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Introduction
Given a set of M data in RD, the estimation of the density allow solving

various problems : 
classification, clustering, regression
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A question without answer…
The generative models cannot aswer this question:

Which is the « shape » of this data set ?
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An subjective answer

1 point and 1 curve not connected to each other
The expected answer is :

The problem : what is the topology of the principal manifolds
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Why learning topology : (semi)-supervised applications

Estimate the complexity of the classification task
[Lallich02, Aupetit05Neurocomputing]

Add a topological a priori to design 
a classifier
[Belkin05Nips]

Add topological features to statistical features

Classify through the connected components or the intrinsic
dimension.
[Belkin]
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Why learning topology : unsupervised applications

[Zeller, Schulten -IEEE ISIC1996]

Clusters defined by the connected components

Data exploration (e.g. shortest path)

Robotic (Optimal path, inverse kinematic)
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Gaussian Mixture

Generative manifold learning

Problems: fixed or incomplete topology

GTM [Bishop]

Revisited Principal  Curves [Hastie,Stuetzle]

MPPCA [Bishop]
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Computational Topology

M1

M2

All the previous work about topology learning has been grounded on the result of
Edelsbrunner and Shah (1997) which proved that given a manifold and a set of N
prototypes nearby M, it exists a subgraph* of the Delaunay graph of the prototypes
which has the same topology as M

* more exactly a subcomplex of the Delaunay complex
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Computational Topology

M1

M2

All the previous work about topology learning has been grounded on the result of
Edelsbrunner and Shah (1997) which proved that given a manifold  and a set of N
prototypes nearby M, it exists a subgraph of the Delaunay graph of the prototypes
which has the same topology as M

Extractible topology
O(DN3)
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Application : known manifold

Topology of molecules
[Edelsbrunner1994]
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Approximation : manifold known throught a data set



12/07/2007BootCamp PASCAL 16

Topology Representing Network

• Topology Representing Network [Martinetz, Schulten 1994]

Connect the 1st and 2nd NN of each data 
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1er2nd
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Topology Representing Network
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Topology Representing Network

Good points :
1- O(DNM)
2- If there are enough prototypes and if they are well located then
resulting graph is « good » in practice.

Some drawbacks from the machine learning point of view
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Topology Representing Network : some drawbacks

• Noise sensitivity
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Topology Representing Network : some drawbacks

• Not self-consistent [Hastie]
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Topology Representing Network : some drawbacks

• No quality measure
– How to measure the quality of the TRN if D >3 ?
– How to compare two models ?

For all these reasons, we propose a generative model
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General assumptions on data generation

Unknown
principal 
manifolds
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Unknown
principal 
manifolds

…from which are drawn
data with a unknown pdf

General assumptions on data generation
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Unknown
principal 
manifolds

…from which are drawn
data with a unknown pdf …corroputed with some unknown

noise leading to the observarion

General assumptions on data generation
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General assumptions on data generation

Unknown
principal 
manifolds

…from which are drawn
data with a unknown pdf …corroputed with some unknown

noise leading to the observarion

The goal is to learn from the observed data, 
the principal manifolds

such that their topological features can be extracted
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3 assumptions…1 generative model

∑
∈Jj

The manifold is close to the DG 
of some prototypes

=)(xp
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3 assumptions…1 generative model

∑
∈Jj

=)(xp )j(p

The manifold is close to the DG 
of some prototypes

)j(p

we associate to each component
a weighted uniform distribution 
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3 assumptions…1 generative model

∑
∈Jj

we convolve the
components by an isotropic

Gaussian noise

=)(xp ),jx(p σ)j(p

),jx(p σ

∑ ≥=
j

jpjp 0)(1)(

)j(p

we associate to each component
a weighted uniform distribution 

The manifold is close to the DG 
of some prototypes
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A Gaussian-point and a Gaussian-segment
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How to define a generative model based on  points and segments ? 

can be expressed in terms of « erf »
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Hola !
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Proposed approach : 3 steps

1. Initialization

Location of the prototypes with a
« classical » isotropic GM

…and then building of
the Delaunay Graph

Initialize the generative model
(equiprobability of the components)
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Number of prototypes

min BIC ~  - Likelihood + Complexity of the model

35 40 45 50 55 60 65 70
3.84

3.85

3.86

3.87

3.88

3.89

3.9

3.91

3.92

3.93
x 104



12/07/2007BootCamp PASCAL 38

Proposed approach : 3 steps

2. Learning
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update
the variance of the Gaussian noise, 

the weights of the components,
and the location of the prototypes

with the EM algorithm

in order to maximize the Likelihood of the model
w.r.t the N observed data :

∑
∈Jj

=)(xp ),jx(p σ)j(p
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EM updates
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EM updates
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Some components have a (quasi-) nul
probability (weights):

They do not explain the data and can be prunned
from the initial graph

3. After the learning
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Threshold setting
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Toy Experiment

Seuillage sur le 
nombre de witness



12/07/2007BootCamp PASCAL 44

Toy Experiment
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Toy Experiment
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Other applications
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Comments

• There is « no free lunch »
– Time Complexity O(DN3) (initial Delaunay graph)
– Slow convergence (EM)
– Local optima
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Key Points

• Statistical learning of the topology of a data set
• Assumption : 

» Initial Delaunay graph is rich enough to contain a 
sub-graph having the same topology as the
principal manifolds

• Based on a statistical criterion (the likelihood) available in any
dimension

• « Generalized » Gaussian Mixture 
• Can be seen as a generalization of the « Gaussian mixture » (no

edges)
• Can be seen as a finite mixture (number of « Gaussian-segment ») of

an infinite mixture (Gaussian-segment)

• This preliminary work is an attempt to bridge the gap between
Statistical Learning Theory and Computational Topology
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Open questions 

• Validity of the assumption
« good » penalized-likelihood = « good » topology

• Theorem of «universal approximation» of manifold ?
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Related works

• Publications NIPS 2005 (unsupervised) and ESANN 2007 (supervised:
analysis of the iris and oil flow data sets)

• Workshop submission at NIPS on this topic
in collaboration with F. Chazal (INRIA Futurs) , D. Cohen-Steiner
(INRIA Sophia), S. Canu and G.Gasso (INSA Rouen)
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Thanks
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Equations
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Topology

di=0

di=1

di=2…

…Number of holes (Betti), connectedness…

Homeomorphism: topological equivalence

= =

intrinsic dimension
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