Artificial Regulatory Network Evolution

Yolanda Sanchez-Dehesa¹, Loïc Cerf¹, José-Maria Peña², Jean-François Boulicaut¹ and Guillaume Beslon¹

1: LIRIS Laboratory, INSA-Lyon, France

2: DATSI, Facultad de Informatica, Universidad

Politécnica de Madrid, Spain

Context: from data to knowledge

Large kinetic transcriptome data sets are

Genetic Network (GN) inference

 We need to design NOW the related data mining algorithms

Problems

- Just a few real data sets are available
- Today, benchmarking is performed on:
 - Randomly generated data
 - Synthetic data w.r.t. models from other fields
 - Data from GN generators biased by topology

Approach

- Can we use simulation to build biologically plausible GNs and thus more relevant kinetic data sets?
- GNs are built by an evolutionary process
- We propose to use artificial evolution to generate plausible GNs

Biologically plausible GN

- To obtain plausible GNs we must respect biological bases of network evolution:
 - GNs are derived from a genome sequence and a proteome component
 - Mutation of the genetic sequence
 - Selection on the phenotype

We have developed the RAevol Model

Based on the Aevol* Model

- Studying robustness and evolvability in artificial organisms:
 - Artificial genome, non-coding sequences, variable number of genes
 - Genome: circular double-strand binary string
 - Mutation/selection process

Ævol: Artificial Evolution

From Aevol to RAevol

- Interesting properties of Aevol to understand genome evolution:
 - See C. Knibbe, A long-term evolutionary pressure on the amount of non-coding DNA (2007). Molecular Biology and Evolution, in press. doi:
 10.1093/molbev/msm165
- We need to add a regulatory process
 - → RAevol

Experimental setup

- Simulations: 1000 individuals, mutation rate 1.10⁻⁵,
 15000 generations
- Organisms must perform 3 metabolic functions
- The incoming of an external signal (protein) triggers an inhibition process

First results

Generation	0	1000	5000	10000	15000
Metabolic error	0.1377	0.0616	0.0206	0.0171	0.0161
Genome size (in kilobase pairs)	5.0	21.3	15.3	12.3	12.8
Nb. of nodes in the metabolic network	1	24	34	36	37
Nb. of nodes in the genetic network	3	24	35	37	45
Nb. of transcription factors	2	0	1	1	8
Nb. of links	3	576	1223	1332	2601
positive links	2	508	771	827	1276
negative links	1	68	452	505	1325

- The metabolic network mainly grows during the 5000 first generations → GN grows likely
- Transcription factors appear after 10000 generations
 - → GN grows independently from metabolism

First results Regulatory Links Values

- First phase: quasi-normal distribution
- Second phase: multimodal distribution, strong links (mainly inhibitory) ...

Conclusion and perspectives

 RAevol generates plausible GNs (protein-gene expression levels) along evolution

Studying the generation of kinetic transcriptome data sets is ongoing

 Towards more realistic benchmarks for data mining algorithms

Open issues

- Systematic experiments
 - → effect of mutation rates
 - effect of environment stability
- Study the network topology
 - → Compare the network topology with real organisms...
 - → Do frequent motifs/modules appear in the network?

The Aevol Model

- Interesting properties of the Aevol Model:
 - Transcription/translation process → Different RNA production levels
 - Explicit (abstract) proteome → interactions between proteins and genetic sequence
 - Variable gene number → Variable network size
 - Complex mutational process (mutations, InDel,
 rearrangements, ...) → Different topology emergence