ﬁ RBC 2018, Zrece,
W Network science as a gateway s

2 to understanding of emerging
i . .
dynamics and function of
multicellular systems

Faculty of Medicine

and Mathematics

€ g "-" zisko al d| avnost
ere R epu bI ke Slov

Marko Gosak

Institute of physiology, Faculty of medicine,
University of Maribor

Department of physics, Faculty of natural
sciences and mathematics, University of Maribor /

E-mail: marko.gosak@um.si



Network science — a hot topic
since 1998

NODES EDGES

humans, companies, friendship,
computers, web-pages, collaboration,
airports, power stations, direct links, power
cells, metabolites, etc. lines, chemical

Network science

interactions, etc.

Seminar papers: Watts&Strogatz, Nature The study of network representations of
1998 & Barabasi&Alberts, Science 1999 . . . .
~ 65000 citations| physical, biological, and social phenomena.



Complex networks and biological systems

Subcellular molecular networks:

Neuronal networks: —

Food webs:

|
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Brain networks:




Basic metrics for the characterization of the
network’s structure 0 )

e e,
BN
50 NS

a) Node degree and degree distribution. >, 4 o
b) Clustering coefficient. }

c) Average shortest path length (global 0 )
efficiency). e e

d) Modularity (the presence of ,/\1 V-
communities). ?/
3




a) Node degree and degree distribution.

Degree distribution — a global network’s measure:
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b) The average clustering coefficient
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c.=1/3

S

... ratio between existing and all possible connections
between neighbors.

The average over all pairs: a global measure for local interconnectness.



c) Average shortest path length (global
efficiency)

The shortest path is the relevent one!

4 Average over all node pairs

B < signifies the network’s global
communication ability:
% N(N )& Z_




d) Network’s modularity

(CO mimmun lty St ru Ct ure ) Modularity — a measure that quantifies

the partitioning of a network:

A community is a partition of a network or a sub- . k. Ok (1
graph in which the nodes are more densely Q= Z|:dij t)—— j }5((% | Cj)
interconnected as in the rest of the network. 2m 45 2m

Low modularity » High modularity Friends from high-school Coworkers

=i - ~
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Friends from football




Small-world networks

regular

small-world

a

High clustering, low efficiency

Increasing|randomness

v

Watts&Strogatz, Nature 1998

Low clustering, high efficiency

High clustering, high efficiency




Example: the network of movie actors

nodes = actors

connection = two actors played in the
same film

N =225 226; <k> =61

| Land C C

rand

3,65 2,92 0,79 0,00027

Small-world network!

The same topological structures were
identified in scientific collaboration networks,
power grid networks, metabolic networks,
neuronal networks, etc..

Watts&Strogatz, Nature 1998



Subcellular molecular networks

Molecular interaction networks provide a framework to investigate cellular processes.
Complex topological features (small-worldness, heterogeneity and modularity).

Genetic regulatory Signalling pathway
networks

STIMULUS

Protein-protein
intetraction networks
(PPI)

Metabolic networks

Barabasi & Oltvai, Nature Rev Gen 2004
Klosik et al., Nature Communications 2017



Protein-protein interaction (PPl) network

* Protein connectivity at proteome-scale.
* Node = specific protein
 Edge = interaction between two proteins.

Establishing connections:

* The proteins interact physically and form
large complexes

* The proteins are enzymes that catalyze two
successive chemical reactions in a pathway

* One of the proteins regulates the expression
of the other.

Vykoukal et al., 2017



BOLD

wwwww

Functional network

Functional connectivity of brain networks
— extracting interaction patterns out of

dynamics

e Parts of the brain are (functionally)
connected and work synchronous.

 The interconnectness between regions
can be regarded as a network.

* For the description and analysis of
brain networks we can use theoretical
tools from the complex network
theory.

Under pathological conditions — the
network structure changes

a Centrality or hubness d Core-periphery

® Node (brain region) = Edge (connection)

b Clustering coefficient C Modularity

/I D /I\ I
I \\/\ A%
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Bassett et al., Annu Rev Biomed Eng 2017
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Our work: Connectivity within the islets of
Langerhans -> complex network

Our goal: to quantify intercellular interaction patterns within living tissues.




Regulation of blood glucose level by pancreatic
islets

Islets

* Pancreas — the key organ for the regulation of
blood sugar.

* Islets of Langerhans; beta cells -> sensors for
level of blood glucose.

* Beta cells -> at higher glucose concentration
they become active and secrete insulin. Pancreas

* Insulin-> hormone, that lowers blood glucose
levels.

* Disruptions of beta cell functioning -> impaired
insulin production -> diabetes.



Why is it important to study the physiology of beta cells?

e Disruptions in beta cell function lead to () glukoza, )
diabetes mellitus. i

* App. 8.5 % of world’s population suffer on
diabetes, the number is increasing. > —

e 550 billions is the global economic cost of @ _
diabetes.

* Diabetes decreases the quality of life.

* People suffering on diabetes are more
susceptible the other diseases.

Studying in vitro on tissue slices.




Cellular mechanisms for blood sugar regulation

* Glucose acts as a stimulus that depolarizes
the beta cell.

/
glucose

* Depolarization leads to metabolic processes, insulin
which in turn provoke the (periodic) rise in

intracellular Ca?*.

 Ca?* activity leads to insulin secretion.

% 4 h B | 9 mM glc
® ; = . = ; = =
i -
< “ I

Ca” signal

Typical Ca?* signal of a pancreatic
beta cell after stimulation with Y
glucose (switch from 6 mM to 9 mM): |

T X T e T L T M T i T =
0 500 1000 1500 2000 2500 3000
time (s)




Motivation: Regulation of insulin secretion is a
collective process!

* Intercellular communication and coordinated cellular activities are
necessary for secreting insulin on a global scale.

* Impairments in the intercellular communication lead to failures in
insulin secretion.
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Multicellular confocal imaging in acute tissue slices:

Measuring the Ca?*
dynamics in beta cells

1. step: Cutting tissue slices 2. step: Staining tissue slices

—»

Razor blade
Islet

$140 um

Pancreas

Agarose : 6uM Oregon Green
488 BAPTA-1

3. step: Imagining on Leica TCS SP5 II confocal microscope

T T T T T
500 1000 1500 2000 2500 3000

Argon Laser
560 1 C:OO 15‘00 20‘00 25‘00 30‘00
Oregon Green 488 ,
BAPTA-1 loaded cell
06

Main advanteges: <
- A tissue-friendly approach dlicoe :
- Contacts between cells preserved esssssssesnsseesssnssss — [ilter (500-600 nm)
- Other tissue structures preserved 00
- Large numer of cells ] — Photomultiplier o s0 oo 10 2000 250 3000

i

(detector)




2
Ca’' trace

2
Ca*" traces

Extracting the functional

connectivity patterns

between beta cells
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Network metrics:
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Functional connectivity between beta cells reflects
small-world properties

FUNCTIONAL
BETA CELL

C GEOMETRIC

A
Y,

= ¥,
K/
o

SHORTEST PATH

small-world network characteristics

Stozer, Gosak, Dolensek, et al., PLoS Comput. Biol. 2013

Cumulative degree distribution:

0 T T T T Ml |
10 "' '5"_"-'.-. -:
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g 10 = &
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0.1 1
k|l k

max

The beta cell functional
network is a broad-scale
small-world network!




Intra- and inter-cellular - -
beta cell activity under
different glucose
concentrations
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Assessing the beta cell network functionality
in pre-diabetic animal models

SNAP-25b-deficienct mice: Ca?* traces after stimulation with 12 mM glucose:
* Increased insulin secretion, oV
* Modified morphology of islets.

In vivo measurements of insulin
secretion:
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Functional networks — wildtype vs. mutant:
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Medicine and Surgery, Karolinska male MT
Institut, Sweeden Daraio, Bombek, Gosak, et al., Sci Rep 2017



s the ,standard” network approach an
oversimplification?

Several (interdependent) Beta cell dynamics is governed Beta cell activity is
communication mechanisms; by feedback interactions of nonstationary even
multiple types of intercellular different oscillatory under constant
interactions subsystems stimulatory conditions

ATP .
Electrical/Calcium | —= Glycolytie o]
V.n, Ca, .Ca,, ,ADP F6P, FBP s20 1k
200 o A
180 -
Ca, AD\ &ﬂ, ATP /]PDH 160
140
Mitochondrial — 120
100 4}
NADH,,, Ay ,Ca,, ADP, g0l M
60
q0]b .

20

time index




The multilayer network formalism

phenotypic, M,
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Studying the relationship between membrane potential and
Ca?* dynamics in beta cell syncytium by means of multiplex
network representation

Simultaneous measurments of membrane potential
(VoltageFluor dyes) and Ca?* concentration (Rhod-2 marker):

A

¥
1 . . Vv ' : ; Rhod-2§
!

o

e

o -
a

normalized absorbance/emission
o

700

650

§O

550

600
wavelength (nm)

Dolensek, Stozer, Skelin, et al., PLoS one 2013
Dolendek, Speli¢, Klemen, et al., Sensors 2015
Gosak, Dolensek, Markovic, et al., Chaos, Solitons & Fractals 2015

Spreading of the MP signal:

Spreading of the Ca?* wave:




Multilayered intercellular beta cell networks

Hypothetical multiplex
beta cell network:
functional interactions
based on simultaneously
recorded membrane
potential (green), calcium
(blue), and exocytotic
event dynamics (red).
The thickness of
interlayer connections
reflects the time lag
between individual
signals.

>

membrane
potential

insulin
release

Ca®* signal

time

Gosak, Markovic, Dolensek, et al., Phys. Life Rev. 2018



Assessing the temporal nature of intercellular
communication by means of multilayer network analysis

Individual Ca%* events as temporal network layers:

Quantifying the changes in intercellular interactions
= provoked by pharmacological interventions:
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Gosak, Markovi¢, Dolensek, et al., Phys. Life Rev. 2018



We live in a world of networks

 Complex biomedical systems are constituted by

many nonlinear dynamical elements, which interact
in a non-trivial manner.

* Understanding their functional organization is a

great challange.

* Network science offers a huge potential to address

these issues.

BRAIN

Gosak et al.,
Phys. Life
Reviews 2018
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