisson-valued edges;
— n =150, 100, 500, 1000 vertices;

— gy =(57.1%,28,6%, 14,3%) (or
a=0.5);

- 1=2,y=0.5;
— Retrieve Q that maximizes ICL,;

— 100 repeats for each value of »;
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Simulation Study Number of Classes

Simulation Setup and Results

— Undirected graph with 0* = 3 classes;

— Poisson-valued edges; [9)
o n 2 3 4
— n =50, 100, 500, 1000 vertices; 50 80 17 1
- a, = (57.1%,28,6%, 14,3%) (or 100 | 7 90 3
a=05); 500 | 0 100 O
1000 | 0O 100 O
- A=2,y=05; Frequency (in %) at which

— Retrieve Q that maximizes ICL,; Qs selected for various n.

— 100 repeats for each value of #;
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Summary

Summary

Flexibility of ERMG
@ A simple way to simulate networks;
@ Many distributions to model different networks;

@ Probabilistic model which captures features of real-networks (data
not-shown).

Estimation and Model selection

@ Variational approaches to compute approximate MLE when
dependencies are complex,

@ A statistical criterion to choose the number of classes (ICL).
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Discussion

E. Coli reaction network http://www.biocyc.org/

@ Dot-plot representation (605
nodes and 1,782 vertices)
— adjacency matrix (sorted)
@ Biological interpretation: il
— Groups 1 to 20 gather
reactions involving all the
same compound either as a T
substrate or as a product, il ;
— A compound (chorismate, . s
pyruvate, ATP,etc) can be aik '
associated to each group. oo JHEES
@ The structure of the metabolic
network is governed by the co
compounds.
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Discussion

E. Coli reaction network http://www.biocyc.org/

— Classes 1 and 16 constitute s

single clique corresponding to ‘ [ ‘
a single compound (pyruvate), i T
— They are split into two classes 4 i. C )
because they interact L F
differently with classes 7 IEINEEH
(CO2) and 10 (AcetylCoA) I IRRAE 5
ol '
— Connectivity matrix (sample): - T e
gl| 1 7 10 16 i o=
1]10 I spimmaEEn =
7 65 ' )
10 67 Adjacency matrix (sample)
16 | 1.0 1.0
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